KOMMUNIKÁCIÓ 2X2-ES MIMO FELHASZNÁLÁSÁVAL

Ladvánszky János HTE előadás 2022. 02. 09

OUTLINE

> 2x2 LoS MIMO model

- reference transmission model
- receiver analytical description
- SIMULINK receiver model summary
- FPGA implementation considerations and results
- false detection cancellation method

PROJECT GOALS

> Demonstrate 2x2 MIMO transmission

- develop and implement receiver algorithms in FPGA
- demonstration on laboratory setup
- demonstrate on outdoor link

LoS MIMO outdoor demo system.

31.25 MS/s, QPSK transmission 125 MHz ADC, 250 MHz FPGA clock Altera Stratix III evaluation board

The two test links in Gothenburg.

PARTICIPANTS

ANNA RHODIN – ERICSSON GOTHENBURG – MEASUREMENTS

GÁBOR KOVÁCS – ETH – INPUT SIMULATOR

GÉZA BALÁZS – ETH- FPGA

JÁNOS LADVÁNSZKY – ETH – ALGORITHM OF RECEPTION

OUTLINE

> 2x2 LoS MIMO model

- reference transmission model
- receiver analytical description
- SIMULINK receiver model summary
- FPGA implementation considerations and results
- false detection cancellation method

CONCEPT OF MIMO RADIOS

 $\frac{\pi}{2} \Rightarrow \varphi(t)$ adaptive equalizer is needed!

> MCMA has been chosen for its simplicity a roboustness

EQUALIZER OVERVIEW

Choose as simple as possible: MCMA algorithm

MCMA is capable of fixing the real and imaginary parts in the constellation

For one channel: $\hat{x}(k+1) = \underline{w}^{*T}(k)\underline{r}$

Weight update: $\underline{w}(k+1) = \underline{w}(k) - \mu_1 \operatorname{Re}(\hat{x}(k))(\operatorname{Re}(\hat{x}(k))^2 - R_{\operatorname{Re}})\underline{r} + j\mu_2 \operatorname{Im}(\hat{x}(k))(\operatorname{Im}(\hat{x}(k))^2 - R_{\operatorname{Im}})\underline{r}$

 $R_{\text{Re}} = \frac{E\left[\text{Re}(\hat{x})^4\right]}{E\left[\text{Re}(\hat{x})^2\right]} \qquad R_{\text{Im}} = \frac{E\left[\text{Im}(\hat{x})^4\right]}{E\left[\text{Im}(\hat{x})^2\right]}$

MCMA radii:

EQUALIZER STRUCTURE

> MCMA equalizer in each path:

PRACTICAL TRANSMISSION MODEL

> Practical imperfections:

ANALYTICAL DESCRIPTION

 f_{tx1} , f_{tx2} , f_{rx1} , f_{rx2} – difference from nominal frequency values

h₁₁, h₁₂, h₂₁, h₂₂ – antenna gain differences + time dependent channel transfer functions

 ϕ_1, ϕ_2 – random phase of receiver oscillator

> Note: multiplication operator is not exact: convolution operator should be used, as h_{xx} is the time-domain equivalent of the radio channel. However, convolution would also not be precise in the equations because multiplication by a non-constant in time is not a linear operator.

TEST WAVEFORM GENERATION (1)

- > Basis for understanding LoS MIMO channels and to provide test signals for receivers:
 - adjustable parameters (can be time dependent):
 - > f_{tx1} , f_{tx2} , f_{rx1} , f_{rx2} frequency difference from nominal
 - > ϕ_{12} , ϕ_{21} cross-channel phase difference (eg. mast swing)
 - > symbol rate (25 MHz in measured data)
 - sampling rate (125 MHz)
 - > AWGN level
 - Implemented functionalities:
 - > random input bit stream (PRBS) with RRCOS filter for QPSK
 - > time dependent transmitter & receiver frequency matrices
 - time dependent MIMO channel matrix (only complex coefficient, no radio channel modelling)

TEST WAVEFORM GENERATION (2)

- output constellation
 - > only one source
 - > no channel
 - > no rotation

output constellation

- > both source transmit
- > channel enabled
- > no rotation

output constellation

- > both source transmit
- > channel enabled
- both transmitters and receivers enabled

SIMULATION EXAMPLE

- > How to compensate for the frequency deviations?
 - Problem: $f_{tx1}, f_{tx2}, f_{rx1}, f_{rx2}$ are not explicitly present in the received signal:

ANALYTICAL DESCRIPTION

> These frequency combinations can also be derived analitically

$$\underline{r} = \left[\underline{F_{Rx}} \cdot \underline{H} \cdot \underline{F_{Tx}}\right] \cdot \underline{x} + \underline{N}$$
$$r_1 = h_{11} \cdot 1 \cdot e^{j(2\pi (f_{tx1} + f_{rx1})t - \varphi_1)} \cdot x_1 + h_{21} \cdot e^{-j\pi/2} \cdot e^{j(2\pi (f_{tx2} + f_{rx1})t - \varphi_1)} \cdot x_2$$

$$r_{2} = h_{12} \cdot e^{-j\pi/2} \cdot e^{j(2\pi(f_{tx1}+f_{rx2})t-\varphi_{2})} \cdot x_{1} + h_{22} \cdot 1 \cdot e^{j(2\pi(f_{tx2}+f_{rx2})t-\varphi_{2})} \cdot x_{2}$$

OUTLINE

> 2x2 LoS MIMO model

- reference transmission model
- receiver analytical description
- SIMULINK receiver model summary
- FPGA implementation considerations and results
- false detection cancellation method

RECEIVER STRUCTURE (1)

> Frequency compensations and equalization architecture:

RECEIVER STRUCTURE (2)

- > Matrix description of the first stage:
- Tx1 rotation is compensated in upper left corner
- Tx2 rotation is compensated in lower right corner

$$\begin{split} \underline{r_{s1}} &= \begin{bmatrix} e^{-j2\pi(f_{tx1}+f_{rx1})t} & \mathbf{0} \\ \mathbf{0} & e^{-j2\pi(f_{tx1}+f_{rx2})t} \\ e^{-j2\pi(f_{tx2}+f_{rx1})t} & \mathbf{0} \\ \mathbf{0} & e^{-j2\pi(f_{tx2}+f_{rx2})t} \end{bmatrix}^{-1} \begin{bmatrix} h_{11} \cdot e^{-j\varphi_{1}} \cdot e^{j2\pi(f_{tx1}+f_{rx2})t} \\ h_{12} \cdot e^{-j\varphi_{1}} \cdot e^{-j\frac{\pi}{2}} \\ h_{12} \cdot e^{-j\varphi_{1}} \cdot e^{-j\frac{\pi}{2}} \end{bmatrix}^{-1} \begin{bmatrix} h_{11} \cdot e^{-j\varphi_{1}} \cdot e^{j2\pi(f_{tx1}+f_{rx2})t} \\ h_{12} \cdot e^{-j\varphi_{1}} \cdot e^{-j\frac{\pi}{2}} \cdot e^{j2\pi(f_{tx1}-f_{tx2})t} \\ h_{12} \cdot e^{-j\varphi_{1}} \cdot e^{j2\pi(f_{tx1}-f_{tx2})t} \\ h_{12} \cdot e^{-j\varphi_{1}} \cdot e^{j2\pi(f_{tx1}-f_{tx2})t} \\ h_{12} \cdot e^{-j\varphi_{1}} \cdot e^{j2\pi(f_{tx1}-f_{tx2})t} \end{bmatrix}^{-1} \begin{bmatrix} h_{11} \cdot e^{-j\varphi_{1}} \cdot e^{j\frac{\pi}{2}t} \cdot e^{j2\pi(f_{tx1}-f_{tx2})t} \\ h_{22} \cdot e^{-j\frac{\pi}{2}t} \cdot e^{j2\pi(f_{tx2}-f_{tx1})t} \\ h_{21} \cdot e^{-j\varphi_{2}} \cdot e^{j\frac{\pi}{2}t} \\ h_{22} \cdot e^{-j\frac{\pi}{2}t} \\ h_{22} \cdot e^{-j\frac{\pi}{2}t} \end{bmatrix}^{-1} \begin{bmatrix} x \\ x \\ x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ h_{21} \cdot e^{-j\varphi_{2}t} \cdot e^{j\frac{\pi}{2}t} \\ h_{22} \cdot e^{-j\frac{\pi}{2}t} \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \begin{bmatrix} x \\ x$$

RECEIVER STRUCTURE (3)

- Matrix description of the second stage:
 - equalizer need to compensate
 - > for different level of loss in MIMO channel paths
 - > random oscillator phases
 - > MIMO cross-path components
 - no rotation compensation is required from the equalizer $\begin{bmatrix} h_{11} \cdot e^{j\varphi_1} & h_{12}^{-1} \cdot e^{j\varphi_1} \cdot e^{j\frac{\pi}{2}} \\ 0 & 0 \\ h_{21}^{-1} \cdot e^{j\varphi_2} \cdot e^{j\frac{\pi}{2}} & h_{22}^{-1} \cdot e^{j\varphi_2} \end{bmatrix} \begin{bmatrix} h_{11} \cdot e^{-j\varphi_1} \\ h_{12} \cdot e^{-j\varphi_1} \cdot e^{-j\frac{\pi}{2}} \\ h_{11} \cdot e^{-j\varphi_1} \cdot e^{j\frac{\pi}{2}} \\ h_{11} \cdot e^{-j\varphi_1} \cdot e^{j\frac{\pi}{2}} \\ h_{11} \cdot e^{-j\varphi_1} \cdot e^{-j\frac{\pi}{2}} \cdot e^{j2\pi(f_{1x1} - f_{1x2})t} \\ h_{11} \cdot e^{-j\varphi_1} \cdot e^{-j\frac{\pi}{2}} \cdot e^{j2\pi(f_{1x1} - f_{1x2})t} \end{bmatrix}$

$$(f_{tx1} + f_{rx1})$$

$$(f_{tx1} + f_{rx2})$$

$$(f_{tx1} + f_{rx2})$$

$$(f_{tx2} - f_{rx2})$$

 r_{c1}

 r_1

 r_2

$$h_{11} \cdot h_{21} = h_{12} \cdot h_{22}$$

OUTLINE

> 2x2 LoS MIMO model

- reference transmission model
- receiver analytical description
- SIMULINK receiver model summary
- FPGA implementation considerations and results
- false detection cancellation method

SIMULINK SYSTEM DIAGRAM

SYNCHRONIZER/EQUALIZER

DEMODULATOR AND ROTATOR

EQUALIZER BLOCK DIAGRAM

Gradient block is placed in the equalizer module

EQUALIZER MODULE

QUANTITATIVE MEASURE OF RECEIVER ALGORITHM QUALITY

Average bit error rate as a function of time: $BER = erfc(1/\varepsilon)$

where ϵ is the average deviation from the ideal constellation point that is obtained by sign() function

Condition: The erroneous constellation point is in the same quadrant as the error-free one

OUTLINE

> 2x2 LoS MIMO model

- reference transmission model
- receiver analytical description
- SIMULINK receiver model summary
- FPGA implementation considerations and results
- false detection cancellation method

RECEIVED SIGNAL DECOMPOSITION

> Another analytical form of the received signal:

$$r_{1} = h_{11} \cdot e^{j(\varphi_{11} + 2\pi\Delta f_{11}t)} \cdot e^{j(2\pi(f_{tx1} + f_{rx1})t)} \cdot x_{1} + h_{21} \cdot e^{j(\varphi_{12} + 2\pi\Delta f_{12}t)} \cdot e^{-j\pi/2} \cdot e^{j(2\pi(f_{tx2} + f_{rx1})t))} \cdot x_{2}$$

$$r_{2} = h_{12} \cdot e^{j(\varphi_{21} + 2\pi\Delta f_{21}t)} \cdot e^{-j\pi/2} \cdot e^{j(2\pi(f_{tx1} + f_{rx2})t)} \cdot x_{1} + h_{22} \cdot e^{j(\varphi_{22} + 2\pi\Delta f_{22}t)} \cdot e^{j(2\pi(f_{tx2} + f_{rx2})t)} \cdot x_{2}$$

- > Exact measurement of frequencies is not possible (discrete Fourier transform):
 - Δf_{11} , Δf_{12} , Δf_{21} , Δf_{22} frequency measurement error
 - Factors that change 'slowly' over time
 - Factors that can change fast over time
 - Factors that change very rapidly over time

RECEIVER BLOCK DIAGRAM

- > Slow changes will be compensated by the equalizers
- Moderate to fast changes will be compensated by the downconverter
- The transmitted data stream is the fastest changing signal, its timing will be decoded, and the signal sampled by the timing recovery block

OUTLINE

> 2x2 LoS MIMO model

- reference transmission model
- receiver analytical description
- SIMULINK receiver model summary
- FPGA implementation considerations and results
- false detection cancellation method

QUANTITATIVE MEASURE OF RECEIVER ALGORITHM QUALITY

Average bit error rate as a function of time: $BER = erfc(1/\varepsilon)$

where ϵ is the average deviation from the ideal constellation point that is obtained by sign() function

Condition: The erroneous constellation point is in the same quadrant as the error-free one

BIT ERROR RATE

FALSE DETECTION CANCELLATION

Types of false detection

- Weaker form: i and q signals at the same channel exchange and one of them has opposite sign (no information loss)

- Stronger form: signals at different channels coincide (information loss)

Reason of false detection: Rotation of different equalizer coefficients without having a fixed angle difference between them

Appearance: Sudden increase in BER

Defense: Compensating rotations with fixed angle difference between different equalizer channels

NEW CONCEPT OF FALSE DETECTION CANCELLATION

Restriction for rotation of weighting factors in neighbouring channels

Ideal case: w₁₁=1, w₁₂=j

Rotation is allowed with nearly 90° phase difference

Detection of phase difference: $\delta = \left| \frac{w_{12} - jw_{11}}{w_{12} + jw_{11}} \right| * 2$ Restriction: $\delta < K$

Limiting cases: if $w_{12} = jw_{11}$ then $\delta = 0$ if $w_{12} = -jw_{11}$ then $\delta \to \infty$

 $\hat{\underline{x}} = \frac{1}{2} \cdot \begin{pmatrix} 1 & j \\ j & 1 \end{pmatrix} \cdot \underline{r}$ false locking: $\hat{\underline{x}} = \frac{1}{2} \cdot \begin{pmatrix} 1 & j \\ -i & 1 \end{pmatrix} \cdot \underline{\underline{r}}$

COEFFICIENT RESTRICTION WITH MEASURED DATA

BIT ERROR RATE, MEAS. NO. 4

OBSERVATIONS

- False detection cancellation does not necessarily result in worse bit error rate
- > If bit error rate is worse then it is still acceptable
- Advantage: Much simpler than earlier ideas, fits better for FPGA realization
- > Still needs to be verified, improved

CONCLUSIONS

- A 2x2 receiver was shown based on FFT approach. All rotations were intended to be compensated before the equalizer

- In practice, not all rotations are compensated and rotated equalizer coefficients are required, resulting in false detection. To eliminate this effect, a method for false detection cancellation was shown

Vámos Ábelnek és Dr. Verebély Pálnak, akik ezt a projectet lehetővé tették.

