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Project GOALS

› Demonstrate 2x2 MIMO transmission

– develop and implement receiver algorithms in FPGA

– demonstration on laboratory setup

– demonstrate on outdoor link

31.25 MS/s, QPSK transmission

125 MHz ADC, 250 MHz FPGA clock

Altera Stratix III evaluation board
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Concept of MIMO radios
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2x2 MIMO microwave link 
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› MCMA has been chosen for its simplicity a roboustness



Choose as simple as possible: MCMA algorithm

MCMA is capable of fixing the real and imaginary parts in the constellation

For one channel: rkwkx
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MCMA radii:
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Equalizer overview



Equalizer Structure

› MCMA equalizer in each path:

1r

2r

Equalizer (MCMA)

Initial value = 1/2

Equalizer (MCMA)

Initial value = ej/2/2

Equalizer (MCMA)

Initial value = ej/2/2

Equalizer (MCMA)

Initial value = 1/2

1x̂

2x̂

– 10 tap equalizer filter 

(125 MHz / 25MS/s = 

= 5 sample / symbol) 

– Initial values in the first tap

› ½ in the direct path

› ½j in the cross-path 

– conjugate gradient is fed 

back from appropriate output

gradient

gradient



Practical transmission model

› Practical imperfections:
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Analytical Description
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ftx1, ftx2, frx1, frx2 – difference from nominal frequency values

h11, h12, h21, h22 – antenna gain differences + time dependent 

channel transfer functions

1, 2 – random phase of receiver oscillator

› Note: multiplication operator is not exact: convolution operator should be used, as hxx is the time-domain equivalent of the radio channel. 

However, convolution would also not be precise in the equations because multiplication by a non-constant in time is not a linear operator.



Test waveform generation (1)

› Basis for understanding LoS MIMO channels and to provide

test signals for receivers:

– adjustable parameters (can be time dependent):

› ftx1, ftx2, frx1, frx2 – frequency difference from nominal

› 12, 21 – cross-channel phase difference (eg. mast swing)

› symbol rate (25 MHz in measured data)

› sampling rate (125 MHz)

› AWGN level

– Implemented functionalities:

› random input bit stream (PRBS) with RRCOS filter for QPSK

› time dependent transmitter & receiver frequency matrices

› time dependent MIMO channel matrix (only complex coefficient, 

no radio channel modelling)



Test waveform generation (2)

› Test waveform generators:
– output constellation

› only one source

› no channel

› no rotation

– output constellation

› both source transmit

› channel enabled

› no rotation

– output constellation

› both source transmit

› channel enabled

› both transmitters and 

receivers enabled

I1

Q1

Altera Stratix III 

development board +

+ DAC/ADC extension cards Measured at FPGA output
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In the spectra the frequencies

appear combined, and not separately as

they are needed in the synchronization

Simulation example
› How to compensate for the frequency deviations?

- Problem:                               are not explicitly present in the 

received signal: 
2121 ,,, rxrxtxtx ffff



Analytical description
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› These frequency combinations can also be derived analitically
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Receiver Structure (1)

› Frequency compensations and equalization architecture:

1r

2r

-(ftx1 +frx1 )

Equalizer (MCMA)

Initial value = 1/2

Equalizer (MCMA)

Initial value = ej/2/2

Equalizer (MCMA)

Initial value = ej/2/2

Equalizer (MCMA)

Initial value = 1/2

1x̂

2x̂

– First stage compensates for 

the frequency rotations:

› Tx1 in upper pair

› Tx2 in lower pair

– Second stage equalizes 

MIMO radio channel effect as 

described earlier.

Major advantage:

All rotation cancelled, 

though equalizers 

(theoretically) do not need to 

compenasate for any 

constellation rotation!

-(ftx1 +frx2 )

-(ftx2 +frx1 )

-(ftx2 +frx2 )

gradient

gradient



Receiver Structure (2)
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1sr

› Matrix description of the first stage:

– Tx1 rotation is compensated in upper left 

corner

– Tx2 rotation is compensated in lower right 

corner



Receiver Structure (3)
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› Matrix description of the 

second stage

22122111 hhhh 

1sr

› Matrix description of the second stage:

– equalizer need to compensate 

› for different level of loss in MIMO 

channel paths

› random oscillator phases

› MIMO cross-path components

– no rotation compensation is required from 

the equalizer
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SIMULINK SYSTEM DIAGRAM



Synchronizer/equalizer



Demodulator and rotator



Equalizer Block Diagram

› Gradient block is placed in the 

equalizer module



Equalizer module



Quantitative measure of 
Receiver algorithm quality

)/1( erfcBER 

BER

Average bit error rate as a function of time:

where ε is the average deviation from the ideal constellation point

that is obtained by sign() function

Condition: The erroneous constellation point is in the same quadrant

as the error-free one
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Received signal decomposition

› Another analytical form of the received signal:

• Factors that change ‘slowly’ over time

• Factors that can change fast over time

• Factors that change very rapidly over time

› Exact measurement of frequencies is not possible (discrete Fourier 

transform):

– f11, f12, f21, f22 – frequency measurement error



Receiver Block Diagram

› Slow changes will be compensated by the equalizers

› Moderate to fast changes will be compensated by the downconverter

› The transmitted data stream is the fastest changing signal, its timing 

will be decoded, and the signal sampled by the timing recovery block

Down-

converter

Down-

converter

r1

r2

Equalizer

r11

r12

r21

r22

Symbol

recovery

Symbol

recovery

x1

x2

x1
^

x̂2
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Quantitative measure of 
Receiver algorithm quality

)/1( erfcBER 

BER

Average bit error rate as a function of time:

where ε is the average deviation from the ideal constellation point

that is obtained by sign() function

Condition: The erroneous constellation point is in the same quadrant

as the error-free one





Bit ERROR RATE

What is this?



False detection cancellation

Types of false detection

- Weaker form: i and q signals at the same channel exchange and

one of them has opposite sign (no information loss)

- Stronger form: signals at different channels coincide (information loss)

Reason of false detection: Rotation of different equalizer coefficients 

without having a fixed angle difference between them

Defense: Compensating rotations with fixed angle difference between

different equalizer channels

Appearance: Sudden increase in BER



NEW Concept of false detection 
cancellation
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coefficient restriction with 
measured data

cancellation on

cancellation off



Bit error rate, Meas. No. 4

cancellation on

cancellation off



Observations

› False detection cancellation does not necessarily result in 
worse bit error rate

› If bit error rate is worse then it is still acceptable

› Advantage: Much simpler than earlier ideas, fits better for 
FPGA realization

› Still needs to be verified, improved



Conclusions

- A 2x2 receiver was shown based on FFT approach. All rotations

were intended to be compensated before the equalizer

- In practice, not all rotations are compensated and rotated equalizer

coefficients are required, resulting in false detection. To eliminate

this effect, a  method for false detection cancellation was shown
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