1. Introduction

Today’s Internet usage tends to serve the expansion of the entertainment industry. Besides the content-delivery traffic (e.g. web, P2P), significant traffic appeared which is generated by online games. Massive Multiplayer Online Role Playing Games (MMORPG) attract the most users who play simultaneously in virtual worlds over the Internet.

Earlier studies focused on games that were popular at that time. These games include the popular first person shooters, e.g. Counterstrike which was analyzed in [1]. Today most of the gaming traffic is generated by massively multiplayer online games thus such works dealing with the new type of traffic have recently appeared. Chen et al. analyzed ShenZhou Online, a mid-scale, commercial MMORPG in Taiwan [2]. They extended their work in [3] where they performed scaling analysis on the measurements. They explained the scaling results with the fact that an ON-OFF model can be constructed based on the results of the analysis where ON and OFF periods are in connection with the players’ active and idle times indirectly. In [4] authors analyzed Lineage II which was one of the world’s largest MMORPGs in terms of the number of concurrent users at that time. In [5], authors took Ragnarok Online, and studied the traffic generated by mainstream game bots and human players. In [6], authors used CrossFire, an open source MMOG to evaluate their performance model. All of these works used packet level network traces and statistical methods for traffic characteristics analysis.

However, situation has recently changed. According to [7] the top game having the most active subscribers is World of Warcraft. The number of active subscribers is four times higher than in Lineage II. We decided to analyze the following games from the charts of [7]: World of Warcraft, Eve Online, Star Wars Galaxies and Guild Wars. There are several reasons behind this decision. All of these games are commercial, and it was only recently possible to access the games via Internet and play with them free during a trial period. In addition, the target market of the games used in previous analysis was definitely the Asian market. However, we can hardly come across with any of the traffic of those games in a European or American network.

The motivation of our work was to understand the traffic characteristics and, especially, the scaling behavior of the traffic generated by the selected games. Although the traffic rates generated by the clients are low comparing to other applications, their aggregation on the server side can become significant due to the large population of players. The scaling characteristics of the internet traffic, with special attention to the growing gaming traffic, can have significant impact on network performance and engineering.

2. Measurements

The measurements took place on a client machine connected to a campus network with Internet access via a 100 Mbps FDDI. The network parameters of this connection is far above the capabilities of a network for which these games are designed for, thus we assumed that we did not have to deal with any parameter change in the game traffic due to the network inadequacy. The advantage of the measurement configuration is that we can observe the client network traffic practically without loss of packets and network delay. The measurements were conducted during the 19-20 hour periods on weekdays in January, 2007.

We have measured both the downstream traffic from the server to the client (we will call it server traffic throughout the paper) and the upstream traffic from the client.
to the server which will be called client traffic. The network traffic of the client machine running the games was captured by Wireshark with microsecond accuracy. The traffic of the different games can be seen in Figures 1-4. As the statistical methods which were applied to the measurements presumed the stationarity property of the examined data series, the selected intervals for examination are shown in the figures.

3. Basic traffic characteristics

Observing the probability density function (PDF) of the interarrival times of the packets derived from the clients to the server, there are characteristic values for some specific packet inter-arrival time values. These are the effects of the internal working mechanism of the game client application as the measurement setup does not

Figure 1. World of Warcraft traffic intensity (packets/sec), selected interval: 1100-2000

Figure 2. Guild Wars measured traffic intensity (packets/sec), selected interval: 1600-2800

Figure 3. Eve Online measured traffic intensity (packets/10 sec), selected interval: 50-450

Figure 4. Star Wars Galaxies measured traffic intensity (packets/sec), selected interval: 1500-2000
add any delay to the captured packets derived from the clients.

All the games have a high probability value about the 200 msec packet inter-arrival time. This value was a reasonable design decision, as MMOGs are designed to run smoothly even with 1250 msec latency in game play thus with the 200 msec periodicity even a retransmission fits into this interval length. World of Warcraft and Guild Wars have peaks at their PDF at about 300 msec and Star Wars Galaxies has a high peak at 140 msec. This lower packet inter-arrival time can be explained by the situation that Star Wars Galaxies uses UDP protocol with plenty of small packets, thus the communication model is different from the other analyzed games. Eve Online generates packets much rarely than the other games thus the probability of high packet inter-arrival time values decreases slower.

In case of the server packets the very low packet inter-arrival time values are due to the fragmentation of packets when a data burst is transmitted towards the client. The identification of packet inter-arrival time values can be effectively used during traffic classification. Investigating the probability density function of the packet payload sizes, it can be experienced that the zero and few-byte payloads occur frequently both at the client and at the server side. One reason for this is that at least the TCP packets have to be acknowledged even if the party itself does not want to send data. Another reason is that the game protocol is constructed as an overlay protocol on TCP. As an example, we can check the general structure of the World of Warcraft (WoW) packets, where we can see that the TCP data carries a 4 byte WoW packet header if it is a server packet and 6 byte if it is a client packet. This header contains a WoW packet type field which is necessary for parsing the rest of the packet accordingly. The WoW packet header is encrypted. If either the client or the server sends a packet apart from the TCP acknowledgements, these packets have at least 6 or 4 bytes length even if they do not carry any game data.

We can confirm earlier works which found that comparing the client and server packet size distributions the client packets are smaller as they contain the commands of one player, while server packets convey nearby the actions of nearby players and monsters as well as system messages.

Comparing the probability density function of the server and the client packet rates we can find that those games which applies TCP for communication has similar PDF, while Star Wars Galaxies which uses UDP for communication has very distinct PDF characteristics as the probability of high packet rate on the server side is higher than on the client side. Other basic statistical descriptors are shown in Table 1.

4. Long-range dependence analysis

The Long-Range Dependent (LRD) property of a traffic flow is revealed in the power law decay of the autocorrelation function at large lags, i.e.

\[r(k) \sim c|k|^{-2H}, k \rightarrow \infty, H \in (0,1) \]

and \(c \) is constant.

The degree of this slow decay is determined by the Hurst parameter \((H) \). Intuitively, long-range dependence measures the memory of a process. For LRD data the ACF decays very slowly (power-law decay). On the contrary, Short-Range Dependence (SRD) is characterized by quickly (exponential-like) decaying correlations.

Among the several statistical methods of LRD testing [10] we choose periodogram analysis, R/S analysis, variance of residuals, variance-time plot, and the Whittle estimator and use the logscale diagram based on the wavelet transform [8] to verify the results.

The results of our LRD analysis can be found in Table 1. We can see that World of Warcraft traffic is strongly long-range dependent for the server traffic. However, the LRD tests results have not confirmed the same for the client traffic due to the statistical inaccuracy.

In case of Guild Wars, the client traffic shows LRD property, but in case of the server traffic the test can not be performed due to the lack of data in higher time

<table>
<thead>
<tr>
<th>Table 1. Basic data of the selected traffic trace segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (sec)</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Packet number</td>
</tr>
<tr>
<td>Avg. packets/sec</td>
</tr>
<tr>
<td>Avg. packets size (bytes)</td>
</tr>
<tr>
<td>Size (bytes)</td>
</tr>
<tr>
<td>Average bwidth kbits/sec</td>
</tr>
<tr>
<td>Client</td>
</tr>
<tr>
<td>Packet number</td>
</tr>
<tr>
<td>Avg. packets/sec</td>
</tr>
<tr>
<td>Avg. packets size (bytes)</td>
</tr>
<tr>
<td>Size (bytes)</td>
</tr>
<tr>
<td>Average bwidth kbits/sec</td>
</tr>
</tbody>
</table>
scales. Star Wars Galaxies' server traffic shows LRD property with parameter $H=0.75$. The client traffic can not be estimated due to similar reasons as in the case of Guild Wars server traffic. In case of Eve Online server traffic the higher ranges can not be used for LRD parameter estimation due to the lack of data in that ranges. The same statements are true for the client traffic of Eve Online.

The summary of the results of the long range analysis can be found in Table 2.

5. Scaling analysis

Scaling properties of traffic can be efficiently investigated by multifractal analysis via wavelet-based methods [8]. The discrete wavelet transform represents a data series X of size n at a scaling level j by a set of wavelet coefficients $d_X(j,k), k=1,2,...,n_j$, where $n_j=2^{-j}n$. Define the q^{th} order Logscale Diagram (q-LD) by the log-linear graph of the estimated q^{th} moment

$$\mu_j(q) = \frac{1}{n_j} \sum_{k} d_X(j,k)^{q}$$

against the octave j.

Linearity of the LDs at different moment order q indicates the scaling property of the series, i.e. $\log_j / \mu = \log_j (\alpha(q)) + c(q)$, where $\alpha(q)$ is the scaling exponent and $c(q)$ is a constant. In our test results we plot $y_j = \log_j (\mu_j(q))^{-1}$ for $q=2$ which is called the second-order logscale diagram (LD). The plot of $\alpha(q)$ against q can reveal the type of scaling [9].

In case of monofractal scaling $\alpha(q)$ varies linearly with q while for multifractals the variation is non-linear. For testing this behavior the Linear Multiscale Diagram (LMD) can efficiently be used which is defined as $h_q = \alpha(q)/q - 1/2$.

World of Warcraft

It can be seen that the logscale diagram of the WoW server traffic is approximately linear (Fig. 5.) for the whole range and supports the LRD property suggested by the LRD tests. Since the linearity holds for the whole investigated range it also suggests possible statistical self-similarity over these time scales. The linear multiscale diagram depicted in Fig. 13. confirms this observation. The LMD of World of Warcraft soon takes up a stabilized value around $h_{\alpha} = -0.16$ which gives an estimate of $H=0.84$ since $H=h_{\alpha}+1$ for all q in case of self-similar traffic.

The estimated value is in accordance with the values calculated by the LRD tests ($H=0.86$). We can conclude that World of Warcraft server traffic is not only LRD but the statistical self-similarity is a good model for this type of traffic in these time scales. The range of the time scales selected for the analysis based on the fact that there is no reasonable rate function below the 1 sec time intervals, thus the low packet rate of the traffic imposes a lower bound for the analyzed time scale. On the higher time scales we selected the longest stationary parts of the measurements but even with this method it was not possible gain enough samples from higher time scales.

A different behavior can be observed for the World of Warcraft client traffic. Examining the logscale diagram in Fig. 6. we can only find scaling region in the range between $j=1$ and $j=4$ (1 sec-16 sec). The multiscale diagram (Fig. 14.) reveals the scaling type in the range between $j=1$ and $j=4$ (1 sec-16 sec): the non-linear LMD plot shows multifractal behavior. The multifractal behavior frequently found together with the non-Gaussian like marginals of the rate distribution. This property holds for this case too. The kurtosis (13.53) and skewness (2.89) are also far from the Gaussian-like distributions. (A Gaussian distribution has kurtosis and skewness metrics 3.

Table 2.

<table>
<thead>
<tr>
<th>Server</th>
<th>World of Warcraft</th>
<th>Guild Wars</th>
<th>Eve Online</th>
<th>Star Wars Galaxies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arby-Veitch</td>
<td>0.84</td>
<td>-</td>
<td>-</td>
<td>0.71</td>
</tr>
<tr>
<td>Periodogram</td>
<td>0.89</td>
<td>-</td>
<td>-</td>
<td>0.72</td>
</tr>
<tr>
<td>R/S</td>
<td>0.86</td>
<td>-</td>
<td>-</td>
<td>0.80</td>
</tr>
<tr>
<td>Variance of residuals</td>
<td>0.89</td>
<td>-</td>
<td>-</td>
<td>0.85</td>
</tr>
<tr>
<td>Variance-time plot</td>
<td>0.85</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
</tr>
<tr>
<td>Whittle estimator</td>
<td>0.81</td>
<td>-</td>
<td>-</td>
<td>0.70</td>
</tr>
<tr>
<td>Avg Hurst parameter</td>
<td>0.86</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Client</th>
<th>World of Warcraft</th>
<th>Guild Wars</th>
<th>Eve Online</th>
<th>Star Wars Galaxies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arby-Veitch</td>
<td>-</td>
<td>0.78</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Periodogram</td>
<td>-</td>
<td>0.85</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R/S</td>
<td>-</td>
<td>0.79</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Variance of residuals</td>
<td>-</td>
<td>0.80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Variance-time plot</td>
<td>-</td>
<td>0.78</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Whittle estimator</td>
<td>-</td>
<td>0.75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avg Hurst parameter</td>
<td>-</td>
<td>0.79</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

VOLUME LXIII. • 2008/1 43
and 0, respectively.) For the upper time scales (above 16 sec) no scaling property can be found.

It is important to note that self-similarity is a characteristic property for time scales higher than 50-100 msec, e.g. in the case of the round trip time of a TCP packet. Below this limit the fractional property can be found, but in our case the multifractal property of the client traffic can be observed for as large time scales as 1-16 sec.

Guild Wars

The logscale diagram of Guild Wars server traffic (Fig. 7.) can be divided into two ranges: \(j=1-4 \) (1 sec-16 sec) and \(j=4-6 \) (16 sec-1 min) where scaling region can only be detected in the lower ranges. Depicting the LMD of ranges 1-4 in Fig. 15., it can be seen that it has the same value over all the investigated moments. Thus it can be concluded that Guild Wars server traffic can be modeled with a monofractal model with \(h=0.63 \) scaling parameter in these time scales.

Examining Fig. 8, we can see that the logscale diagram of the Guild Wars client traffic is approximately linear which suggests a self-similar scaling over all the investigated time scales. The LMD in Fig. 16. shows that the Guild Wars client traffic indeed has self-similar scaling. The estimated \(H=0.78 \) from the LD diagram is in good accordance with the estimated \(H=0.79 \) obtained by the LRD tests.

Because of the self-similar scaling we can expect a Gaussian-like rate distribution. Both the shape of the rate distribution and also the estimated kurtosis (3.09) and skewness (0.04) metrics confirms that our expectation is true.

Eve Online

The logscale diagram of Eve Online server traffic plotted in Fig. 9, can be divided into two ranges where the scaling property can be examined: 1-3 (10 sec-80 sec) and 3-5 (80 sec-over 5 min). The range 3-5 contains very few data thus the estimators are very inaccurate in this range. Analyzing the range 1-3 by the multiscale diagram (in Fig. 17.) it can be seen that the calculated scaling parameter is around 0.54 which suggests a non-scaling noise-like behavior. Thus we can conclude that there is no scaling property of Eve Online server traffic for the whole range.

Similar statements are true for the client traffic as well: the scaling parameter between 1-3 (10 sec-80 sec) is \(h=0.52 \), and the range between 3-5 (80 sec-5 min) contains few data (Fig. 10. and 18.), thus we can conclude that there is no scaling property of Eve Online client traffic for the whole range.

Star Wars Galaxies

Investigating the server traffic of Star Wars Galaxies it can be seen on the logscale diagram in Fig. 11, that it is also approximately linear for the whole range and in Fig. 19, the LMD gives values around \(h=0.29 \). Thus Star Wars Galaxies server traffic can also be modeled with a statistical self-similar process with \(H=0.71 \) estimated by the LD plot. This estimation matches the \(H=0.75 \) obtained by the LRD tests. The self-similar property also comes together with the Gaussian-like marginals as could be seen in the rate distribution curves and also from the estimated kurtosis (3.23) and skewness (0.45) metrics.

Looking at the logscale diagram in Fig. 12. of Star Wars Galaxies client traffic we can divide two ranges where the scaling property can be examined: 1-3 (1 sec-8 sec) and 3-5 (8 sec-1 min). The range 3-5 consists of too few data so that the estimators are very inaccurate in this range. Examining the range 1-3 by the multiscale diagram (in Fig. 20.) it can be seen that the calculated scaling parameter is around 0.5 which suggests a non-scaling noise-like behavior. Thus we can conclude that there is no scaling property of Star Wars Galaxies client traffic for the whole range.

In Table 3. the summary of the scaling analysis can be found.

6. Conclusions

In this paper we have analyzed four popular games traffic in both server and client directions. We have presented the important statistical characteristics of these games and we have carried out a comprehensive scaling analysis including long-range dependence analysis with several tests and a detailed scaling analysis by a wavelet-based multifractal analysis.

We have found different scaling properties of the investigated MMORPG traffic types. The server traffic of World of Warcraft is statistically self-similar with Hurst parameter around 0.86. However, the client traffic of World of Warcraft is multifractal below 16 sec time scales. The Guild Wars client traffic is statistically self-similar with self-similar scaling.
Figures 5-6. World of Warcraft server and client logscale diagram covering timescales from 1 sec to 1 min

Figures 7-8. Guild Wars server and client logscale diagram covering timescales from 1 sec to 1 min

Figures 9-10. Eve Online server and client logscale diagram covering timescales from 10 sec to 1 min

Figures 11-12. Star Wars Galaxies server and client logscale diagram covering timescales from 1 sec to 32 sec
Figure 13. World of Warcraft server multiscale diagram depicted on the time scales between 1 sec and 1 min

Figure 14. World of Warcraft client multiscale diagram depicted on the time scales between 1 sec and 16 sec

Figure 15. Guild Wars server multiscale diagram depicted on the time scales between 1 sec and 16 sec

Figure 16. Guild Wars client multiscale diagram depicted on the time scales between 1 sec and 1 min

Figure 17. Eve Online server multiscale diagram depicted on the time scales between 10 sec and 1 min

Figure 18. Eve Online client multiscale diagram depicted on the time scales between 10 sec and 1 min

Figure 19. Star Wars Galaxies server multiscale diagram depicted on the time scales between 1 sec and 32 sec

Figure 20. Star Wars Galaxies client multiscale diagram depicted on the time scales between 1 sec and 8 sec
Hurst parameter around 0.79. The server traffic in this case also shows scaling behavior over small time scales, namely, it has monofractal scaling. Star War Galaxies’ server traffic has self-similar scaling with Hurst parameter 0.75. However, this game traffic does not have this scaling characteristics from the other direction. Finally, both server and client traffic of Eve Online have no scaling behavior.

As a conclusion we have found that in spite of the fact that some similarities can be found among the scaling characteristics of these games they show versatile scaling properties. From these results we conjecture that the emerging network traffic in the Internet cannot be classified by a typical gaming traffic behavior but rather will depend on the characteristics of the actual dominant gaming application.

Our future work will address the analysis of the network game traffic aggregates and the modeling of these traffic types. Furthermore, we would like study the network performance implications of these game traffic characteristics.

References