PONGRÁCZ GYÖRGY: Mikroprocesszorok architektúrájának fejlődése 201
BEKE ISTVÁN— BERÉCZEKI FERENC: Az ábraleképzés optimalizálásának lehetőségei LSI maszkok készítéséhez ... 205
MÁNYOKY ZSOLT: Vivőfrekvenciás műsorhang-közvetítő berendezések a vezetékes hírközlésben 212
A külföldi szakfolyóiratokból .. 204, 220

MALCSINER FERENC— NAGY SÁNDOR ZOLTÁN— FRIGYES IVÁN:
BHG—ORION—TERTA MŰSZAKI KÖZLEMÉNYEK
Mikrohullámú hírközlő rendszerek 221
Digitális kártyák vizsgálata „TESTOMAT-C” mérőautomatán 227
Hírek üzemekből .. 232
Tartalmi ismertetők ... 240

A SZÁM SZERZŐI:

PONGRÁCZ GYÖRGY okl. vill. mérnök, a Számítógépalkalmazási Kutatóintézet tud. munkatársa, BEKE ISTVÁN okl. vill. mérnök, a HIKI tud. munkatársa, BERÉCZEKI FERENC okl. vill. mérnök, a HIKI tud. munkatársa, MÁNYOKY ZSOLT híradástechnikai üzemmérnök, a Posta Helyközi Távbeszélő Igazgatóság Erősítő üzemének csoportvezetője, MALCSINER FERENC vill. üzemmérnök, a BHG Fejlesztési Intézet fejlesztőmérnöke, NAGY SÁNDOR ZOLTÁN, vill. üzemmérnök, a BHG-ELTO gyártástervező mérnöke, FRIGYES IVÁN okl. vill. mérnök, a BHG-ELTO gyártástervező mérnöke.

Felelős szerkesztő: BOGLÁR GYULA
Szerkesztő a szerkesztő bizottság
A szerkesztő bizottság elnöke: HORVÁTH IMRE
Szerkesztő: ANGYAL LÁSZLÓ

A szerkesztői bizottság tagjai:
ANGYAL LÁSZLÓ, BÁLÓGH PÁL, BÁNSÁGHI PÁL, BOGLÁR GYULA, DR. FLESCH ISTVÁN, FORINTOS GYÖRGY, HERMANN ÁKOS, HORVÁTH IMRE, JAKUBIK BÉLA, LACZKÓ ENDRÉ, MAY PÉTER, MÉREY IMRÉNÉ, NAGYGYÖRGY GÁBOR, TÓTHMÁTYÁS ISTVÁN.
Szerkesztőségügyi ügyekben és kéziratokkal kapcsolatban felvilágosítást ad: SZÖLLŐSI GYÖRGY, telefon: 495-098.

HÍRADÁSTECHNIKA

HU ISSN 0018—2028

Index: 25 375
Az elektronikában már több éve létező és használt elem a mikroprocesszor. Jelenleg közel félszáz cég foglalkozik különböző típusú mikroprocesszorok gyártásával.

Az utóbbi évek technológiai fejlődése lehetővé tette a rendkívül nagy integráltságú áramköreket létrehozását, amelyekben realizálhatóvá váltak a modern architektúrájú elvek. Így a legjobb mikroprocesszorok már a korábbi minigépek teljesítményét képesek nyújtani egyetlen tokban.

A rögzített utasításkészletű mikroprocesszor-családok fejlődésének két fő irúnya figyelhető meg.

Egyrészt az egyre több elemet tartalmazó 8 bites családokon belül kialakultak az egyetlen integrált áramkörekből megbízható ún. „single chip” mikroszámítógépek, amelyek külön hardware nélkül önállóan működőképes eszközök. Beépített ROM, ill. RAM memoriájuk és I/O vonalai vannak.

 Másrészről egyre több 16 bites vagy ennél nagyobb szöveghez hasonlítható mikroprocesszor jelent meg. Ezeknek az architektúráját úgy igyekeznek kialakítani, hogy elősegítse a magas szintű nyelvek és a modern programozási eljárások (pl. moduláris programozás) könnyű használatát. Ezenkívül természetesen rendelkeznek a minigépek teljes hardware és software lehetőségeivel (több Byte-os memóriatartomány, hatékony I/O kezelés, flexibilis utasításkészlet, multiprocesszoros lehetőség stb.).

Az említett általános fejlődési irányok jól megfigyelhetők az egyes gyártók mikroprocesszor családján. A továbbiakban ezt a fejlődést szeretnénk bemutatni a MOTOROLA M6800-as családján keresztül.

Az MC 6800 8 bites alapgép

Az MC 6800 mikroprocesszor busz szervezésű, 8 bites, párhuzamos gép, 16 bites címbusszal.
Két 8 bites akkumulátora van, amelyek az operandusokat és az ALU-ból kijövő eredményt tartalmazhatják.

felhasználhatjuk, csak a vezérlő programot kell megírni hozzá.

Az MC 6800-nak 72 fele különböző utasítása van, amelyek között vannak bináris és decimális aritmetikai, logikai, léptető, rotációs, töltő, tároló, feltételezés és feltétel nélküli ugrási, szubrutin hívó, megszakítási és stack kezelő utasítások. Az utasításokat 7 fele címzési módban tudja végrehajtani.

Ezek a módok a következők:

Az utasítások végrehajtási ideje az 1 MHz-es MPU toknál 2—12 μs közé esik.

Az MC 6801 8 bites „single chip” processzor

A 6800-as család egyik univerzális egysége, amely egy tokban tartalmazza a CPU-t, 2 kbyte ROM-ot, 128 byte RAM-ot, három 16 bites timent, egy soros bemeneti/kimeneti portot és 31 programozható I/O periféria vezérlő vonalat. Ezenkívül a tok tartalmazza az űrégenerátort is.

Utasításkészlete kompatibilis az MC 6800-éval, de ezeken kívül még 10 új utasítást is tartalmaz.

Belső architektúrális változtatásokkal (16 bites busz és több belső munkaregiszter) az utasítások végrehajtási idejét is sikerült csökkenteni. Az új utasítások között 16 bites műveletek is szerepelnek, ahol az összekapcsolt \(A \) és \(B \) akkumulátor alakot egy 16 bites \(D \) akkumulátor, ezenkívül három új, \(X \) regisztert kezelő utasítással egyszerűből vált a helyügytelen reentráns kódok kezelése.

Sok feladatnál jól használható a 8×8 bites, előjel nélküli szorzó utasítás, amelynek végrehajtási ideje 10 μs.

Az MC 6801-nek négy I/O portja van, amelyek szerepe az üzemmodtól függően változhat. Mindegyik portnak van egy adatirány regisztere, amelynek sejtésével mindegyik I/O vonal bemeneti vagy kimeneti irányba állítható be.

A 2. port soros kommunikációra, a timer elérése vagy 5 bites párhuzamos I/O portként használható. A többi három párhuzamos port I/O vonalként vagy MPU adat, ill. címvonalként működhet az üzemmodtól függön.

Az MC 6801 három alap-üzemmodba állítható. Ezek a következők:

- Single Chip üzemmod:
- ekkor mindegyik port I/O vonalként működik és a processzor a belső ROM-ban levő vezérlő programtól függően különböző I/O feladatokat végezhet el önállóan.
- Bővített, nem multiplexelt üzemmod:
- ebben az üzemmodban a processzor közvetlenül csatlakoztatható az MC 6800 buszára, mivel a 3. port lesz az adatbusz, a 4. port egy max. 8 bites címbusz, az 1. és 2. port pedig I/O vonalként fog működni.
- Bővített, multiplexelt üzemmod:
- ekkor a 4. porton lesz a 8 nagyobb helyiértékű címvezetés, a 3. port multiplexelt az adatvonalakat és a kisebb helyiértékű címvonalakat, az I/O vonalka pedig a 2. és 1. porton lesznek.

Az MC 6801 háromfélé üzemmodja és 4 dh portja segítségével sokféle vezérlési feladatra használható (pl. multiprocesszoros perifériavezérlő stb.).

Az MC 6809 8 bites processzor

16 bites tulajdonságokkal

Az M 6800-as byte szervezésű család legnagyobb teljesítményű tagja, amely az adatok feldolgozását 16 bit széles belső buszon, ill. regisztereken végzi. A korábbi rendszerekkel való software-kompatibilitás megtartása mellett néhány új utasítása is van, amelyek nagy része 16 bites.

A hatáskókok az új címzési módok bevezetése is növelte. Belső felépítése a 3. ábrán látható, ahol a belső regiszterek funkciója a következő:

- 8 bites \(A \) és \(B \) akkumulátor, amelyek összekapcsolva akkothatják a 16 bites \(D \) akkumulátor,
- 16 bites \(X \) és \(Y \) indexregiszterek, amelyek automatikusan inkrementálhatók, dekrementálhatók,
- 16 bites \(S \) és \(U \) stack-pointer, amelyekkel a stack memória címezhető. Mindkét stack-pointernek

2. ábra. Az MC 6801 belső felépítése
van indexelt címzési módja. A felhasználói stack-et (U) a programozó felhasználhatja argumentumoknak
egyik programmodulból egy másikba való áthelyezésére,
egy 16 bites programszámláló (PC), amely indexelhető,
y egy 8 bites állapotregiszter (CC), amelynek az
MC 6800-nál létező 6 flag mellett (N, O, E, Z, J, H)
y egy F jelzője is van (gyors megszakítás, ahol csak a
PC és a CC regiszter tartalmát mentik el a stack-be)
y egy E jelzője, amelyt az elmentés alatt billente
nek be,
y egy 8 bites közvetlen lap-regiszter (DPR), amely
256 lap közvetlen címzésére használható.

A rendszer hatékony felhasználását jól támogatják
a következő utasítások:
„efektíven cím tölthető” utasítás, amely közvetlen
(immediate) értéket vagy az egyik akkumulátor érték-
ként adja hozzá az indexregiszterhez,
„hosszú ugró” utasítások, amelyekkel a memória
bármelyik része elérhető,
-a regiszterek közötti átvitelt és cserét végrejátszó
utasítások,
at az előző gyorsan, 8×8 bites szorzó utasítás,
adatmozgató és blokkösszehasonlító utasítások,
amelyek automatikus inkrementáló, ill. dekrementáló
címzési módban hajthatók végre,
-a hardware és software szinkronizálását szolgáló
utasítás, amely leállítja a processzort és csak akkor
indítja el, amikor valamelyik megszakítási vonal
aktiv lesz.

Az MC 6800 átmenetet képez a 8 és a 16 bites
gépekből között. Architektúrájának tervezésének és uta-
sításainak kialakításánál nagymértékben figyelembe
vettük a modern programozás követelményeit (pl.
magas szintű nyelvre orientált utasítások, moduláris
programozás hw/sw támogatása).

Az MC 68000 16 bites processzor
32 bites belső architektúrával

A 16 bites mikroprocesszorok közül az egyik legha-
tékonyabb, amit a belső 32 bites architektúrára fel-
épülő utasításkészleteként köszönhet.
23 bites (+1 kiegészítő bit) külső címzésával
16 Mbyte memóriát tud közvetlenül megcsemezni.

Különböző adatbusza 16 bites, de az összes belső regiszter
és az ALU 32 bites.

Az utasítások által használt belső regiszterei a
4. ábrán láthatók.

A D0—D7 adatregisztereket byte-ös (8 bit), szav-
as (16 bit), ill. dupla szavas (32 bit) műveletekhez
lehet felhasználni. Az A0—A7 címregiszterek fel-
használhatók stack pointernek és bazis címregisz-
terek szavas (16 bit), ill. duplaszavas műveletekkel.
A rendszer flexibilitását növeli, hogy minden típusú
regisztertomb (D, ill. A) bármelyik regisztre használható
indexregiszternek.

A moduláris I/O rutinok kezelését segíti a 8 szintű
vektoros megszakítási struktúrá, ahol 192 vektorra
történhet elgártás. Az A7 címregiszter a rendszer
stack pointeré ként használja a programszámláló és
az állapotregiszter elmentésére, míg az A7 regiszter a
programozó csak egy speciális, ún. felügyeleti üzem-
módban érhető el.

Az MC 68000 hatfélé adattípust tud kezelni: bit,
BCD számok, byte-ok, ASCII karakterek, szavak,
dupla szavak. Utasításkészlete 61 alaputasításból
áll, ez nem kompatibilis az M68000 byte-oriens
utasításkészletével.

A több szintű mikroprogramozással megvalósított
utasításokkal kihasználják a 32 bites belső archi-
tektúra nyújtotta előnyöket, így a 14 fél címzési
mód révén az M68000-nál sokkal hatékonyabb utas-
ításkészlete van. Az új utasításkészlet miatt a korábbi
8 bites rendszerekkel való software kompatibilitás
elveszett; ezt a rendszeren futó transzlator program
ellenőröz, amely a 68000 assembler nyelvű pro-
gramjait fordítja le a 68000 kódjára.

Utasításai a struktúrált magas szintű nyelvek
(Pascal, Cobol, Fortran, Basic) utasításaihoz állnak
közel, és lehetővé teszik a moduláris programozást.
Így könnyen megvalósítható pl. a paraméterek át-
vitele egyes software modulok között (pl. több regi-
zertett kezelő tölthető, ill. olvasó utasítások), ill. egy-
szerűbbé válik a szubrutinhibás (pl. lánccsalá utasi-
A külföldi szakfolyóiratokból

Összeállította: BALOGH PÁL*

dalas tanulmány kiterjed a minőségellenőrzés rendszere irányába. (Electronics Weekly, 1980. ápr. 16. [7883])

A Metal Research Ltd. (MRL) (Melbourne, Ruyton SG8 6EL) gallium-arenid előállítására specializálta magát, és területen világörökséget is vezető pozíciót vívt ki magának.

Jelenleg a szilícium a vezető szerep, s évente mintegy 2000 tonna siliconot használnak fel vezetőgyártásra. Ezeknek az áramköröknek a felhasználása évi 20%-kal nő. Mivel 25%-os részesedés az aliumiuma a föld második leggyakoribb eleme, ezért nemigen számíthatunk benne hiányra.

Gallium-arenidből jelenleg évi 20 tonnát használ fel az elektronikai ipar, s ennek nagy részéről világító diódákat gyártanak. A gallium-arenid emeltetőleg kiváló integrált áramkörök gyártására. Struktúrája jobban vezeti az elektronikát, mint a silicon, viszont a szilícium eszközök gyártásában beállt módon szereznek nem alkalmazhatók csak bizonyos adaptálás

Az 80-as évek közepéig az MRL viszont jelenlegi termelésének összösszerősére lesz csak képes. (Blick durch die Wirtschaft, 1980. ápr. 9. [7889])

Szévédországban a kormány kezdeményezésére egy új, magas szintű állami bíztosságot alakították ("atalatt-bíztosság"), a szát-megépektők alkalmazási módszerei vizsgálatára, használati alapelvek kialakítására, az új technika bevezetése szabályai kidolgozására. A Bíztosság feladata olyan elvek kidolgozása, amelyeket alkalmasak lesznek a parlamenti törvényhozás eljárás beindítására is, az ipari, kormányzati, illetve általános társadalmi érvényű számítógép-törvény kidolgozására. Az országban már működő több szakosított testület munkáját az új Bíztosság fogja összehangolni. Tévékenységi körébe tartozik a számítógépesítés hatásainak vizsgálata a munkanélküliségre, a munkafeltételekre, a társadalmi erőforrások elsősorozatára, a magán-életre, de a svéd törvényhozás rendje közvetlenül illeszkedik, így csak előkészítő ajánlásokat ad. A kormány, úgy tűnik, mégis igen fontosnak tarthatta ilyen új szerv megalakítását, hiszen ennek ellenére a pénzügyminisztérium ugyanis nem nevezték ki, tagjai parlamenti képviselők, kormánybiztosok, szakszervezeti tisztségviselők. (Computer Weekly, 1980. jún. 19. [1900])

(Folytatás a 220. oldalon)
Az ábraképzés optimalizálásának lehetőségei LSI maszkok készítéséhez

BEKE ISTVÁN — BERECZKEI FERENC
Híradástechnikai Ipari Kutató Intézet

Az integrált áramkörök előállítási technológiájában az egyes rétegek ábrának kialakításához maszkokat használnak. Az Intézetünkben üzemelő szovjet maszkkészítő berendezések egyike az ún. ábragenerátor [2], amely a végső méretéhez képest 10×10-es nagyításban lehetővé teszi, hogy a maximálisan 130×130 mm² területen, téglaip alakú ablakokból, csaknem tetszélesetéres ábrát összeállítsunk. Az ablakok legkisebb mérete 10×10 μm², a felbontás 1×1 μm², míg az ablakok pozíciózása 1 μm-es felbontással lehetséges. Az ábragenerátorral kialakított ábrát aztán (amely egy maszklemezen fogal helyet) az ún. léptető (step and repeat) [3] berendezés segítségével, végső méretre kicsinyítve, mátrix alakzatban sokszorosan meg lehet ismételni egy másik maszklemezele. Az ábra maximális mérete itt is 130×130 mm² lehet, míg az ábracsoportok pozíciózása 1 μm-es felbontással végezhető el a megadott területen belül. Az ábracsoportok egymáshoz való illesztése ±0.5 μm pontossággal történik.

Annyi ilyen maszkot kell készíteni, amennyit az áramkörként ismert technológia a rétegek kialakításához igényel. A teljes maszksortozat 4...13 maszkot tartalmazhat. Az áramkör elemi méretekének és elemerejének, az elemközönség és a chipméret növekedése egyre nagyobb követelményeket állít a maszkkészítés elé. A közepesen nagy bonyolultságú integrált áramkör egy maszkján az ábrát összerakó ablakok száma elérheti az 50 ezer a chip belül. A maszklemeze és a chip méretétől függően pedig 100...500 chip helyezhető el a maszklemezen, vagyis milliós, sőt milliók nagysággrendű ablakot kell egyetlen lemezre leképeznünk. Ez a feladat korszerű programvezérelt maszkkészítő berendezések és számítógépes adatfelhasználó készítés nélkül már nem oldható meg.

A hagyományos módszer szerint a chipen belüli összes alakzatot* ábragenerálással alakíthatjuk ki, majd a chip ábráját kicsinyítve ismételten léképezzük. A képkialakításnak ez a módszere a nagy bonyolultságot áramkörök maszkjainál már nem gazdaságos, megnövezi az ábragenerálás időszükségletét és az adatfelhasználás munkáját. A hagyományos módszer hátrányaival a következők:

— az adatfelhasználás és a vezérlő szabály ellenőrzése, hibátlan előállítás a chipen belüli alakzatok nagy száma miatt rendkívül nehéz;
— az ábragenerátor hosszú, folyamatos üzemeltetése miatt a géphiha, szolgáltatáskéses, üzemzavarok következése valószínűsége megnő;
— bármilyen üzemzavar lemezeseljétet eredményez;
— az ábragenerálás és a lépkekész egyenlőtlen időszükséglet következtében az ábragenerátor terhelése túlzottá, a lépkekész berendezésé kisválly vágott.

A fentiek felvetik a lépkekészítés optimalis szervezésének igényét. Az optimalizálásnál a következő szempontokat együttesen vesszük figyelembe:

1. Az ábragenerálás és a lépkekész időszükségletének összege minimális legyen maszkkészetegeként.
2. Mind az ábragenerálás, mind a lépkekészletének az egy lemeze készítő ábrák léképzei ideje rövidebb legyen a berendezések „két meghiányzásodás (üzemzavar) közötti várható időtartamának”.
3. A lemezeselhasználás minimális legyen.

Az 1. követelményről belátható, hogy egyenértékű az ábragenerálás és a lépkekész azonos számú expozicióval történő megvalósításával. Tételezzük fel, hogy egy ábra 10 ezer azonos méretű ablakból összerakható és hogy ezt az ábrát egy 10×10-es mátrix elrendezésben többszörösen kell kialakítani. Összesen 10 000×10×10=1 millió expozíció végrehajtásáról van tehát szó. Elvileg sok megoldása van az ábra kialakításának. Pl. egy ablakot az ábragenerátorral képeznünk el, majd ezt egymilliószor „lelőkiedd” újra ezután pozíciókba. Olyan megoldást is választhatunk, hogy 10 ablakot képeznünk el az ábragenerátorral, ekkor 100 ezer további lépkekészére van szükségünk. 10 ezer expozíciós ábragenerálással viszont csupán 100 expozíciós lépkekész marad hátra. Képzelt feladatunk elkészült megoldása kétféle számmal jellemző: a két berendezéssel végzett expozíciók aránya, A_{exp} és a másik a szükséges expozíciók összege, S_{exp}.

Az első megoldásban: $A_{exp}=1/1 000 000$ és $S_{exp}=1 000 001$;

* A továbbiakban alakzatok olyan egyszeresen vagy többre maradékos összefüggés alakulók, amelyek egyértelműen lefedhető dérezőként, négyzeteként. Az alakzatok sokasága adja a maszklemezele. Az ábragenerátor dérezőként ábrázolható (elemi alakzat vagy ablak) röppén össze a lemezlemezele.

Híradástechnika XXXII. évfolyam 1981. 6. szám

205
a második változatban: \(A_{\text{exp}} = 10/100000 \)
és \(S_{\text{exp}} = 1000000 \);

a harmadik megoldásban: \(A_{\text{exp}} = 10000\times100 \)
és \(S_{\text{exp}} = 100 \).

A példa nem valóságos esetet illusztrál, mégis alkalmas arra, hogy lényeges következtetéseket vonjunk le belőle. Az expozíciós arány változását követi az expozíciós összeg, \(S_{\text{exp}} \) változása. Gyanítható, hogy létezik olyan \(A_{\text{exp}} \) ahol \(S_{\text{exp}} \) minimális, azaz az ábragenerálás és a lépéskedés képkialakításában létezik optimális megosztás. Példánkban könnyen megta- lálhatjuk, hogy az optimális esetben:

\[
A_{\text{exp}} = 1000/1000 = 1 \quad \text{és} \quad S_{\text{exp}} = 2000.
\]

További lényeges tanulságunk az, hogy a 4. követelmény kedvezően egybeesik az 1. követelmény- nyel, vagyis minimális összegi expozíció esetén azonnal válik a berendezések lehetősége.

Általánosságban az \(I \) és a \(L \) követelmények nemcsak a leképzelési folyamat kedvező szervezését, ha nem a nagy értékű berendezések jobb hasznosítását is célozzák.

További javulást érhetünk el, ha az adatokészítést egy másik szempontból is optimálizáljuk. Ez pedig egy adott számú expozíció végrehajtásához szükséges idő minimálisra csökkentése. Mivel egy expozíció helye asztalmozaigazsával adható meg, adott számú expozíció végrehajtásához asztalmozaigazsákok „növekményes” sorozata tartozik. A mozgás sebessége adott, így az asztalmozaigazsákok összege arányos a végrehajtás idővel. Nagyszámú asztalmozaigazság esetén már nem közömbös, hogy milyen sorrendben járjuk be az egyes pozíciókat. A bejárat sorrenden optimális megválasztással minimalizálni lehet a bejáratú áthosszat és ezáltal az expozíciók végrehaj- tásához szükséges időt. A későbbiekben kimutatjuk, hogy a bejáratú áthosszat jelentős megtakarítás érhető el kedvező esetben.

Összefoglalva azt reméljük az optimálizálásoktól, hogy egyrészt az expozíciók számának csökkentésén keresztül, másrészt az időegység alatt végrehajtható expozíciók számának növelésével a berendezések termelékenységét, a lemezfelhasználás és a lemezse-lejt csökkenését, a biztonságos ábrakialakítást növelik, illetve javítják.

A továbbiakban — a dolgozat érdem részében — az ábragenerálás és a lépéskedés optimális szervezése- nek lehetőségeivel, valamint a lépésképzési utvonál minimálizálásának egy lehetséges megoldásával részlesebben is foglalkozunk.

A csoportos ábrakészítés optimálizálása
és a kompozícióalkat technika lehetőségei

A bevezetőben már említettük, hogy a maszklemez ábráirának egy részét ábragenerálással eleme alakzatokból (alakból) rakjuk össze, majd ezt az ábrascoportot lépéskedéssel megosztozunk (és kicsiníytjük). A to- vábbiakban ez a módszer csoportos képkialakítás- nak vagy csoportos ábrakészítésnek nevezzük. Cél- lunk az, hogy az ábrageneráló és a lépéskedő beren- dezés között úgy szervezzük a munkamegosztást, hogy a két berendezésen végrehajtott összes expozíciók száma minimális legyen. A maszklemez levő összes elemtől, alakzat számát a következő összefüg- gessel modellizhetjük:

\[
N = m_1 C_1 + m_2 C_2 + C_3 + m_4 C_4 + C_5 + C_6 + \ldots + C_n,
\]

ahol: \(m_n \), az egy sorban levő chiper száma, \(m_n \), a chipsorok száma, \(C_1 \) mátrixba rendezett alakzatcsopotot jelő a chiper belül, számértéke a csoportot alkotó ablakok számát adja, \(C_2 \) az egy sorban levő \(C_1 \) jelű csoportok száma, \(C_3 \) a \(C_2 \)-jelű alakzatscopotot alkotó sorok számát, \(C_4 \) olyan nem mátrixra rendezett alakzatcsopotot jelő, amely azonban több- ször is előfordul a chiper belül, számértéke a csoportot alkotó ablakok számát adja, \(C_5 \) a \(C_2 \)-jelű alakzatscopotot előfordulású száma adja, \(C_6 \) nem mátrixba rendezett és a chiper belül csak egyszer szereplő alakzatscopotot jelő, számértéke az ezzel összefüggeszkö abvak számát jelenti.

A teljes maszkábra kialakításához szükséges expozíciók száma attól függ, hogy az ábragenerálással mekkora alakzatscopotot alakítunk, vagy alakithatunk ki. A hagyományos eljárással, LSI maszkok esetén, az expozíció arány több nagyságrenddel el- tér az egységől:

\[
A_{\text{exp}} = \frac{C_1 \cdot a_1 \cdot a_2 + C_2 \cdot b + C_3 \cdot c}{m_n m_y} = 10^2 \ldots 10^4.
\]

Az összes expozíció száma is meglehetősen nagy:

\[
S_{\text{exp}} = C_1 \cdot a_1 \cdot a_2 + C_2 \cdot b + C_3 + m_n m_y = 10^4 \ldots 10^6.
\]

Az optimális mértékű alakzatscopot meghatározásá- hoz átalakítjuk az (1) kifejezést:

\[
N = m_1 m_2 \left(C_1 \cdot a_1 \cdot a_2 + C_2 \cdot b + C_3 \cdot c \right)\left(\frac{1}{n_1} \right),
\]

A (4)–es kifejezést most már úgy értelmezünk, hogy a \(C_1 \) és a \(C_2 \) típusú alakzatcsopotokat felbontjuk kisebb csoportokra. Ezeket a kisebb csoportokat ábragenerálással alakítjuk ki, ismételt leképzeléseit pedig lépkedéssel valósítjuk meg. Ilyen értelmeben az összes expozíciók száma a következőképpen alakul:

\[
S_{\text{exp}} = \frac{C_1 \cdot a_1 \cdot a_2 + C_2 \cdot b + C_3 + m_n m_y (n_1 + n_2 + 1)}{n_1 n_2}.
\]
Megjegyezzük, hogy a C_2 típusú alakzatcsoport nem tartalmaz ismétlődő részecsoportot, így teljes egészében ábragenerálással kell kialakítani. Több kisebb csoportra való bontását mégis indokoltá teheti az az eset, amikor C_2 olyan nagy számú elemi alakzatot tartalmaz, amelyeket biztonságosan nem lehet egyetlen lemezre leképezni. Ilyenkor mind a szükséges exponciók száma, mind a felhasznált lemezek száma megör.

Kedvezőbb a helyzet a C_2 típusú alakzatcsoportnál. A C_2 csoport nem szabályos ismétlődőbeli helyezkedik el a chipen belül, ezért $n_a=b$ választással kell elnökö, vagyis C_2 alakzatokat generálókkal képezük le, majd b-szer ismétlten leképezük a lépédes során.

Az optimális csoportcsatály szempontjából a legkedvezőbb a C_2 típusú alakzatcsoport. A generálásnál választhatunk C_2 és annak minden olyan egész számú többszörösenak leképezése közül, amely egész számú osztoja az a_2-nak.

Az (5)-ös összefüggésből az elméletileg elérhető optimumot úgy kapjuk, ha meghatározzuk az n_1 és n_2 szerinti parciális deriváltakat:

$$\frac{\partial S_{\text{exp}}}{\partial n_1} = -\frac{C_1 \cdot a_2 \cdot a_y}{n_1^2} + m_x \cdot m_y,$$

és

$$\frac{\partial S_{\text{exp}}}{\partial n_2} = -\frac{C_2 \cdot b}{n_2^2} + m_x \cdot m_y,$$

Az (6)-es és a (7)-es kifejezést nullával egyenlővé téve megkapjuk $n_{1,\text{opt}}$ és $n_{2,\text{opt}}$ értékeket:

$$n_{1,\text{opt}} = \sqrt{\frac{C_1 \cdot a_2 \cdot a_y}{m_x \cdot m_y}},$$

és

$$n_{2,\text{opt}} = \sqrt{\frac{C_2 \cdot b}{m_x \cdot m_y}}.$$

Az összes exponciók számának minimuma:

$$S_{\text{min}} = \frac{C_1 \cdot a_2 \cdot a_y}{m_x \cdot m_y} + \frac{C_2 \cdot b}{m_x \cdot m_y} + C_3 + \frac{n_{1,\text{opt}}}{n_{2,\text{opt}}} + m_x \cdot m_y \cdot (n_{1,\text{opt}} + n_{2,\text{opt}} + 1).$$

Az (11)-ben hallgatólagosan azt az esetet vetülik optimálisnak, amikor a C_2 típusú alakzatcsoportot nem bontjuk részekre.

Az S_{min} esetén az exponciós arány:

$$A_{\text{exp}} = \frac{[C_1 \cdot a_2 \cdot a_y / n_{1,\text{opt}}] + [C_2 \cdot b / n_{2,\text{opt}}] + C_3}{m_x \cdot m_y \cdot (n_{1,\text{opt}} + n_{2,\text{opt}} + 1)}.$$

Könyvben belátható, hogy A_{exp} akkor éri el az elméleti optimumot, ha $C_3 = m_x \cdot m_y$. (13). Ilyenkor $A_{\text{exp}} = 1$.

A (4)-es összefüggésben szereplő felbontással és a (8), (10) kifejezésekkel nyert optimális csoportokra bontással elvileg már megtervezhető a minimális exponciós számot nyújtó csoportok ábraképzés.

A lemezfelhasználás és a biztonságos leképezés szempontjai, valamint a C_1 és a C_2 tényleges osztható-sága azonban befolyásolják a tényleges optimum kialakítását. Úgy is fogalmazhatunk, hogy a gyakorlatban általában csak közvetlenül lehet az elméleti optimumot.

Szükségére természetesen kompozitálaízatnak azt a technikát nevezzük, amikor a hagyományos módszertlől eltérően a chipen belüli alakzatokat több részletben alakítjuk ki az ábragenerálás során, majd ezeket a „lépekédellel” illesztjük össze és sokszorozzuk meg. Az előbbiek szerint azonban hiba lenne a kompozitálaást önállóan vizsgálni, azaz elválasztani az optimális csoportcsatály, a lemezfelhasználás és a biztonságos lépekészének kérdéseit.

Az optimális csoportcsatályt, a biztonságos lépekész, a minimális lemezfelhasználást és a kompozitálaási technika kérdéseit a legfontosabb részére kapcsolódik: a gyakorlati példa kapcsán.

$$N = 11 \cdot 13 \cdot (5 \cdot 8 \cdot 256 + 24 \cdot 400 + 10 \cdot 00)$$

C_2 típusú ábráz az 5 ablakból kialakítható, 8×256 méretű métrixba rendezett alakzatcsoport képez. A 400 elemi alakzatból összerakható C_2 típusú ábra 23-szor ismétlődik a chipen belül nem ciklikusan, illetve nem métrix alakban. Itt jegyezzük meg, hogy a C_2 ismétlődő ablak azonos állásukat kell, hogy legyen. Tükrözés vagy elforgatás esetén – az ábralképzés szempontjából – már nem tekinthetjük C_2 típusának az egyébként azonos felépítésű csoportot sem.

Végül a C_2 típusú ábra 10 ezer elemi alakzatból áll.

Az ábrák jellege szerint az LSI áramkörök sokfélek. Alapvetően azonban két jellegzetes csoportra oszthatjuk a logikai áramkörököt. A memória-áramkörök képezik az egyik csoportot, amelyek topológiailag felépítésére jellemző a métrixba rendezett alakzatok nagy számá. Úgy is mondhatjuk, hogy ekkor:

$$C_1 \cdot a_2 \cdot a_y \gg C_2 \cdot b,$$

és

$$C_1 \cdot a_y \cdot a_y \gg C_2 \cdot b + C_3$$

is általában teljesül.

Az áramkörök másik alapvető csoportja az ún. „véletlen logikák”. Ise sorolhatók a felhasználóorientált áramkörök is. Ezek topológiájára jellemző a nem ciklikusan ismétlődő alakzatok társulása, úgy
is írhatjuk, hogy:
\[C_2 \cdot b + C_3 \Rightarrow C_1 \cdot a_x \cdot a_y, \text{ sőt} \] (17)
\[C_2 \cdot b \Rightarrow C_1 \cdot a_x \cdot a_y \] és \[C_3 \Rightarrow C_1 \cdot a_x \cdot a_y \] (18)
is gyakran teljesül.

Ilyen szempontból a (14)-es összefüggéssel megadott ábra vegyeses tekinthető. Szándékosan változtottünk olyan példát, ahol a három alapvető ábratípus nagysárgrendileg azonos mértékben szerepel.

Az elméletileg elérhető optimális felbontás a következő:
\[n_{1\text{opt}} = \frac{5-8-256}{11-13} \cong 8.4 \] (19)

\[n_{2\text{opt}} = \frac{25-400}{11-13} \cong 8.3. \] (20)

Az egész részeket véve figyelembe:
\[n_{1\text{opt}} = n_{2\text{opt}} = 8. \] (21)

A C₃ típusú ábrát az expozíciószám és a lemezfelhasználás növelése árának lehet csak felbonthatni. Feltetelezzük, hogy a leképzés biztonsága lehetővé teszi a C₃ alakzatainak együttes generálását.

A tett feltételezésekkel:
\[S_{\text{exp}} = 5-256+400+10000+11-13 \times (8+25+1). \] (22)

Míg a hagyományos eljárással:
\[S_{\text{exp}} = 5-8-256+25-400+10000+11-13. \] (23)

Eredményeinket táblázatosan összefoglalva:

<table>
<thead>
<tr>
<th>Eljárás</th>
<th>A szükséges expozíciósámban</th>
<th>S_exp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>generális</td>
<td>lépkedés</td>
</tr>
<tr>
<td>Optimalizált</td>
<td>11 680</td>
<td>4862</td>
</tr>
<tr>
<td>Hagyományos</td>
<td>30 240</td>
<td>143</td>
</tr>
</tbody>
</table>

Látható, hogy az elméleti optimumot nem érték el az ábraösszetétel miatt, de jelentős javulást igen!

\[A_{\text{exp}} = \frac{11 680}{4862} \cong 2.4 \] (24)

\[A_{\text{hagy}} = \frac{30 240}{143} \cong 211 \]

A szükséges expozíciók száma — a hagyományos-hoz képest — lényegesen, közel 50%-kal csökken, ami jelentős gépírócsökkenést eredményez.

A szükséges gépírók [2500 exp/ór] leképzési sebeségével számolva:

Feltételeztek, hogy a két meghibásodás közötti időtartam 20 óra. Ilyenkor a lemezfelhasználás az optimálizált és a hagyományos esetben megegyezik. A zárójelbe kerülő értékek azonban 10 órára választottuk a két üzemzavar közötti időtartamot. Ilyenkor a lemezfelhasználás az optimálizált esetben a kedvezőbb.

Végül a kompozitlás technikájáról néhány gondolatot. Az ábragenerálás során leképezzük az 5-256-os, a 400-as és a 10 000-es alakzatsoportokat egyetlen lemeze, majd például a C₁ és a C₂ ábra letakarásával leképezzük C₃-at 11-13-szor, azután a C₁ és a C₃ letakarásával a C₃-t, 25-11-13-szor, végül C₂ és C₃ letakarásával 11-13-8-szor Cᵢ-et. A lépkezés kivitelese bonyolultabbá vállik, mindez azonban bőségesen megtérül.

A leképzési útvalon minimalizálásának lehetőségei

Az LSI maszkétegeken számos olyan alakzat helyezkedik el, amelyek pozíciója nem járható be ciklikusan. Más szavakkal éppen annyit expozíciót kell végrehaajtanunk, ahány ilyen alakzat van. Az expo-

nálás végrehajtása során a képben lévő alakzatok a kívánt pozícióba vezéreljük, ezt követi a megvál- lítás. Az expozíciók végrehajtásához szükséges idő arányos az egyes elmozdulások eredő hosszával, mely az expozíciók beépítési posztumájának hosszúságával. A vezérlés szempontjából a pozíciók beépítési sorrendje közömbös. Jogosan merül fel a kérdés, hogy van-e olyan beépítési sorrend, amelyhez minimalizálható hosszúságú beépítési út tartozik?

Legyen az a feladat, hogy az 1. pontból elindulva úgy járjuk be az 1—6. pozíciókat, hogy a megírott út minimalizáló hosszúságú! Ehhez felrajzoltuk az összes lehetőséges két pontot összekötő vonalat. Pél-
da klkának a távolságok könnyen megadhatók: ha az 1—2. pont távolsága 1, akkor az 1—4. értéke 2, az 1—3. pontok között pedig \(\sqrt{3} \) mérték. Az 1.b és az 1.c ábrán egy lehetséges utat tüntettünk fel, a
1. ábra. A szabályos hatszög csúcsaiban elhelyezett „ablakok” bejárása

nyilak jelzik a bejárási sorrendet. Az 1.b útvonal hossa 6.1=6 egység, az 1.c útvonalé pedig 3+2+ +1+2=10,46. A jelentős különbség igazolni látszik az optimalizálás szükségességét.

A hatszög pontjainak bejáráshoz még több utat kijelölhetnénk, de a további próbálkozás helyett a gráfelmélet segítségével megkíséreljük a feladat általános megoldását megtalálni. A berendezések n db expozició során végrehajtott asztalmozgatásait egy n-pontú gráfok modellizzük. A gráf pontjait a léképés sorrendjének megfelelően összekötjük. A különböző léképési sorrendnek megfelelő gráfok az alábbi közös tulajdonságokkal rendelkeznek:
- összefüggőek,
- körök,
- pontjaik száma n,
- élleik száma n.

Az ilyen gráfot Hamilton-gráfunk vagy Hamilton-körkének nevezzük. Ha törljük a kör utolsó élet (az n-ik pontból a kiinduló pontba vezető), Hamilton-utat kapunk. Lényegében elegendő a Hamilton-utat vizsgálni.

Vizsgálatainkhoz a teljes n-pontú gráfot indulunk ki. A teljes gráf összes lehetséges Hamilton-útjainak száma a következő gondolatmenettel határozhatjuk meg: a kitüntetett első pontból n−1 felé mehetünk, a második pontból n−2 irányban, és így tovább. Az utolsó előttől pontból már csak az utolsó.

Vagyis az összes lehetséges Hamilton-utak száma:
$$N_H=(n-1)(n-2)\ldots 2\cdot 1=(n-1)!$$ \hspace{1cm} (26)

Ez a szám — (n−1) faktoriális — a gráf pontjainak növekedésével igen nagy lehet. A 2. ábrán egy 4 pontú gráf lehetséges Hamilton-útiáját vázoltuk.

Könnyen belátható, hogy az összes lehetséges Hamilton-körök száma éppen fele a Hamilton-utak számának. Az n-pontú teljes gráf bármelyik Hamilton-körét az irányítástól független kétfelé képeppen járhatjuk be. Hamilton-utat keresve azonban egyszer az n- pontból az 1. pontba mutató élet, a második esetben a 2. pontból az 1. pontba mutató élet hagyjuk el a körnek, vagyis a két felbe bejárás két függően megoldásával jelenkezik. Feladatunk szempontjából ezeket egyetlen megoldásnak tekinthetjük. A 2. ábrán érzékelhető, hogy a hat Hamilton-út lényegében három Hamilton-körnek felel meg. A szaggatott rajzolt elekele kiegészítve a gráfokat kiderül, hogy a -c, b–d és c–f megegyeznek, ha az irányítástól eltekintünk.

2. ábra. A 4-pontú gráf Hamilton-útiájai, $N_H=3!=6$

Feladatunk most már az, hogy az utakból a legrövidebbet kiválasztsuk. A legkisebb úthosszú, vagy a leggyorsabb Hamilton-út kereséséről általános megoldást ez ideig még nem sikerült találni [1]. Feladatunk speciális esetnek tekinthető. Ennek megoldására megkíséríük eljárást keressünk.

Érdemes megvizsgálni, hogy hány lépésre van szükség. Az első él kiválasztásához n−1 vizsgálatra, a másodikhoz n−2 vizsgálatra és így tovább. Az (n−1)-ik él már tulajdonképpen nem kell, hogy szereljen a kiválasztásban, de a teljesség kedvéért következő képletünk ezt is tartalmazza:

$$V_H=n−1+n−2\ldots 2+1=\sum_{k=1}^{n−1}i, \quad k=1, 2, \ldots$$ \hspace{1cm} (27)

Könnyen belátható, hogy V_H megegyezik az n-pontú gráfról összes éleinek számával.
\[V_H = F_n = \binom{n}{2} = \sum_{k=1}^{n-1} i = \frac{n(n-1)}{2}. \] (28)

Ez mindennevetsére sokkal kevesebb, mintha az összes Hamilton-utat vizsgálnánk \((N_H)\).

\[N_H = 2 \cdot (n-1)!, \quad \frac{V_H}{n(n-1)} = 2 \cdot \frac{(n-2)!}{n} \gg 1. \] (29)

A vázolt algoritmust mátrix-alakban is szemléltethetjük. Rendeljük ugyanis a teljes \(n\)-pontú gráf eleinte olyan számt, amely a két pont távolságát jellemzi. Ezeket a számokat mátrixba foglalhatjuk:

\[
\begin{array}{ccccccc}
1 & 2 & \ldots & n \\
1 & r_{11} & r_{12} & \ldots & r_{1n} \\
2 & r_{21} & r_{22} & \ldots & r_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & r_{n1} & r_{n2} & \ldots & r_{nn}
\end{array}
\]

(30)

A (30) lényegében az \(n\)-pontú gráf incidencia-mátrixa. Mi önkényesen érték-mátrixnak nevezünk, amelyben a diagonalisban szereplő értékek:

\[r_{11} = r_{22} = \ldots = r_{nn} = 0 \]

(31)

és

\[r_{ik} = r_{ki}, \quad k = 1, 2, \ldots, n. \]

(32)

A mátrixos felirás egyben azt jelenti, hogy a gráf pontjait \(1, 2, \ldots, n\) sorszámmokkal láttuk el. A mátrix első sora az 1 ponthoz csatkozó elekr értékét (hosszát), a második sora a 2 ponthoz csatkozó elekr értékét stb. jelenti. A minimális értékú út keresése a mátrix meghatározása után a következőképpen végezhetjük. Kiválasztjuk az első sorból a legkisebb értékű elemet. Ennek második indexében szereplő sorba „ugrunk”. Ebből a sorból törljük azt az elemet, amelyek második indexében 1 szerepel és a maradék ből kiválasztjuk a legkisebb értékű elemet. Ennek második indexe mutatja meg, hogy megy a következő vizsgálandó sor. Az eljárást addig folytatjuk, míg minden sort végiig nem járunk.

Az eljárás használhatóságát elvilág két tényező is leronthatja. Az egyik, hogy az első pont megválasztásától függően különböző hosszúságú minimális utakat kaphatunk. Szerencsére, feladatunk szerint, a kiinduló pont mindig a leképzési mező geometriai középpontja, amit bevonunk a gráf n pontja közé. Ezáltal a minimális út keresése egyszerűsíthető. A másik problémát az okozhatja, ha a gráf élei között van kettő vagy több olyan, melyeknek hossza egyenlő. Tételezzünk fel ugyanis, hogy a 3. pontból kiinduló \(n-3\) db élet vizsgálva két egyforma értékű találunk a legkisebbek között. Az egyiket választva véglegesítjük az eljárást, majd a másikat vásárolva újra elvégezzük az eljárást. Végül a két minimálisnak kapott út közül a kisebb értéket tekintjük megoldásnak. Ha a minimális értékek kiválasztása során több azonos élet találunk, vagy ha több pont esetén is találunk ilyen éleket, akkor a vizsgálati lépések száma növekszik. Az első esetben a párhuzamosan kapcsolódó utak száma, a másodikban mind a párhuzamosan, mind a sorosan kapcsolódó utak száma megnő. Kedvezőtlen esetben a vizsgálati számak megközelíti az \((n-1)!\) értékét, ami igen nagy szám lehet és együtt a jelenlétrünk használhatatlanná válik.

A probléma feloldását a következő módszerrel adhatjuk meg (1. irodalom):

Álljunk a berendezéseknél asztalmozgatásának felbontása (legkisebb lépés) következésként mindig egész számnak vehető. Ha egyszerűbbé és előfordulásai számos, akkor előfordulásaink kivételével úgy módosíthatjuk, hogy az egyikhez hozzáadjuk az egységnek a hányadát, legyen ez \(q\), a másikhoz \(q-t\), a harmadikhoz \(q-t\) stb. Ehhez \(q\) úgy választjuk meg, hogy a módosítások összege az egységnél kisebb legyen. Ha k számú élhossz fordul elő többször és egy élhossz maximálisan \(m\)-szer szerepel, akkor ehhez \(q\) az alábbi összefüggés szerint választjuk meg:

\[k \cdot [q+2q+3q+\ldots+(m-1)q] = 1. \] (33)

Az így módosított gráfban már nincsenek azonos élhosszak és a minimalizálási feladat a vizsgált eljárás szerint oldható meg. Belátható, hogy a megoldás nemcsak a módosított gráfnak, hanem az eredetének is megoldása lesz (1. irodalom).

Végüzetül megkíséreljük a várható úthossz nyesését megbecsülni. Legyen négyzet az a terület, amelyen az elemi alakzatok elhelyezkednek. Felszíntünk a terület fölé négyzetes hálót és ennek keretpontjaihoz rendeljük elemi alakzatot. A feladat most már az, hogy bejárjuk a háló összes pontját egyszer a lehető legrövidebb, egyszer pedig a lehető leghosszabb úton (3. ábra).

3. ábra. Leképzési terület. A négyzet választó keretpontjait kell bejárni

A bejáraindó pozíciók száma a 3. ábra jelölésével:

\[n = p^2. \] (34)

Tekintsük minimális úthosszú bejárásnak azt, amikor az \(n\) számú pontot úgy járjuk végig, hogy közben mindig egy osztásiértélyt lépünk. Ekkor a teljes úthossz:

\[\min S_H = (n-1) = (p-1) = (p^2-1). \] (35)

Tekintsük maximális úthosszú bejárásnak azt, amikor az \(n\) számú pontt úgy járjuk végig, hogy köz-
ben mindig a terület átlójának felét lépjük. Tételezékül fel, hogy ilyen bejárás — legalább is közelítőleg — létezik. Ekkor a teljes úthossz:
\[
\max S_H = \frac{(n-1) - \sqrt{2} \cdot (p-1) \cdot c}{2} = \frac{(p^2 - 1)(p-1) \cdot \sqrt{2}}{2}.
\]
\[\text{(36)}\]
A minimális és a maximális bejárás aránya:
\[
\frac{\min S_H}{\max S_H} = \frac{\sqrt{2}}{p-1} = \sqrt{\frac{2}{n-1}}.
\]
\[\text{(37)}\]
A nyerség százzalékosan:
\[
NY = 100 \left(1 - \frac{\min S_H}{\max S_H} \right) = 100 \left(1 - \sqrt{\frac{2}{n-1}} \right).
\]
\[\text{(38)}\]
Feltételezéseinket figyelembe véve (38) csak nagyon közeltű becsést nyújthat. Jól érzékeltethető azonban, hogy a pontzám (n) növekedésével a maximálisan várható nyerség növekszik. Néhány ilyen becsült értéket az expozíciósáram függvényében a következő táblázatban foglaltunk össze:

<table>
<thead>
<tr>
<th>Exponciósáram ((\text{w}))</th>
<th>Az optimalizálás maximális ütlenesség nyerségéhez (órva becsült)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>30%</td>
</tr>
<tr>
<td>25</td>
<td>64%</td>
</tr>
<tr>
<td>100</td>
<td>84%</td>
</tr>
<tr>
<td>1 600</td>
<td>96%</td>
</tr>
<tr>
<td>10 000</td>
<td>98%</td>
</tr>
</tbody>
</table>

Gyakorlatilag nem érhető el a maximális nyerség. Ennek két alapvető oka lehet:

- a pozíciók elhelyezkedése és azok bejárása általában nem olyan, ahogyan a példában az egyszerű számítás kedvéért feltételeztük;
- az optimalizálás nélküli bejárás általában nem a leghosszabb utat adja.

Hátba van még a gépidő-megtanítás becsüle. Egy elemi alakzat leképzési ideje két tagból tevővédik össze:

\[t = t_1 + t_2, \]
\[\text{(39)}\]
ahol \(t_1\) az asztalmozgatáshoz szükséges idő, \(t_2\) a megvilágítási idő.

A 3. ábra szerinti minimális bejárás időszükséglete:

\[
T_{\min} = \frac{(n-1) \cdot e}{v} + (n-1) \cdot t_2,
\]
\[\text{(40)}\]
miután a maximális bejárás időszükséglete:

\[
T_{\max} = \frac{(n-1) - \sqrt{2} \cdot (p-1) \cdot e}{2 \cdot v} + (n-1) \cdot t_2,
\]
\[\text{(41)}\]
ahol \(v\) az asztal átlagos mozgási sebessége. A (40) és a (41)-ben az \(e\) egységnyi elmozdulás időszükségletét tekinthetjük \(t_2\)-nek:

\[t_1 = \frac{e}{v}.
\]
\[\text{(42)}\]

Az időmegtanítás százzalékosan:

\[
T_{NY} = 100 \left(1 - \frac{T_{\min}}{T_{\max}} \right).
\]
\[\text{(43)}\]
Behelyettesítés és átalakítás után, \(t_1 = t_2\) feltételezésénél:

\[
T_{NY} = 100 \left(1 - \frac{2 \sqrt{2}}{(n-1) + \sqrt{2}} \right).
\]
\[\text{(44)}\]

Néhány becsült értéket az expozíciószám függvényében a következő táblázatban tüntettünk fel:

<table>
<thead>
<tr>
<th>Exponciósáram ((\text{w}))</th>
<th>Az optimalizálás maximális ütlenesség-megtanítása (órva becsült)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>18%</td>
</tr>
<tr>
<td>25</td>
<td>48%</td>
</tr>
<tr>
<td>100</td>
<td>73%</td>
</tr>
<tr>
<td>1 600</td>
<td>93%</td>
</tr>
<tr>
<td>10 000</td>
<td>97%</td>
</tr>
</tbody>
</table>

Maximális időmegtanítás nem érhető el a maximális ütlenességnél említett okok miatt. Mindenesetre a becses azt látszik igazolni, hogy a bejárás úthossz minimalizálása jelentős megtanítást eredményezhet a nagy expozíciósáram ábrák generálási idejében.

ÍRÓDALOM

Lapunk példányonként megvásárolható

V. Váci utca 10.

V. Bajcsy-Zsilinszky út 76. szám alatti hírlapboltokban

Híradótechnika XXXII. évfolyam 1981. 6. szám 211
Vivőfrekvenciás műsorhang-közvetítő berendezések a vezetékes hírközlésben

Az elmúlt évek során a rádió- és televízióműsorok jelentős hányadát teszik ki a stádiókon kívüli, úgy nevezett külső helyszínnek ról történő közvetítések. Mint köztudott, ezen események sikeres lebonyolításában a Posta döntő szerepet vállal, ami természetesen feltételezi, hogy a nevezett szervezet megfelelő mennyiségű és minőségű berendezéssel rendelkezik ahhoz, hogy ennek a tevékenységének maradékánul eleget tegyen. A korábbi évekkel ellentétben ma már elmondhatjuk, hogy az elmúlt időszakban, elsősorban a nemzetközi és belföldi helyközi közvetítések terén, az újonnan beszerezett műsorhang-közvetítő berendezések jövőtából számottevő javulás tapasztalható.

Tekintettel arra, hogy az említett viszonylatokban a vezetékes hírközlés ma már hazánkban is elsősorban a korszerű koaxiális kábelekre és részben a mikrohullámú alapáramkörökre telepített sokcsatornás vivőáramú rendszerek épül, így a közvetítésekre, valamint egyes rádió-adóállomások műsor ellátásához felhasznált berendezések jelentős része is e műszaki szempontok szerint új zestelés.

Magyarországon jelenleg négyféle műsorhang-közvetítő berendezéstípus – régebben, helytelen szóhasználat szerint „zenéviló” – használatos, melyek közül három, csekély darabszámuk vagy gyengébb műszaki paraméterek miatt csak válaszolosan, míg a negyedik, a CCIIT által is ajánlott típus részletesen tárgyaljuk.

1. Rel 13R 91a típusú berendezés

Jó minőségű, monofónikus műsorhang átvitelre alkalmas, korábbi, többnyire elektroncsövekkel működő Siemens-konstrukció. Hangfrekvenciás működési tartománycsa 50–10000 Hz, melyet 96 kHz-es vivőfrekvencia segítségével a CCITT ajánlása szerinti 60–108 kHz-es „B” alapesoby második előcsoportjába (84–96 kHz), három távbeszélő csatorna helyére helyez el. Önálló, kristályoscsellátort tartalmazó vivőellátó egységgel rendelkezik, de csatlakoztatatos az állomás külső vivőellátó rendszeréhez is. A konstrukció egyik lényeges jellemzője, hogy vivőfrekvenciás komponder alkalmazása esetén, a többszörös moduláció után keletkező 85,4–95,55 kHz-es egyenes fekvős frekvenciasav, az érthető áthallás és a zaj további csökkentése érdekében, a normal, távbeszélő üzemben kapott sávhoz képest 600 Hz-cel eltolja.

A nevezett berendezés rendelkezik a vivőfrekvenciás rendszerek elengedhetetlen pre- és deemfázis áramkörökkel, valamint a már említtet komponder egységgel is. Ez utóbbi egység működtetéséhez szükséges további két vivőfrekvenciát, valamint a 87,75 kHz-es ellenőrző pilót frekvenciát külön oszcillátortól nyerjük.

A berendezés, többnyire elektroncsöves felépítése mellett is, igen alkalmas jó minőségű zene és beszéldhang átvitelére. Magyarországon ebből a típusból összesen egy példány van, mely Budapest – Wien viszonylatában üzemel.

2. AV 2/3 típusú berendezés

Szojjet gyártmányú, az OSZSZ-szabványoknak megfelelően működő, tranzisztoros berendezéstípus, mely monofónikus műsorhangátvitelt tesz lehetővé. Alkalmazása, hasonlóan a Siemens Rel 13R 91a típusú berendezésekhez, elsősorban ott célszerű, ahol csatlakoztatatható a már üzemelő 12 csatornas vivőfrekvenciás távbeszélő rendszerekhez. Az 50–6400 Hz, vagy 50–10000 Hz sávszélességű műsorhangáramkör ugyancsak a 60–108 kHz-es „B” alapesoby második előcsoportjába, két vagy három távbeszélő csatorna helyére állítjuk. A nevezett frekvenciataartományon kívül, megfelelő kiegészítő egységek alkalmazásával, mód van más, kábeles vagy légyvezetékes vivőáramú rendszerekben való üzemeltetésére is, de Magyarországon ezeket az egyéb megoldásokat nem alkalmaznak. Önálló vivőellátást nem rendelkezik, a 96 kHz-es vivőfrekvenciát az állomás Külső vivőellátó rendszeréből tápláljuk be. A felhasznált hangfrekvenciás sávot függő 7,2 kHz vagy 11 kHz-es, kizárólag riasztási célokat szolgáló pilótát állít elő. A berendezésben mind a pre- és deemfázis, mind pedig a komponder egységeket megtaláljuk, de az utóbbi jelentős hátránya az, hogy működési tartománya a hangfrekvenciás sávba esik. Ez a megoldás – mint köztudott – azzal a hátránnyal jár, hogy a komponder működési ideje alkalmazását összemenő az alacsony frekvenciás műsorjelekkel, amit az utóbbiak további tervezésére okozhatja. Meg kell említeni azt is, hogy a berendezésben alkalmazott, a távvezérlés céljait szolgáló és a jelátválasztó eső jellegű és nyomógombok-alkat csoportok miatt viszonylag gyakoriak a meghibásodások.
Mindezek ellenére a megfelelően karbantartott AV 2/3 típusú berendezés, főként az 50—20 000 Hz-es kiejtésben, alkalmas a jó minőségű műsorhang-átvitelre. A Magyarországon működő példányok mindegyike meghatározott nemzetközi viszonylatokban üzemel.

3. Philips 8 TR 319/10 típusú berendezés

Hollandiában gyártott, félevezető elemekre épülő konstrukció, mely kiváló minőségű mono- vagy sztereofónikus műsorhangátvitelre alkalmas. E két különböző üzemmódiának megfelelően egy vagy két 30—15 000 Hz-es hangfrekvenciás alapsávot többszörű moduláció után úgy helyezi el a CCITT szerinti „B” alapcsopor fekvésben, hogy sztereó üzemmódban a két csatorna egymáshoz képest ellentétes fekvésbe, mono üzemmódban pedig a második csatorna a 7—11. távbeszélő csatorna helyére kerül. Ez utóbbi esetben mód nyílik az 1—6. távbeszélő csatorna üzemzerő használataira is, míg az előző esetben a két műsorhangáramkör mellett is lehetséges van egy-egy 4 kHz sávszélességű távbeszélő áramkör üzemeltetésére.

A berendezésnek önálló vívőellátó egysége van, mely előállítja a többszörű modulációhoz szükséges összes vívőfrekvenciát és melynek alapfrekvenciája saját belső kristályoszszillátorából, de az állomás külső vívőellátó rendszeréből is származhat.

A szokványosból eltérő megoldásnak tekinthető, hogy a vételoldali vívőfrekvenciák az adóállomáson betáplált és az ellenállásomra az átviteli áttétel előtt 60 kHz vagy 84 kHz-es szinkronizáló pilotból is előállíthatók.

A berendezések szigorúan vett pilotjele ugyan nincs, de az adóállomás betáplált műsorjelek dinamikája az ún. kommandopilot — egy, a dinami-kától függő frekvenciámodulált sín — felhasználásával a vételoldalon hűen visszaállítható.

A zajszőkénti egységek közül a pre- és deemfásiz áramkörök a csatornakeretben, míg a hosszabb átviteli út áthidaláshoz szükséges kommand külön, az ún. kommandok megérintetté alátámasztók.

A 8 TR berendezést mind a hangfrekvenciás, mind pedig a vívőfrekvenciás tartományát illetően, igen jó elektronos paraméterek jellemzőek, de ugyanakkor bizonyos technológiai megoldásai, melyek első sorban a kezelhetőségben jelentkeznek, a fejlesztés szempontjából bizonyos hátrányokat jelentenek. A Magyarországon üzemelő Philips Berendezések a belföldi műsorhang-hálózat fejlesztésében kaptak jelentős szerepet.

4. S 42022—A401—A1 típusú berendezés

A Siemens cég felszínező elemekből felépített műsorhang-közvetítő berendezése, mely kiválóan alkalmas mono-, mind sztereofónikus műsorjelek átvitelére. Tekintettel arra, hogy a CCITT és a CMTT egyaránt ezt, a pillanatnyilag legkorszerűbbnek mondható berendezéstípust ajánlja és mert a Magyar Posta az OSZSZ-tagországok társaságzatával összhangban a nevezett típus felhasználásával alakítja ki vezetékes műsorhang-közvetítő hálózatának gerincét, e típus részletesen tárgyaljuk.

Az S 42022-A401—A1 berendezés, a Philips gyártmányhoz hasonlóan, de attól eltérő frekvenciára alapul, két 30—15 000 Hz-es hangfrekvenciás alapsávából egy sztereó csatornapárt, vagy 6 távbeszélo csatorna betáplálása mellett egy alapsávból egy mono műsorhang csatornát épít fel a CCITT szerinti 60—108 kHz-es alapcsopor szintig.

A megfelelő jel-zártvonalos elérése céljából a pré-és deemfásiz áramkörök mellett alkalmazást nyert egy, a vívőfrekvenciás sávban működő új típusú kommand, mely a kiváló átviteli minőség mellett a sokcsatornás vívőfrekvenciás rendszerek távbeszélő üzeméhez hasonló mértékű terhelést is biztosítja. Ennek a megoldásnak köszönhető, hogy egy főcsopor belül akár mind az öt csoport felhasználható műsorhang-áramkörök létesítésére. Az egyetlen, és igen könnyen megvalósítható kikötés csupán az, hogy ebben az esetben (ugyanabban a főcsoporthban) nem élhet négynél több azonos műsorral terhelhet mono csatorna, vagy kettőnél több sztereó csatorná.

Újszerű megoldás az is, hogy a műsorhangcsatornák az első modulációt követően (pilottal együtt) a 78,7—95,47 kHz-es, ún. első középfrekvencia feszedésébe kerülnek, melyek közvetkezésében az áramkörök középpályásokon leágazhatnak, eloszthatók és tovább kapcsolhatók anélkül, hogy a hangfrekvenciás alapsávba való lebontással, ill. az aman történő újból felépítéssel elősegítenék a felveszési zajok kikülnődését.

A berendezés kis méretű, cseresznbátos egységeiből akár erősítő állomások berendezésére közé telepíthető keretek, akár fémládákban használható mobil ki építés, többféle változóban is könnyen kialakítható. Lényeges a fenntartási szempont, hogy az egységek fontos kezelőszereivel, akik vannak vezetve azok előlapjára (pl. a kommandert ki- és beiktató kapcsoló stb.), továbbá, hogy az egységek belső kártyáiba épített miniatur kapcsolók (pl. csoportpont illetőszéles impedanciának kiválasztásához) lehetővé teszik a kényes és apró léces forrasztási munkák eszközöket.

4.1. A berendezés legfontosabb adatok

a) Általános adatok:

- hangfrekvenciás alapsáv 30—15 000 Hz
- csatornapilot 16 800 Hz
- csatornák fekvése a vívőfrekvenciás alapcsoporthban (60—108 kHz)
 1. csatorna (Fw=82 kHz) 67—82 kHz
 2. csatorna (Fw=86 kHz) 86—101 kHz

b) Átviteli jellemzők:

- sávátvitel 30—15 000 Hz
 között ±0,5 dB
 (ezen belül 150—10 000 Hz)
 között ±0,3 dB
- 1. és 2. csatorna közötti szintkülönbség > 0,3 dB
- fázisszögkülönbség > 5°
c) A hangfrekvenciás csatlakozás jellemzői:
- bemenő impedancia az adó oldalon földszimmetrikus és 600 ohm
- kimenő impedancia a vevő oldalon földszimmetrikus vagy 30 kohm
- (600 ohm-mal terhelve) és 20 ohm
- csatlakozási szinttartomány a bemeneten: -34...+14,4 dBu
- a kimeneten: +3,6...+8 dBu

d) A vívőfrekvenciás csatlakozás jellemzői:
- csatlakozási impedancia a csoportpont felé szimmetrikus vagy asszimmetrikus 75, 135 vagy 150 ohm
- csatlakozási szinttartomány a csoportponton adás irányban: -32...-50 dBu
- vétel irányban: -6...-38,5 dBu

4.2. A berendezés frekvenciaterve

Az 1. ábrán látható, hogy a két csatorna a sávkőzéphez képest tákösszimmetrikusan helyezkedik el és ennek következtében a köztük felépő és a sztereó üzemmódot jelentősen befolyásoló fázisszükségelnő ségek viszonylag csekélyek, és az alkalmazott fázisszükségelnőtől igen jól kompenzálhatók. Az ábrából kitűnik az is, hogy az alacsonyáramkórt átvitele mellett, 6 tővbeszélő csatorna is elhelyezhető, továbbá csoportszabályozás céljából bármely csoportpilotajtja betáplálható. A frekvenciatervek szerint kialakított „B” alacsonyáramtermezeten alkalmas arra, hogy a műsorhangsatornákat – bizonyos megkövetőkégek figyelembevételével – a továbbiakban a sok csatornás vívőfrekvenciás rendszerek bármely pozíciójában üzemeltessük.

4.3. A berendezés felépítése

A szobanfogló Siemens berendezés mind keretes, mind hordozható kivitelben ugyanolyan típusú, egyéb betétekből épül fel, mely betétek mindegyik

1. ábra. Az S42022—A401 típusú berendezés frekvenciaterve (CCITT-ajánlás)

a megfelelő funkció ellátásához szükséges csereszabatos fiókokat tartalmaz.

4.3.1 Az adásirány felépítése (2. ábra)

a) Adóáttevő betét

Az adóáttevő betét a bemeneti pontjára érkező 30—15 000 Hz-es hangfrekvenciás alapsávot a 78,7—95,47 kHz-es középfrekvencia-fekvésbe helyezi át. Sztereó üzemmodban történő kiépítés esetén természetesen két adóáttevő betétet alkalmazunk, de ezek egymással bármikor felcserélhetők.

Az adóáttevő betéte áthaladó jel útja a következő: A 600 ohm-os bemenőpontra érkező hangfrekvenciás alapfelől először a betét első fiókhelyén található csillapítótágra jut, mely biztosítja, hogy a következő fiókban elhelyezett és lényegében csatolásmentesítési célokat szolgáló, képpontzatá ellenszinteltől bemenőszintje az előírt –34 dB legyen. Az ezt követő 15 kHz-es aluláteresztő szóró 15,15 kHz-es sávszélességgel korlátozza a beérkező frekvenciatermotást, és egyben biztosítja azt a további mint 82 dB-es zárócslapítást, mely a későbbi betáplálandó 16,8 kHz-es pilót sávjában szükséges.

A negyedik fiókhelyen a prefmázs/pilotvillák egysége ket találjuk. Mint ismeretes, a prefmázs áramkör a jeljelzett magasabb frekvencián jelentkező alacsonyabb jelszinteket megemeli, a mélyeket pedig biztosan fokig lenyomja. A berendezésben alkalmazott prefmázs egység 3. ábra szerinti jelleggörbéje megfelel a CCITT vonatkozó ajánlásának.

A nevezett áramkörnek három üzemmóda lehetőséges, melyek közül a célzott megfelelőt a fiók előlapjára kivezetett fokozatszabályozás segítségével választhatjuk ki. Az 1. kapcsolóállást a prefmázs és komponder együttes üzemeltetésekor használjuk, mert ebben az esetben, a kisebb rendszertérhelés érdekében a prefmázfizet egy 5 dB-es csillapítótaggal együtt iktatjuk be. Igaz ugyan, hogy ily módon csökkentettük a hasznos jel szintjét, de az említett együttes üzemben a komandált műsorjel közepes teljesítménye (beleértve a pilót okozta többletet is), az előt cca 20 dB-es zajcsökktödé mellett még mindig mintegy 250 μW, ami kb. 6 tővbeszélő csatorna közepes terhelésének felel meg.

A 2. kapcsolóállásban pusztán a prefmázs áramkör üzemel.

A szobanfogló egység kezelése (ki-, ill. beiktatása a jelútba) a fiók előlapjára kivezetett kapcsoló se-

214

Híradótechnika XXXII. évfolyam 1981. 6. szám
2. ábra. A berendezés blokkmájája adásirányban

3. ábra. A CCITT ajánlása szerinti preemfázis jellegőbe

3. gyítségével igen egyszerű. Az adóáttevő betét 10. és egyben utolsó egysége kétféle lehet, úgy mint korlátozó és elágazó fiók, vagy átkötő egység.

A korlátozó és elágazó fiók lényegében egy erősítő, melyet a középfrekvenciás leágaiztázás tesz szükségessé, és egyúttal +15...+23 dBmO közötti távolsági tartományban korlátozza az adóáttevő legmagyobb kimenő amplitúdóját. Leágaiztázó funkciója lehetővé teszi a műsorjel max. 20 felé való szétszóltását és ezzel különféle átviteli csatornákba való egyidejű betáplálását anélkül, hogy beiktatási csillapítása nagyobb mértékben megóvódne, mint 0,2 dB. Ha a korlátozó fiókokat átkötő fiókra cseréljük fel, akkor az a nevében foglalt egyszerűbb feladatot látja el.

b) Középfrekvenciás áttevő betét

A középfrekvenciás áttevő betét lényegében két feladatot lát el, úgymint az adóáttevőből kikerülő középfrekvenciás sáv, valamint a nevezett egysége esetlegesen betáplált 6 db távbeszélő csatorna „I” alapcsoportha (60~108 kHz) való helyezését, továbbá a vételirányban beérkező alapcsoporthat lebontását középfrekvenciás sávra és az esetleges 6 távbeszélő csatorna legágaiztázását.

A betét működése adásirányban a következő:

A 3. részben a preemfázist kikkultatjuk, és az 5 dB-es csillapitótag mellett újabban 6,7 dB-es csillapítás is a jelútba kerül. Ez a kapcsolódás méridi célját szolgál. Ebben az egységben tápláljuk be a 16,8 kHz-es csatornapilotot is, melynek szintje -29 dBmO, és a vételoldali szint- és fázisszögeltérések korrigálását teszi lehetővé.

A jel útjába eső következő fiók egy adóerősítő, majd az adómodulátor. Az utóbbi egység kódolódását szemléleti vázlatozásán a 4. ábra. Jól látható, hogy az f bázisjelet két, mindent áteresztő áramkör m1 és m2 jele választja szét, melyek amplitúdója egyforma, de fázisuk 90° ± e-nal különbözik. E két jel az M1 és M2 modulátorba kerül, melyeknek a vevők amplitúdója és frekvenciája megfelelő, de fázisuk 90° ± σ-val különbözik egymástól, mivel következtetésben a modulátor kineménére - a magasabb rendű modulációs termékeken túl - az (F+f)-(F-f) és az (F-f)-(F+f) kétoldalsávos jelek egyike jut. Feltételezve, hogy a két modulátor keveréses csillapítása egyforma, továbbá e, valamint σ fázishibák nullával egyenlők, úgy az „A” áramkörben a két is F-f oldalsáv adódik össze, míg az F+f oldalsávok különbözik egymástól, hiszen amplitúdója egyforma, de fázisuk 180°-kal különbözik egymástól.

Véggeredményben tehát a fázisoló modulátor kineméntre az alsó oldalsáv jut ki. Felső oldalsávot akkor nyernénk, ha az M1 és M2 modulátor utáni vezetékeket vagy egyszerűen a vevők tápvezetékeit felcserelnénk egymással.

Híradótechnika XXXII. évfolyam 1981. 6. szám 215
A gyakorlatban az e és σ fázishibák értéke, vala-
imint a keverécosíllapítások különbsége nem zérus, következképpen a kívánt oldalsáv is csak oly mértéken csilapodik, ahogyan az említett értékeket sikerül leszorítani.

Az S40222–A01 típusú berendezés modulá-
torában a 30–16 800 Hz terjedelmű hasznos sáv a 95,5 kHz-es vízfrekvencia alsó oldalsávjaként, a 78,7–95,47 kHz-es tartományban jelenik meg, amit első középfrekvencia-tartománynak nevezzünk. Az al-
kalmozott modulátor a 95,53 és 110 kHz közötti oldalsávot több mint 40 dB-le csilapítja, miután 98 kHz fölött a szomszéd csatornák szétválasztását a modulátor és az őt követő adóasávszűrő együttesen végzi. A nevezett két egység összeszilápítása több mint 87 dB.

A 95,5 kHz-es vívóból eredő kisziivárgást elnyomó kvarcsfűrész után az adóáttevő betét második zaj-
csökkentő egysége, a kompresszor következik. Mint közismert, a vízfrekvenciás rendszerekben üzemelő műsorangáramkörökben a zajszint mintegy 14,5 dB-
lel meghaladja a CCITT által javasolt értéket.

Tudjuk azt is, hogy a műsorhangcsatorna – 4,5 dBmO szintű középes teljesítménye 12 távbeszélő-
csatorna középes teljesítményének felel meg. Az említett okok miatt lehet, hogy a jelzaj távolsg öve-
léseinek érdekében meg kell emelni a jelszintet. Te-
kintettel azonban az alaparámkör terhelhetőségére, ez a szintnövelés csak a műsorjel kis teljesítményű időszakaira vonatkozhat. Ezt a feladatot látja el a vízfrekvenciás kompander.

A vízfrekvenciás kompander, kompresszorként működve, a kis szintű jeleket kb. 17 dB-lel erősíti, majd – 4,5 dBmO-nál nulla értéket vesz fel. Efőlött az érték fölőtt hamarosan átneve az 1,5-1,1 dB-lel való csilapítása.

(Lásd a CCITT ajánlotta jelleggörbét – „Híradás-
teknika” XXXII. évfolyam 4. szám.) Az átviteli rend-
szer középes teljesítménye így mörd – rövid, cca 0,9 ms bérlegesi idővel, pre- és deezmő enélkül –
hozzávetőleg ugyanaz marad, mint kompander nél-
kül. A preemfúzhiba liktató 5,5 dB-es csilapítással együtt a középes teljesítménye mintegy 3 dB-lel to-
vább mérséklikődik, miáltal egy ugyanazon fócso-
tobban több műsorhang-csatornapár is üzemelhet-
ető. Az expander a vételoldalon visszaállítja az eredeti dinamikát és rövid (cca 2,9 ms) feléledési ideje folytán a mértéhető zajnövekedést érzelhető is marad.

Az adó oldalon a kompresszor a műsorszünetek-
ban 17 dB-lel emeli a szintet, a vételoldali expan-
der ugyanilyen mértékben csökkenti, mivel követ-
kezetben természetesen a vonalnok is 17 dB-lel csilap-
idik. Milyen azonban műsorjel-feszültségek mut-
tatkoznak az áramkörön, a kompander szabályozó áramkörének differenciál-hídjaiban megváltoznak a feszültségszintek és ebből kifolyóan működéshez lép a második részegység, a vezérlőosztó, amely a 17 dB-es szintnövelést, illetve -csökkenést a meg-
felelő mértékben változtatja. A szabályozótágak egy-
benn modulártóként is működnek, vagyis a csatorná-
ba a műsorjel mellett a szabályozó feszültségeknek megfelelő szabályozó oldalsávokat is előállítanak, me-
lyek a műsorjel mellett együtt haladva az expanderben keletkező kiegészítő szabályozó oldalsávok hatására ol-
tódnak ki. Ez a tény minden esetre feltételezi, hogy:

— a kompresszor és az expander jelleggörbéi szig-
gró reciprok egységrend, és
— a jelescatornában, valamint az átviteli úton ke-
letkező lineáris torzítások eléggé csokkentek ahó-
hoz, hogy ne keletkezzenek nonlinearis torzí-
tások.

Ezek a kritériumok a nevezett egységen teljesül-
nek, mert a két egység, azaz a kompresszor és az expander mind kifejlesztéseket, mind kialakításukban teljesen azonosak. Alkalmazásuk miértéke csak az adó vagy vevő áttevé betét beköbelezésétől függ.

Az adóáttevőkből kikerülő két (monozinemben egy)
78,7–95,47 kHz-es első középfrekvencia sáv egy-
egy, sávszűrővel ellátott kettős ellenállásmű modulá-
torban jut, melyek kimenetén, az alkalmazott 222,5
kHz-es vízfrekvenciát modulálva, a 401,2–417,97
kHz-es tartományban jelenik meg. A tárgyalt egysé-
gének követő, alulátétesztő szűrővel kombinált újabb,
modulátor (-pár) felépítését tekintve szintén egyforma,
és csak a betáplált vízfrekvenciáknak eltérők.

Az egyik a 1. csatornát a 336 kHz-es vízfrekvencia segítségével a 65,2–81,97 kHz-es (fordított) fekvés-
be, a másik a 2. csatornát az 504 kHz-es vívóból a 87,03–102,8 kHz-es (egyeses) fekvésbe helyezi át.

Az adásiirány teljes felépítéséhez szükséges utolsó-
fiók az adóváll egesgy, ahol is megtörténik a két
műsorcsatorna 60–108 kHz-s sávban való egyesi-
tése, továbbá — a fiókba épített miniatűr kapcsol-
lók segítségével — itt lehetséges a kívánt kimenő-
szint és -impedancia kiválasztása is. Ugyancsak az
adóváll-fiók nyújt lehetőséget arra, hogy a 2.
műsorhangcsatorna elhagyásával (mono üzemmódban)
betáplálható legyen a 2. csatornás távbeszélő alap-
csoport 1–6 csatornája, valamint a 84,08 vagy
84,14 kHz-es csoportpilot is. A vázolt folyamat alap-
ján látható, hogy éppen fel a 30–15 000 Hz-es
hangfrekvenciás alapásválkóból a 60–108 kHz-es vi-
vfrekvenciás alapcsoporthog. A

4.3.2 A vételiirány felépítése (5. ábra)

Az adásiirányhoz hasonlóan a vételiirányt is a be-
erkező jel útját követve vizsgáljuk.

a) Középfrekvenciás áttevő betét

A sokcsatornás vívóáramú rendszerek 12/60-as áttevőtől érkező 60–108 kHz-es alapcsoporthoz először a már korábban ismertetett középfrekvenciás áttevő

betét vételiirányú bemenő pontjára jut. A nevezett

betét és második felénél feladata természetesen ellen-
tétes az adásiiránynál tárgyaltakkal, mert jelen eset-
ben az alapcsopor léptetésére szolgál. A beérkező

alapcsopor szív ez esetben is épüli tartalmazhat egy sztereó csatornapár, mint egy mono műsor-
hangáramkört és 6 db távbeszélő csatornát. A tár-
gyalt betét vételiirányú kiépítésének első helyén a

vévőváll fiók található. A nevezett egység egysreff

tartalmazza ugyanazokat az elemeket, melyeket az

adóváll fiók (impedancia és szintilleszto kaposék),

másrészt arra hivatott, hogy mono üzemmel — ha

szükséges — levállassz a 1–6 távbeszélő csatornát,

valamint a csoportpilotot is.
A vevővília megfelelő ágához csatlakozik a fázis- és pátfázis-kiegyenlítő fiók, sztereó üzemmódban ugyanis a két műsörhangcsatorna fázisügys-különbségének lehetőleg kis értékének kell lennie. Éppen ezért a középfrekvenciás áttevő vivőfrekvenciás oldalán helyezték el a nevezett két kiegyenlítőt, melyekkel a csoportösszekötetéssel az alsó és felső tartományok között keletkező frekvenciánképződést lehet kiküszöbölni. A durva szabályozás léptete ±15%-os fokozatokban ±75°, a finomszabályozás ±2,5%-os lépésekben ±12,5°. A pót fáziskiegyenlítővel ezen talmaisan újabb ±15%-os fázis differencia korrígálható.

A fázisügys-különbség kiegyenlítésén kívül a vevővília főként található fokozatkapcsolókkal az alapsorport sáv bizonyos fokú kiegyenlítettségéből adódó csillapítástorlítás kiegyenlítésére is lehetőség van.

A műsorjel a vevőkét szemközti kapocsparancsán megoszlik és az 1. csatorna a 336 kHz-es, a 2. az 504 kHz-es demodulátorba bejut, melyek sávszűrőinek kimenetén a már egységes 401,2–417,97 kHz-es fordított fekvéstől második középfrekvencia-fekvésben jelennek meg. Az egyes csatornák további lebontása már teljesen azonos módon megy vége. A második középfrekvenciás sáv ugyanúgy minden esetben a 322,5 kHz-es demodulátorba kerül, melynek kimenetén megkupírrák a 75,7–95,47 kHz-es első középfrekvenciás tartományt. A középfrekvenciás demodulátorhoz kapcsolódó vevősávszűró elnyomja a nem kívánt oldalsávot, valamint a modulációs torzítási térületet és egyben biztosítja a szomszédos csatorna áthallásvédelmét is. A műsorjel ezt követően elhagyja a középfrekvenciás áttevő betét.

b) Vevőáttevő betét

A vevőáttevő betétnek a feladata az, hogy a bemenetére érkező 78,7–95,47 kHz-es első középfrekvenciás tartományból előállítsa a 30–15 000 Hz-es hangfrekvenciás alapsivót.

A műsorjel útjába került első fiók az expander, mellyel kapcsolatban a legszükségesebbeket az adó-áttevő betéténél tárgyaljuk. Amennyiben a rendszernél komponder használható nem kerül sor, úgy az expander helyére pilotszabályozó fiókot kell elhelyezni.

Az expandert követő 85,5 és 81,5 kHz-es sávzáró szűrők feladata az, hogy a vivőfrekvenciás rendszerekből kiküszöbölik, meghatározott frekvenciájú zavaró kiszárazásokat elnyomják. Ezek alapsorportsávban főként 72,96 és néha 68 kHz-en jelennek meg, melyek az első középfrekvenciás sávban 85,5 és 81,5 kHz-nek, a hangfrekvenciás tartományban pedig 10 és 14 kHz-nek felelnek meg. A két szár olyan keskeny lyukat vág ki a műsorjel sávjából, hogy az sem a beszéd, sem a zeneállított észrevételében sem zavarja meg.

A vevőáttevő betét harmadik fiókja a vevőmodulátor, mely egyszerre több részegységet is tartalmaz. A jelsorozat először egy egyfokozatú elválasztó erősítőre kerül, mely megakadályozza, hogy a meg nem engedhető zavarfeszültségek a modulátor bemenetérol visszajátszanak az expanderre és annak működését zavarják.

Az elválasztó erősítőt két, kettős ellenütemű modulátor követi. Az F–f vivőfrekvenciás műsorjelek, hasonlóan az adomódulátorhoz, itt is két egymáshoz képest 90°-kal eltolt fázisú, de azonos F frekvenciájú vivő vezérlő. A kimenetre jutó modulációsszámok minden átterjesztőkre kerülnek, melyek további 90°-os fázisfeszítést hoznak létre, majd a nevezett rezgéseket az összefűzött áramkörön hangfrekvenciás műsorjel adódnak össze. Ezzel szemben a bemeneten még meglevő F+f oldalsávok a fázisfogatások folytán kiolítják egymást.

A vevőmodulátor további részegységei (vivőelő-
készítő, hangfrekvenciás erősítő) az elnevezésekükben adódó feladatokat láthatják el.

A demodulátorból kikerülő jelsorozat az alul- és felülátéresztő szűrőket magában foglaló pilotálluba jut, ahol is a szűrők hatására különállik a hangfrekvenciás alapszín és a 16,8 kHz-es pilot. A kisürűt csatornapilot a pilotvevőbe kerül és ott a rendszer felügyeletéhez, valamint frekvencia- és fázisszabályzásához szolgál alapul.

A szintszabályzás folyamata :

A felerősített pilotot egyenirányítjuk, majd az így nyert vezérlő feszültséggel egy aktiv és passzív elemből álló szabályozó-beállítótagot vezérlünk. A beállítótagot gyárig úgy szabályozzák be, hogy annak kimenetéről létszó 169 ohm-os ellenállása már igen kis szinttelítések hatására is nagy mértékben megváltozik.

A szabályozó meredekszős tényezője több mint 30, ami azt jelenti, hogy 0,1 dB-es bejövő szinttelítés hatására az ellenállás változása olyan nagy, hogy a kimenőszint 3 dB-t mértéssel változik. Ennek eredményeként a 6 dB-ig terjedő vonalszálípítás-eltéréseket (cca 30 ms szabályzású idő mellett) kisebb, mint 20-ad részre csökkenti. Ez az okok és a ±0,1...±3 dB-es tartományban kisebb, mint az eredeti eltérése 30-ad része.

A frekvencia és fázisszabályzás folyamata:

A pilotvevőből — a szintszabályozástól független útvonalon — a pilot a fázisszabályozó fiókba, majd onnan közvetlenül a frekvencia-összehasonlító egységbe jut. A fázisszabályozóba, a vonalról érkező pilotott mellett a vevő végberendezés saját pilotját is betápláljuk. A fázisszabályozóval, mely egy kétfokozatú erősítő megfelelő ágai között fogaltnak helyeztett, a saját pilot fázisa az egység előlapja kivezetett külső fokozatkapcsoló segítségével ±10°-os tartományban egyedileg korrigálható, így szereopár esetén a két csatorna közötti frekvenciafüggő fáziskülsőbsegé — ha erre egyáltalán a KF-betét fáziskegényítőinek használata után még szükség van — pontosan kiegyenlíthető.

A fázisszabályozó fiókból mind a vonalról érkező, mind pedig a véletlenszerű berendezés saját pilotja a frekvencia-összehasonlító egységbe jut. Ez az egység az idegen és saját pilotot összehasonlítja oly módon, hogy mindkettő egy fázisdísztározótú, működő gyúrús modulátor átfogóra juttatja. Amennyiben a vonalpilot és a saját pilot fázisszénszükségében 90°, úgy a dísztározótú kimenetén egyensúlyos mértéknél nem jelenik meg, de minden más esetben a fáziskülsőbsegé nagyságára és értelmére jellemző egyensúlyos mértékkel határozzák. Ez a szabályozó fázisszabályozás a következő fiókban helyezt foglaló szabályozásgenerátor kapacitás-diódájának előfeszültségét változtatja, ezáltal befolyásolja az 1726 kHz-es kvarcot, mintek következtében a szabályozó generátor frekvenciája is természetesen meg fog változni. A generátor frekvenciájának és az abból leszámazott demodulátor-vívőfrekvenciából eredő 95,5 kHz-es vivőfrekvenciának az elhangolódása mindaddig tart, míg az előírt 90°-os fáziseltérés elő nem áll.

A hangfrekvenciás alapszín végleges előállításához szükséges, imént említett 95,5 kHz-es vivőfrekvenciát szabályozó generátor 435,4 kHz-es és a 336 kHz-es csatornapivőből nyerjük. Ez a frekvenciaozottással szemben különbséges előállítás azért szükséges, hogy a 431,5 kHz-en rendelkezésre álló több mint ±20 Hz-es szabályozó frekvencialeket teljes mértékben megmaradjanak a demoduláció céljára. A frekvencia- és fázisszabályozásnak ez a 20 Hz-es átfogása minden olyan frekvenciaellátóoldal kiegyenlítésére elegendő, mely az átviteli út mentén alkalmazott frekvencia-áttételekből előállhat.

E választásos ismertetett szabályzásai folyamat eredményeként a vevőátvéve kimenetén megjelenő jelsorozat frekvenciatamortánya gyakorlatilag meg- egyezik az adóátvéve bemeneti jelsoroztávéval és a lehetséges legnagyobb eltérés max. 0,3 Hz-re adódik. A két csatorna közötti fázisszükültségében a 16,8 kHz környezetében nulla, a kisebb frekvenciák felüeli eltérések pedig a már említett manuális módszerekkel gyakorlatilag 5° alá szoríthatók.

A vevőátvéve betét szabályozó és rendszerelemző egységei közül funkcióba is a szint- és fázisszáto fiók az utolsó. Vizualis és akusztikus riasztást akkor ad, ha a vonalról érkező pilotjel fázisszé (a fázisszabályozó kimenetén) több mint 25°-kal eltér az előírt 90°-hoz képest, továbbá, ha a pilotszint ±5 db-nél nagyobb eltérést mutat.

A fázisszárítás úgy jön létre, hogy egy ellenőrítő erősítő, egy-egy 45°-os fázisforgotó tagon át, egyrészt a fázisszabályozó kimenetéről származó sajátjel, másrészt a pilotvevő kimenetén megjelenő idegen jelsorozat megfelelő feszültsége. Ha a vevő végberendezés sajátjelénél és a vonalról érkező idegenjelénél a fázisszükültségében 90°, akkor az egymással ellentétes értékelemben forognak a RC tagok az ellenőrítő erősítő két ágára egymással fázisban levő feszültséget adnak. Ha az eltérés eléri a kész, 25°-ot, akkor egy félvezető kapcsolás hatására az egység előlapján levő piros „szint” riasztólámpa kigyullad és egyéb „sürgős” akusztikus riasztás is fellép.

Szintriasztásokor a pilotvevőből az egységbe jutó egyensúlyztesség egy megfelelő elektronikus kapcsolás kiértékelési. Az áramkörbe íktatott jellogó ±5 dB-es szinttelítésnél elenged és ekkor az egység előlapján található piros „szint” riasztólámpa is kigyullad, valamint a már említett „sürgős” akusztikus riasztás is fellép. A fázis- és szintriasztások természetesen együtt vagy egymástól függetlenül is működhetnek.

Amint az a szabályozó áramkörök rövid leírásából is kitűnik, az A4202—A401—A1 típusú műsorhang-közvetítő berendezés minden olyan szint-, fázis- és frekvenciaterület önműködésében képes kiegyenlíteni, melyek normál esetben az átviteli úton keletkezhetnek, és ennek eredményeként a vevőátvéve betét hangfrekvenciás kimenőpontján jelentkező műsorjel spektruma gyakorlatilag teljesen azonos az adó oldalon betáplált jelorszorzattal, mintek következtében a tárgyalta berendezés kiváltákképp alkalmas szerezo műsorok átvitelére. A minden tekintetben szabályozó hirradóstechnika XXXII. évfolyam 1981. 6. szám 218
4.4 Tápfáram- és vívőellátás

A műsorjel úttját immár végig követünk, így most igen röviden tekinthetük át a berendezés tápfáram- és vívőellátását. Az 5 keskeny keretet tartalmazó teljes keretkiépítés esetén külön vívőellátó és külön tápfáramellátó belső beépített fokozattal rendelkezik. Az egyéb kiépítések esetén (pl. mobil berendezés) a vívő- és tápfáramellátó főknek egy közös betéthű feltétlenítés szerint a vívőellátó bizonyítóeszközeinek értékelése és értékelése egyaránt vérbeválasztást, kivánt vívő- és pillanatokkal megfelelő fókocka megfelelő hálózatok segítségével állítható elő (6. ábra).

Helyszínek miatt legyen elég az a jellemző adata, hogy pl. a fő fokocsekk aljátéke legfeljebb 0,015 Hz, a szabályozó áramkör utáni szinteltértében max. +0,05 dB-re adódik.

Az áramellátó betét 110, 120, 220, 230 vagy 240 V-os szabályozott hálózati feszültséget alakít át 24 V egyenfeszültség és terhelhetősége 8 amper. Szabályozó és stabilizáló áramköréi révén, a hálózat ingadozásától függetlenül is, a kimenetlen megjelenő feszültség 24 ±2,5% között változhat.

A kombinált vívő- és tápfáramellátó betét – a már említett belső tartalék hányá miatt – a hálózat tápfármányozást és szolgáltatási esetében. Az elvileg hártránynknél felróházott tartalék és szabályozó áramkör utáni szinteltértében max. +0,05 dB-re adódik.
Az SGS-Ates egy új LS 285 A típusú monolitikus integrált áramkörre a hibridek helyettesítésére alkalmas a beszédáramkörben. Az IC illeszt mind a hallgatótól, mint a mikrofont a vonallon. Az LS 285 A érzékelő a vonali áramot és beállítja az erősítést mindkét irányba. A kimenő impédancia függötlenén a hangátalakítók el is illeszthetik a vonallon, ezzel biztosítja a tökéletesen visszafűzést. (Electronic Engineering, 1980.apr. [797])

A jövőben a távbeszéd rendszerek egyre inkább fogak függeni a mikroszámítógépektől, amelyek új szolgáltatások biztosítanak majd, olyanokat, amely közvetlen emberi korzettnézőkkel kompjutátorokat képes lehet. Másik működik Anglia nagyobb városaiban olyan távbeszéd fülke, amely mikroszámítógépet tartalmaz. Ezek bővebb szolgáltatásuk a hagyományos nyilvános távbeszéd állomásoknál: pl. a beszéldugt és díjakból fennmaradó összeget visszajátszik, vagy egyetlen pénzermével több beszélgetést is folytathat.

A Bell. Lab. kifejlesztett egy mikroszámítógépet, a MAC-4-et, amely kimondottan átviteltechnikai célokat szolgál. A MAC-4 egyetlen morszárműködő, központi vezérőt, program és adatmemóriát, be- és kimenő áramkört tartalmaz, mintegy 30000 elemből felépítve. A teljesítményfelvétele mindössze 1 mW. (Electronics Industry, 1980.6. sz. [791])

Az ipar és a kereskedelem egyre inkább függvénye a távadatfelfogásoknak, a házigmállapítás és a javítás gyorsaságának. Az Autotest nevű kis méretű műszer, amely mikroprocesszoros analizál, folyamatosan figyeli a távbeszéd vonali, a modem és a kapcsolódó terminalok jellemzőit. A műszer legtöbb „erénye" abban van, hogy a műszakiak szükségességéhöz, a rendszer működő állapotának a további megértése érdekében.

Az angol posta (BPO: British Post and) elhatározta, hogy lecseréli a telefonkészülékek mikrofonjaként Eddig a hagyományos széngranulátumot tartalmazó mikrofonokat használták. Három új technológiát általánosan készüléken a piezoelektromos és a indukciós közül a BPO az első elöl dőlő dőlés, ezzel az áram terjesztésre az elektronikus és a piezoelektromos transzformátorokat jellemzően a piezoelektromos transzformátorokat. (Electrotechnica, 1980. tavasz. [795])

Az RCA technológiai kutató laboratórium platinazsilícium Schottky fotodióbákat készít. Ezeknek a fotodiódák az előnye, hogy egyrészt infravörös tartományban is érzékelik, másrészt az érzékenységük alacsony. Minden határátmenetének a beosztás fénynyomás azonos feszültséget hoz létre, így az infravörös kép pontos helyreállításához a kimeneten nincs szükség számtartós korrekcióra. (A sok érzékelő pont eltér az érzékenységet más módon szinte lehetetlen korrigálni.) Az RCA 1,5—2 cm² területen működő kondenzátor megfelel az 1250 atómhatékonyság hozzájáruló képletében. Ezeket az érzékeny pontokat visszhangosan és függetlenül történő csatlakozásának 22 ns teljesítési időjára használjuk.

Az Egyesült Államokban a tendencia alakulóhártyák hírhedt összeköttetését a közös kondenzátorokkal geostacionárius műholdakkal és kék-zöld lézer segítségével tervezt meg 1990-ok és 1995-től. Az a működés, hogy az elérhető és hasznos harmadik lépés a videó adatátvitel. A műsor szerint a bővített sajátosítgatás és az adatátvitel az alsó frekvenciába vonását jelenti. Ez időben a bővített felhasználás kínálja az általánosnak elérhető lehetőséget.

A beépült költségek egy olyan rendszere, amely egy félvezérlőből, egyetlen geostacionárius műhold alapján, valóban az összes geostacionárius műholdakat fejlesztő- és felszerelendő berendezésből áll, mintegy 400 millió dollárt tesz ki. (Lighter Focus, 1980. apr. [798])

A közelúton Párizsban a mikroprocesszoroknak a munkanélküliségre gyakorolt hatásáról tartott konferenciát bervezette a japán anyag szerint a mikroprocesszorok alkalmazásának intenzitásától függően lehet számítani a munkahelyek megszűnésére. Ezért az ügyfél nem engedélyezte a kínálatba állítását. (Electronics, 1980. janv. [799])

Az angol posta (BPO: British Post ofl.) elhatározta, hogy lecseréli a telefonkészülékek mikrofonjaként Eddig a hagyományos széngranulátumot tartalmazó mikrofonokat használták. Három új technológiát általánosan készüléken a piezoelektromos és a indukciós közül a BPO az első elöl dőlő dőlés, ezzel az áram terjesztésre az elektronikus és a piezoelektromos transzformátorokat jellemzően a piezoelektromos transzformátorokat. (Electrotechnica, 1980. tavasz. [795])

A közelúton Párizsban a mikroprocesszoroknak a munkanélküliségre gyakorolt hatásáról tartott konferenciát bervezette a japán anyag szerint a mikroprocesszorok alkalmazásának intenzitásától függően lehet számítani a munkahelyek megszűnésére. Ezért az ügyfél nem engedélyezte a kínálatba állítását. (Electronics, 1980. janv. [799])
Mikrohullámú hírközlő rendszerek

A KGST-országok televíziós programmal való ellátása, továbbá a baráti országok közötti hírközlő vonalak – telefon, telex stb. – létesítése, nagymértékben mikrohullámú hírközlő rendszerekre alapozódik. Így a nyári olimpiai játékok közvetítése is túlnyomórészt ezekben a mikrohullámú vonalakban keresztül érkezett el hozzáink. A mikrohullámú berendezéseket a BUDA-VOX forgalmazza és gyártásuk részben az Orion gyárban, részben a Finommechanikai Vállalattal történik. E cikk keretében most a Finommechanikai Vállalat (FMV) által gyártott berendezéseket tekintjük át.

PERSPEKTÍVÁK

Konkurenciában az átviteltechnikával kapcsolatos műszaki követelmények gyors ütemében nőnek. Újről újról jelentős követelmények merülnek fel az átviteli berendezésekből, és ez az új napirend szabja fel a fejlesztési feltételeknek is a munkáinknak.

A gyártás és különösen az ipari technológia állandó továbbfejlesztése ugyanakkor szükségszerű, mielőtt az egyre komplikáltabb és egyre szerteágazóbb berendezések gyártása — nemzetközi követelmények szempontjából — figyelembe véve és szem előtt tartva a rendelkezésre álló készülékek sértését, még az egyre nagyobb felkészültség kíván.

A szakképészet és utánpótlás a közötti és felhasználói oktatási intézményektől is meglehetősen erősítések igényére.

A piaci lehetőségek változva növekszenek, mert a szociálista országokon kívül a fejlődő országok is olyan következetes tényezők, mint pl. India, vagy a közegységekben jelentkező fognak. Éppen ezért a fejlesztések irányában kell nemenk az OIHT és a Szovjet posta igényei, ha megfelelően, a CCIR és a CCITT követelményei is, hogy az esetleg már üzemelő, nyugati berendezésekezhez a hazai rendszereket is csatlakoztatnának lehessen.

HOGYAN KEZDŐDŐT? A sokcsatornás mikrohullámú hírközlő rendszerek iránti igény az ötvenes évek elején merült fel komoly formában. Először a BHG kezdet meg egy 24 csatornás mikrohullámú berendezés kifejlesztését.

MALCSINER FEHER

BHG ORION TERTA
MŰSZAKI KÖZLEMÉNYEK
XXVII. évfolyam 1981. 6. szám

A váratlan igény azonban egyészt nem ítélsedett a gyár profiljába, másrészt túlhaladta a rendelkezésre álló kapacitást, ezért kormányhatározattal az akkor létesített Távközlési Kutató Intézetet bízták meg a szerteágazó témá összefoglalásával és a mikrohullámú berendezések kifejlesztésével. A BHG előzős a szakembereknek egy részét engedte át a TKI-nak, majd később, a KG M rendelése, átprofilirozás folytán a gyártást is áthelyezte az Orion gyárba. A gyártást és a fejlesztést azonban is ott folytatták, természetesen átdolgozott és korszerűsített változatban. (Erről külön cikkekben fogunk megemlékezni.)

A soklapított, szerteágazó és nagyvárosú fejlesztés munkálat a TKI dolgozatai. Az Intézet a korszerűsítést és fejlesztést a legújabb követelményeknek megfelelően ma is folyamatosan végez. Napjainkban a hírhalózatok rendszerei részben a média, részben a kábeles rendszerekkel együttműködve, gerinchalózati mikrohullámú rádió relé rendszerekkel lehet gazdaságosan megvalósítani.

A TKI által kifejlesztett mikrohullámú gerinchálózati berendezések gyártását 1961-ben kezdté el az FMV. A gyártás — tekintve, hogy a gyártmány a gyártás számlára teljesen új profil jelentett —, eleinte sok nehézséggel járt és csak vonatkozatlan halad.

Az első berendezés típusjelje GTT 4000/600 volt, ahol a 4000-es szám a frekvenciaszabványt (4000 MHz-et, vagyis 4 GHz-et) jelentette, míg a 600-as szám a beépítési méretet jelentette. Ezt a gyártmány-jelölési módot a TKI azonban megtartotta, és a legújabb berendezéseire is alkalmazta.

A kezdetben gyártott 4,7 GHz-es berendezés még elektromos késés talált (1. kép). E mikrohullámú berendezéseknek egy RF csatornának vagy 600 beépítésem, vagy egy fekete-fehér televíziós kép és egy zenekarok átvitelére volt alkalmazás.

Ebből a típusból 1961- és 1963 között közel kétszáz részről több mint 4500 csatornakilométer került telepítésre és alkalmazásra.

Az üzemeltetési működő berendezések a szerzett információk alapján röviden a szociális országok is olyan környezeteit, amelyeket a CCIR és a CCITT követelmények szerint a hazai rendszereket is csatlakoztatnának lehessen.

A hitradástechnika XXXII. évfolyam 1981. 6. szám
néhányégek tisztázása után 1963 és 1967 között több mint 30 000 csatornakilométer mikrohullámú gerinchálózatot telepítettek és helyeztek üzembe, számunkra szokatlanul néhány terep és klimatikai viszonyok mellett.

ÚJABB KÖVETELMÉNYEK

A színés televíziós adások megindulása újabb mérészalgyúiket támasztott a GTT berendezésekkel szemben.

A TK1 igyekezett lépést tartani az újabb követelményekkel és a fejlesztési munkákat gyors ütemben folytatta továbbá. 1968-ra kilódozta új típusát, melyben csövek helyett már félvezetőt alkalmazott.

Az új igényeknek megfelelően olyan új típus dolgoztak ki, amely részben a 4 GHz-es részben a 6 GHz-es sávban volt üzemeltethető.

A tervezések új követelményként a színés televíziós adásokat is figyelembe kellett venni. Így jött létre az 1920 beszédcatsorna átvitelére alkalmas típus, mely a GTT 6000/1920 típusjelet, vagy az általános használatban a „Druzsba” nevet kapta. Ez a berendezés a színés tv képsorán mellett egyidejűleg négy zenecsatorna átvitelét is biztosítani tudta (2. kép).

Az újabb típus sorozatgyártását ugyancsak a Fi-nömmechanikai Vállalat kézdeti el.

A mikrohullámú berendezések csőtápvolalainak és parabola antennáinak gyártása azonban nemcsak nagy mérészalgyúknak szükségletét igényel, hanem a berendezések terjedelmes volta miatt nagy helyszínes megvalósításának kíván. Az FMV ezért először egy, majd további két újabb vidék telephelyet létesített, ahol a nagyméretű antennák gyártását meg tudta valósítani. A szakkáder kér dését, — főként vezetői szinten — ugyancsak a törzsgyárnak kellett biztosítani, ami gyakran alig áthidalható nehézségekkel járt.

Az átszervezés visszant megfejezett a hatvanszáz évek kormányprogramjával, mely az iparilag vissza-

maradt kisebb vidéki városok gyors iparosodását kívánta megvalósítani. Mivel az FMV ezzel az átszervezésével sok vidéki munkahelyet létesített, a beruházásokra az Államtol jelentős támogatást kapott.

A GTT 6000/1920 típusú berendezésekkel először a Szovjetunió igényeit kellett kielégíteni, ahová 1968—1973 közötti években közel 20 000 csatornakilométer gerinchálózatot, majd 1974—75 között további 13 000 csatornakilométer ellátását biztosító berendezést kellett leszállítani és nagyrészt üzembe helyezni.

A GTT berendezések — természetükön fogva — igen szélsőséges klimatikai viszonyok között, felügyeletlenség körülmények között is maradhatnak az átviteli képességében.

A felügyeletnélkiület nem ad kérdésre, hogy a berendezések színészetes üzemeltetése a ránszorosadás esetén is biztosított legyen. Szükséges volt tehát olyan szükségesség védelmi igényekre kidolgozással, melyek hálózati feszültség kimaradása esetén legalább korlátozott időre biztosítani tudják az üzem fenntartását.

A gyártás megkezdése idején a BHG-ben kidolgozott forgatókönyv, nagy leendőmaggal ellátott benzin-

Híradótechnika XXXII. évfolyam 1981. 6. szám

A várható szükségleteknek megfelelően, kidolgozták a 48 V-os, a 48 V-os és a 60 V-os szünetmentes áramellátás egységeit. A kiépítések várható darabszámától függően 1,3 kVA, továbbá 2,4 kVA és 4,8 kVA teljesítményű változatok kerültek kivitelezésre, melyekből a kiépítéstől függő darabszám használható.

Az energiaelátás egységei egységesen 600 mm-es keretbe vannak szereelve.

A szünetmentes energiaelátás keretét 4. képünk mutatja be.

GTT—70

A fejlődés azonban nem állt meg. Az eddigi üzemű tapaszlatokat és az újabbak felmerülő követelményeket figyelembe véve a TKI és az FMV továbbfejlesztette a gerincházat berendezését. Így jött létre a GTT 4000/1800 és a GTT 6000/1800 típusjelű gyártmányosan, melyek gyártása — kisebb-nagyobb módszerekkel — jelenleg is folyik. A rövidség kedvénért ezt a gyártmányoságot közös néven GTT—70 típusjellel látták el.

A GTT—70 a mai korszerű követelményeket is kielégíti. A teljes rendszer integrált áramkörökkel és szilícium félvezetőkből épült fel.

E berendezések tervezésénél messzenenően figyelembe vették nemcsak a KGSI-országok előírásait, hanem a nyugati és a fejlődő országok várható piaci lehetőségeit is. Ezért a CCIR előírásokon kívül a CCITT és az OIRT előírásait is figyelembe vették a berendezések tervezésénél. A GTT—70 berendezés ezeket a követelményeket messzenenően kielégítő, ezáltal lehetőséget nyújta a már üzemben levő nyugati berendezésekhez való csatlakoztatásra, amihez a nyári olimpiai játékokon többféle sor is került. Ilyen komplex állomást mutat be a 6. kép.

A GTT—70 gyártmányosának az alapvető feladatokon kívül az alábbi szolgáltatásokat nyújtja:
1. Automatikus csatorna szakaszkapcsolás.
2. Modulátor és demodulátor tartalékolás.
3. Diversitás lehetőség.
4. Variális távvezérlés és távzajlás.
5. Szolgáltatói és kiegészítő csatornák a szélessávú TF csatornákban.
6. TV-műsorok leállításai lehetősége közbenő állomásokra.
7. Szünetmentes energiaelátás.

SZEKERZETI KONSTRUKCIÓ

A GTT—70 berendezés külön kiviteli formája az előző berendezésekhez képest lényegesen módosult. Az önálló funkciókat ellátó egységeket 600 mm széles, 2064 mm magas és 225 mm mélységű keretekben helyezték el.
5. kép. Szolgálati berendezés rekesze kihúzott helyzetben

6. kép. GTT—70 mikrohullámú hírközlő rendszer szekrényei

Ahol ilyen méretű keretre nem volt szükség, vagy a szerkezeti elemek másfele elrendezést tettek indokoltá, ott fél szélességű, 300×2064×225 mm-es kereteket alkalmaztak.

Az alegységek fiók rendszerűek, ezáltal a javítás és karbantartás munkálatai meggyorsulnak és leggszerűsödnek. Ilyen kereteket mutatnak be az 5. és 7. képeink. A rádiófrekvenciás adó és vevő alegységek félszélességű keretben nyertek elhelyezést.

Az adó-egység kétféle kivitelben került legyártásra:

Kimenő (hasznos) teljesítménye 15 watt.

Kimenő teljesítménye: 10 watt.

Az adóhoz tartozó modulátor és demodulátor áramkörök, azerint hogy TF vagy TV csatornák átvitelére alkalmazzák a berendezést, TF—1800, vagy TV—4 típusjelet viselik. Az igényektől függően a modulátor és a demodulátor áramkörök 1800/1920 vagy 960 telefoncsatorna átvitelére, továbbá az alapszál alatti jelspektrum átvitelére alkalmasak.

Telefoncsatornák helyett színes TV jel és 1—4 kisérőzene átvitelére alkalmas, ún. subrack változatok is megvalósításra kerültek. Ezen egységek 600 mm-es keretekben nyertek elhelyezést. Mindegyik változat tartalék áramkörökkel rendelkezik. Ezt a lehetőséget a ,,Csatornatartalékolt keret” valósítja meg, mély 6—8 szélességű RF csatornából egy vagy két tartalékcsatornát biztosít, szakasztartalékolással (8. kép).

Mivel a GTT berendezések felügyeletnélküli üzemre készültek, ezért szükséges a folyamatos üzem ellenőrzésére távfelügyelő egységeket közbeiktatni. Egy-egy távfelügyelő állomás alkalmas legfeljebb nyolc állomás ellenőrzésére egy központból.

A parancsjelek és tájvételek adása és fogadása TTL logikai szinten történik. Interface áramkörök alkalmazásával lehetőség nyílik a fenti kétből eltérő jelek csatlakoztatására is.

A távfelügyelő alegység a 9. képen látható.

A távellenőrző állomás kiépíthető a távfelügyelő egységen kívül.

— szakasz telefon kapcsolat (omnibusz) egységgel az egyes állomások között a TF MODEM szakaszon belül,
— a végállomások és a főállomások között távol-sági (expressz) távbeszélő csatorna multiplex egységgel,
— táviró csatorna egységgel, a kapcsolási és távellenőrző jelek átvitelére,
8. kép. Csatorna tartáncoló keret

9. kép. Távfelügyelő központ és alegysége

— kiegészítő telefonsztorina egységgel,
— közös tápegységgel (10. kép).

ANTENNÁK

A GTT berendezésekhez — a helyi adottságoknak és a megrendelő kívánásainak megfelelően — többféle sugárzórendszer került kivitelezésre. Legáltalánosabb típus a forgásparaboloid antenna, mely kétféle méretben — 3 és 4 méteres átmérővel — készül. Ezek a „high performance” típusok.

Akár egy, akár két polarizációs tápféjjel rendelhető, akár aerodynamikus radommal, vagy sik radommal. Hátrasugárzási csillapítást növelő shroud-dal is rendelhetők. Ezen antennák gyártása olasz licenc alapján történik.

Ugyancsak használhatóak a szélessávú, nagy oldal- és hátrasugárzási csillapítást biztosító töcsérparabola antennák is. Ezen antennatípus, egy külön ki- fejlesztett váltórendszer segítségével a 4 és a 6 GHz-es sáv együttes átviteli is lehetővé teszi (11. kép).

10. kép. Komplett szolgálati keret végállomása

11. kép. Töcsér-parabola antennák 4 és 6 GHz sugárzására

REFERENCIÁK

A mikrohullámú berendezéseket a kor követelményeinek megfelelően az FMV állandóan továbbfejleszti. Tevékenysége arra irányul, hogy a gyárt-
mányoscsalád rendszertechnikai és technológiai továbbfejlesztésével állandóan bővítsése a szolgáltatások körét, és nagy megbízhatóságú kis energiaszükségletű berendezéseket állítson elő, melyet a BUDA-VOX Híradástechnikai Kiütemkedelmi Rt. kedvezően tud a világpiacon értékesíteni.

Eddig az alábbi jelentősebb szállítások történtek a GTT berendezésekből:

<table>
<thead>
<tr>
<th>Országok</th>
<th>RF csatorna kilométer hossz</th>
<th>Tipus</th>
<th>Üzembe helyezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magyarország</td>
<td>4 305 km GTT 4000/600</td>
<td>1961–66</td>
<td></td>
</tr>
<tr>
<td>Csehszlovákia</td>
<td>848 km GTT 4000/1800</td>
<td>1974–75</td>
<td></td>
</tr>
<tr>
<td>Lengyelország</td>
<td>1 790 km GTT 4000/600</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td></td>
<td>477 km GTT 4000/600</td>
<td>1966</td>
<td></td>
</tr>
</tbody>
</table>

Országok | RF csatorna kilométer hossz | Tipus | Üzembe helyezés |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Szovjetunió</td>
<td>30 300 km GTT 4000/600</td>
<td>1963–67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 830 km GTT 6000/1920</td>
<td>1968–73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 720 km GTT 6000/1920</td>
<td>1974–75</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>11 160 km GTT 4000/1800</td>
<td>1975–76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 507 km GTT 6000/1800</td>
<td>1975-től folyamatos</td>
<td></td>
</tr>
</tbody>
</table>

HÍREK — ÉRDEKESSÉGEK

SZELEKTÍV SZINTMÉRŐ ÁTVITELTECHNIKAI BERENDEZÉSEKHEZ

A vívőfrekvenciás berendezéseket és különleges szűrőket előállító gyárak száma fontos műszer a megbízható szintmérő.

A fejlesztő, gyártó és karbantartó szakemberek számára szükséges volt egy univerzális, könnyen kezelhető műszer kidolgozása. Ezt a szempontot tartotta szem előtt a Marconi cég, amikor kidolgozta és még 1978-ban piacihoz hozta a TF 2356 típusjelű berendezését, melyet kisebb-nagyobb módosításokkal ma is sorozatban gyártanak.

A két műszer azonos külső megjelenésű, így egyenként is és egymással összekapcsolva is alkalmazható.

Az oszcillátor is és a mérővevő is gombnyomásos frekvenciabállítóval rendelkezik. Automatikus üzemben az oszcillátor maga után hangolja a vevőt és, úgy, hogy a két műszer állandóan közös csatornára van hangolva. A méretű 2700 csatorna bármelyikének vizsgálata esetén az oszcillátor a csoport közös frekvenciájára kapcsolódik, majd áthangolja a csoporthoz tartozó frekvenciasavot, miközben a vevőt is „magával viszi”. Így a vevő kimenetén megjelenik a csatorna, vagy csatornák átvitelgi görbje.

Külön áramkör beiktatásával a berendezés a félzaj mérésére is alkalmasabb válik, ha az OA 2090C műszert is hozzákapcsoljuk.

Főbb paraméterek:

TF 2356 oszcillátor
Frekvenciakörzet: 200 Hz–20 MHz, aszimmetrikus;
Pontosság: 1×10⁻⁸;
Szint: (átkapcsolható dBm és dB rel. 0,775 V-hoz visz.) Szinttől és a kimeneti impedanciától függően +10 és −7,7 dB között. Minimum szint minden impedancián −80 dB.

TF 2357 szelektív szintmérő
Frekvenciakörzet: 6 kHz–20 MHz aszimmetrikus;
Pontosság: 1×10⁻⁸;
Mérethatár: −131–+16 dB (szélső értékek);
Felharmonikus torzítás: jobb mint −70 dB.
(Részletes adatok a Marconi Instrumentacion 16/1, 2–11. old. tartalmazza.)

Híradástechnika XXXII. évfolyam 1981. 6. szám
Digitális kártyák vizsgálata
„TESTOMAT-C” mérőautomatán

BEVEZETÉS

Az elektronikus termékek minőségét alapvetően az alapanyagok tulajdonságá, a gyártástechnológia műszaki színvonalának és a vizsgálati módszerek összessége szabja meg.

Napjainkban, amikor a kvázielektronikus telefonkózpontok jórészt digitális integrált áramköröket tartalmazó panelokból épülnek fel, a panelvizsgálati módszereknek is alkalmazkodniuk kell az új technikához. A mérendő NYÁK-lapok bonyolultsága — amely a jövőben még inkább növekedni fog — megkőveteli automatikus műőrendszerek alkalmazását.

A digitális integrált áramköröket tartalmazó NYÁK-lap tesztelése során elvégzendő mérések a következők:

- A funkcionális vizsgálat a logikai változó mérsét jelenti az állapottablá v. utasításkészlet alapján. A mérés információt ad a panel funkcionális működéséről beállítható peremfeltételek mellett (hőmérséklet, tápfszükségváltózás.)

- A funkcionális vizsgálatattal ellenőrizhető tehát a logikai működés.

- Statikus paraméterek ellenőrzése alatt a logikai változókat jelentő feszültségszintek mérését értjük terhelés mellett. Ezek a vizsgálatok pontos feszültség és árammérés elvégzését igénylik állandó áram ill. feszültség mellett.

- A dinamikus vizsgálat a logikai szint változásakor megjelenő impulzusok paramétereinek mérését jelenti.

A piacion sokféle, intelligens, jó műszaki paraméterekkel rendelkező automata vizsgálóberendezés található. Pl. Membran rendszer, Flash, Testomat stb. A vásárlásnál azonban ésszerű kompromisszumot kellett találni az ár és a minőség között, figyelembe véve a devizával való takarékosságot is.

A BHG illetékei a SZTAKI-ban kifejlesztett „Testomat-C” mérőberendezés mellett döntöttek. (1. ábra)

1. A „TESTOMAT-C” MÉRŐAUTOMATA RÖVID ISMERTETÉSE

A „Testomat-C” berendezés off-line üzemmódban GO—NOGO vizsgálatokat végez.

Az automata a vezérlőprogram alapján megállapítja, hogy hibátlan-e a vizsgálat alatt álló panel. Hibás panel esetén a hiba behatárolása manuálisan történik.

A vizsgálóprogramokat egy CDC 3300 nagyszámítógép segítségével állítjuk elő.

A rendszert, on-line üzemben egy kisüzemű segítségével vezérel, melynek segítségével a hibajelzésen kívül mód van automata hibakialakítására is.

A mérőautomata testszintreő vizsgálatokat hajt végre. A következő folyamatok történnének ciklikussá: adatbevitel, egy teszt végrehajtása, (bemenő feltételek előállítása és kimenő paraméterek mérésé), majd a következő tevékenységek cicikus meghatározása, amely az információfeldolgozástól függ.
2. VIZSGÁLANDÓ ÁRAMKÖRŰK
ÉS A VIZSGÁLATOK MEGVALÓSÍTÁSÁNAK MÓDJAII

A telefontechnikai áramkörök közül alapvetően az itt is mind jobban térthódító TIL integrált áramkörök ből felépülő NYÁK-lapok teljes vizsgálata volt a feladat. Ebbe a körbe a logikai funkciókat ellátó áramkörök, a memóriák, valamint a vizuális kijelzők és egyéb digitális áramkörök tartoznak. Bonyolultságuk miatt a teljes vizsgálat csak automatikus úton lehetséges, mert csak így lehet megvalósítni több száz, esetleg több ezer vizsgálati képet.

2.1. Logikai áramkörök

A logikai áramkörök bemérésénél az a követelmény, hogy üzemi körülményeket szimulálva ellenőrizzük a logikai funkciókat és a dinamikus működést a tervezők által előírt feltételek szerint. A vizsgálat négy alapvető paraméter mérsére terjed ki.

Az áramkörök logikai működésének vizsgálata a legalapvetőbb feladat. A bemeneti kapocs-pontokra megfelelő kombinációt generálva, a kimeneti válaszjelnek adnak információt a mért áramkör helyes vagy helytelen működéséről. Ebben a vizsgálatban a durvább hibák derülnek ki. Ilyenek az alkatrészhibák forrasztásából eredő zárlatok stb.

A gép alapkiépítése olyan, hogy azok az analog jellegű mérések is elvégezhetők, amelyek célja a NYÁK-lapokon lévő passzív elemek vizsgálata. Így például az ellenállásokat áramgenerátor és feszültségkomparátor segítségével lehet tetszőleges törésátlatok mellett mérrni.

Egy egyszerű RC tag esetén a kondenzátor feszültségének változása — amely exponenciális jellegű — ún. „kettős mintátelenés” típusú méréssel követhető. Ezekben az esetekben az első mintavételi időtartomány a görbe kezdeti szakaszára esik, a második mintavétel pedig a végérték közelében van.

A mérési eredmények természetesen különbözőni kell egymástól.

A működtetési és mérési sebesség változtatásával a logikai funkciókon kívül a mérendő áramkör dinamikai tulajdonságait lehet vizsgálni. A bemeneti változásokra adott válaszjelkék mérése tetszőleges időpontban történhet, a bemenetekre többletisíti órajelcsatlokat.

Ez a vizsgálat a legtöbb esetben szigorúbb, mint ami üzemi körülmények között előfordulhat.

Olyan hálózatoknál, amelyeknél a bekapszolás után bizonytalan, előre nem meghatározható

2. ábra. A „Testomat-C” mérőautomata vázlatos felépítése off-line üzemmodban

228

Híradástechnika XXXII. évfolyam 1981. 6. szám
állapot következik be, úgynevezett kereső mé-
reszorszattal lehet egy stabil állapotba el-
jutni. Ez történik például egy olyan számító-
áramkör esetén, amelynek nullázó bemenete a
mérés száma nehezen hozzáférhető belső pont.
Kereső üzemmódban a gép egyesével ad órajé-
leket mindaddig, amíg a kivánt állapota nem jut az áramkör.

A program biztosítja, hogy méréskor a gép csak
olyan logikai szinteket fogadjon el, amelyeket a
katalogosok garantálnak, tehát a 0,4 és a
2,4 V közötti értékek normál TTL áramkörökkel
hibásak. Megjegyzendő, hogy a Testomat ide-
ális jeleket generál, és nagy impedanciával mér,
tehát nem Worst-case esetet állíttunk be, de ha
ez szükségessé vált, nincs elv éli akadályozása olyan
segédkészlet alkalmazásának, amelyekkel a
kimeneteket 10 egységeterheléssel zárjuk le.

A teljes vizsgálat egymás után háromszor fut
végig a tápfeszültség néhány V-os és attól
/+ 5% -ra eltérő értékei. Ez biztosíték arra,
 hogy a mért áramkör üzemi körülmények köz
ött a tápfeszültség kismeretével ingadozása el-
lenere is jól fog működni.

2.2. Memóriák vizsgálata (RAM)

Az írható-olvasható nagykapacitású táрак mérése
azért jelent problémát, mert a tárcakapacitással
a vizsgálati lépések száma rohamosan növekszik. A
RAM tárolási módszereinek kiterjedt irodal-
ma van. Sok elmélet született a memória tároló
hibákának felépítésére, amelyek az optimumot igye-
keznek megtalálni a minél alaposabb vizsgálat
és a még gyakorlati kivitelezhető lépészzám között.

Jelen berendezésünkkel elméletileg elvégezhető
a 2 Kbyte-os memória kártyáinak teljes vizsgálat,
csak a programhordozó lukszalag lenne túl hosszú,
ami nem férne el az automata memóriájában, így
lehetetlenné válna a sorozatos vizsgálat. Ezért a tel-
jesség igénye nélkül a jelenlegi vizsgáló program,
kely két részből áll, a durva hibák kiszűrésére szolgál.

A vizsgálat első felében a logikai áramkörök közül
hasonló módon az esetleges félre, forrasztás és egyéb
alapvető, egyszerűbb tokszintű hibák felkutatása tört
enek meg. A címzöveteket NYÁK-lapon való szaka-
dás vagy zárlata az alábbi vizsgálatban tünik ki:

- Logikai „0”-t írunk az 0., 1., 2., 4., 8., 16., 32., 64., 128., 256., 512., sorokba és megmérjük ezeket.
- Logikai „1”-t írunk az 1. sorba és mérjük ezt, majd mérjük a 0. sort, hogy ott még logikai „0” van-e.

Ha szakadt vagy zárlatos ez a címzövetek, akkor
nincs különbség az 0. és 1. sor között, tehát az előző
információ felülrödik, elvesz. Ezen az elven a többi
címzövetek hibája is lokálizálható oly módon, hogy
sorban mindegyik címre logikai „1” kerül beírásra,
és minden lépés után a 0. sor információját is kil-
vassa a gép.

A vizsgálat második felében a RAM tokok teljes átmozgatása történik. Sakkfelszabadít összes és
leges totális cellahibák vagy címzó áramkör hibák
fedhetők fel. A sakkfelszabadít állást és a páros
sorokba „0”-t, a páratlanokba „1”-t ír a gép és ellen-
őrzi a beírás helyességét, majd fordítva is előállítja
ugyanazt a mintát. Végül teljesen törlött RAM mező-
be soronként ír „1”-t miután ellenőrizte, hogy előző-
leg ezen a cimen logikai „0” volt. Ez a vizsgálat is
kiterjed a teljes RAM területre.

Mint már említettük, elképzelhető, hogy a gépről
lekerülnek nem teljesen hibátlan kártyáik is, ám
nyugat kis számában, de ezek az úgynevezett “intelli-
gens” hibák is kiderülnek a végző központvizsgálat-
nál.

2.3. Vízualis kijelzők

Ide tartoznak az alfanumerikus kijelzők, fénydíódák,
valamint az ezekből felépített kijelző mezők. E vizs-
gálatokkal az automata csak a vezérlő szerepet látja
el, az ellenőrzés a dolgozó feladata, így nem küszöböl-
hető ki a szubjektív megtétele.

A vezérlő programmak ezért olyannak kell lennie,
hogy az előforduló hiba a legszembesítőbb legyen,
figyelembe véve az emberi szem tudásvételeit.

Két tényező befolyásolja a felvillanások, vagy áb-
rávalózások ütemét. Ezek egyike a már előbb említ-
tett, ez emberi szem változásokra való reaguálás,
yagvis hogy a milyen sűrű információ változást képes
biztonsággal felismeri egy adott szituációban a vízs-
gálatot végző személy. A felső időtartállal az a gyakor-
lati szempont korlátozza, hogy az egész vizsgálat ne
legen túl hosszú, egyrészt mert a gép sok idejét köt-
né le, másrészt pedig a túl lassú, de mégis állandó
figyelmet követő munkák a dolgozót jobban igénybe
veszik, koncentráció képessége hamarabb csökk.

E két tényezőt figyelembe véve a vizsgálat ütemét
a másodpercre választjuk. Ez az idő elegendő akár
dél-12, alphanumerikus kijelzők működésének ellenőr-
zéséhez is, ha azok egymás mellett vannak és ugyan-
azt a számot illetve betűt mutatják. A hibás kijelzés
tapasztalataink alapján nagyon szembetűnő. A vízs-
gálat úgy fejeződik be, hogy mindegyik kijelző sor-
rendben más számot mutat, és ez tetszélesleg ideig
szembetűnő.

Hasonló megjegyzéseket kb. egy 10×10-es fénydíő-
dás mátrix ellenőrzése érdekében nem egyesével villantjuk fel a 100 db. LED-t, hanem egymásután az oszlop-
kot, majd sorokat, így a mérés kieje együtödére csökk.
Az ilyen lehetőségeket is úgy kell kihasználni, hogy
a vizsgálat kiterjedjen az áramkör minden ré-
szére. Bár az ilyen programok megpróbálja jól össz
időt veszi igénybe, a tapasztalat szerint ez megéri a
fáradást.

2.4. Nem TTL szintű digitális áramkörök vizsgálata

A telefontelekni berendezéseken sok olyan áram-
kör fordul elő, amelyek működésüket tekintve digitá-
lisak, de nem TTL szintű értékek. Ezek közül
rövid utalhatnák autonóm automatikus vizsgálat-
aknak kellett alávetni. Mivel a „Testomat-C” TTL

Híradóstechnika XXXII. évfolyam 1981. 6. szám

229
szintekkel működik, szintadapta- lást kell végezni oly módon, hogy az automata és a mérendő panel közé feszültségtalakító adaptert iktatunk. Ez két feladatot lát el. Először is a mérendő jeleket TTL szintekre osztja (vagy TTL jeleket emelni tetszélos be feszültségekre), másodszor biztosítja a Testomat védelmét, hibákból (esetleg kezdeti programhiba ből) eredő túlfeszültségek, túlúramok ellen.

Egy adapter annyi elemi áramkörből áll, ahány kapocspontos a mérendő panel (kb. 120). Minden ilyen nem TTL szintű digitális panelnek van egy saját adaptere önálló dobozban és egy kábelkötő (sodrott vezetékekből), amely összeköti a mérőautomatával. Ezen vezetékeken csak TTL áramok folyanak. A mérendő panel tápfeszültségeit a Testomat állítja elő +/−24 V-ig, vagy külső stabilizált, áramkorlátozott tápegységet alkalmaznak. A mérőadapter áramkörök tulajdonképpen egyszerű feszültségszükséget. Ha pozitív feszültséget kell leosztani az alsó ellenállás (R₂) a földre kapcsolódik, ha negatív feszültséget kell pozitív tartományban húzni akkor az osztó alsó tagja a +5 V-ra kapcsolódik. Értékek kohmos nagyiségrendben van, így semmilyen körülmények között sem folyhat olyan nagy áram, ami tönkremélyezné az automata mérőkreinek védődiodát, esetleg a belső áramköröket (3. ábra).

A logikai jeladók TTL szintekkel vezérelt PNP vagy NPN tranzisztoros inverterek 8,2 kΩ-os házisellenállással, és esetlenként soros kollektorellenállással. Az elválasztó tranzisztorok és ellenállások együtt biztosítják a teljes védelmet. Olyan esetekben, ahol TTL áramköröket kell működtetni vagy mérni, szintén van elválasztó tranzisztoros inverter (4. ábra) vagy soros 1,5 kΩ-os ellenállás.

Az adapterek használatával a gép maximális működési sebessége csökken, egyrészt az alkalmazott tranzisztorok határfrekvenciája, másrészt a viszonylag hosszú, mintegy 1 méteres vezeték miatt. Mivel a nem TTL szintű digitális panelek a telefonközpontokban betöltött szerűk szerint nem igényelnek gyors működést, az adapter nem befolyásolja jelentősen a mérést. (5. ábra).

2.5. Vonaladó és vonalvevő áramkörök vizsgálata

A digitális pálya egy részében SN 75110 és/vagy SN 75107 vonaladó, illetve vonalvevő áramkörök találhatók. Ezen NYÁK-lapok Testomaton történő vizsgálatára néhány jelentősége van, mivel a vizsgáló automata felépítése olyan, hogy TTL szinteket ad, illetve TTL szinteket érzékel (mér) az asszimmetrikus módon. Ahhoz tehát, hogy a vonaladókat és vonalvevőket tartalmazó NYÁK-lapokat is a "Testomat-C" be rendezésén tudjuk vizsgálni, szükséges a méritoautomata kiegészítése oly módon, hogy képes legyen szimmetrikus feszültségek leadására és mérésére. Ezt a feladatot látja el egy vonalillesztő adapter, amely a Testomat kiegészítő egysége lesz bizonyos NYÁK-lapok mérésére.

Az adapterkártya vonalvevő és vonaladó áramköröket tartalmaz a kiegészítő elemekkel eggyel.

A mérendő panel nem közvetlenül kapcsolódik a mérőberendezéshez, hanem ezen az adapterkártyán keresztül oly módon, hogy pl. a mérendő panelen levő egy vonaladó kimenete az adapterkártyán lévő vonalvevő bemenetéhez csatlakozik. Így a "Testomat-C" végrehajtásban TTL szintekkel dolgozhat a vonaladó és vonalvevő áramkörök tesztelésekor is.

3. A HIBÁK JELLEGÉS ÉS A VIZSGÁLAT GYORSASÁGÁT MEGHATÁROZÓ TÉNYEZŐK

A vizsgálóprogram lefutásának ideje általábán 5—6 másodperc, bizonyos esetekben, például ha a panel vizuális kijelzőket tartalmaz, 30 másodperc. A felcsatlakozási időket is felszámítva kb. 1 percig tart egy jó panel vizsgálatára.

Rossz áramkör esetén a hibák jellegétől függően a tesztelési idő természetesen megnövekszik. Az előforduló hibák a gyakoriság sorrendjében a következők:

- főliahiba (szakadás, zárlat)
- forrasztási hiba
- beültetési hiba
- alkatrész hiba
- egyéb

A hibahatárolás gyorsasága három tényezőtől függ:

- áramkör bonyolultsága
- a program hatékonysága
- a vizsgálatot végző személy szaktudása.

Az áramkör bonyolultságát attól függ, hogy a panelen lévő egy adható bemeneti és kimeneti pontja között hány alkatrész található. Bonyolult áramkör esetén a legegyszerűbb szakadási hiba behatárolása is problémát okoz, mert a programozó számára a belső pontok csak IC szonda sebességével érhetők el. Ekkor természetesen a programozás rávilág hosszadalmasabbá, ezenkívül a vizsgálatot végző személyeknek is tovább tart egy panel tesztelése a gyakori szondahasználat miatt. (Az IC szondával vagy szondák közé több tokra kell egymás után felcsatlakozni, és ezekben az időközökkben a vizsgálat szünetel.) A szon-
dák nehézkes használata miatt jelentkezett az igény egy olyan adapter kifejlesztésére, amely segítségével a vizsgálandó panel belső pontjai is könnyen elérhetők.

4. A FEJLŐDÉS TÁVLATAI

A „Testomat-C” 192 kapocsponton tud egyidőben jellet mérni vagy generálni. Előfordul azonban, hogy ez a szám nem elegendő, mert egy olyan felület megtett NYÁK-lapot kell vizsgálni, amelyben a mérendő pontok száma esetleg több száz, és ezek a nyomtatott áramköri lap belsejében vannak. Ide a későbbiek során kerülhet be más, nem digitális áramkörök, míg mérésel meggyőződünk rá, hogy a TTL áramkörökkel részben beültetett alap NYÁK-lap hibátlan.

Példánk szerint egy 128 kapocspontos áramköri lap 240 belső pontját kell megvizsgálni. A 128 kapocspontot közvetlenül össze kell kötni a „Testomat-C”-vel, így annak a fenmarradó 64 kapocspontját használhatjuk fel a 240 belső pont mérésére. Ez időszátsos módon lehetséges. Olyan áramköre van szükség, amely például egyszerre 60 mérendő pont információját juttatja el a géphez, majd utána másik hatvannak ugyanazon mérőpontokra, és így tovább. A fenmaradó 4 kapocspont oldja meg az időszátságos működést, így max. 16 × 60 kapocspont mérhető egymás után. Ez egyszerű TTL kapú áramkörökkel vagy multiplexerrel megvalósítható, de jobb megoldás, ha analóg MOS multiplexeret alkalmazunk. Ezek a MOS áramkörök a 4000-es sorozatból ma már ugyanolyan általánosan elterjedtek, mint a TTL áramkörök és alkalmazásuk több előnyel jár:

A kiépítés egyszerű, hiszen csak egymás mellé kell

5. ábra. Adapter a QA96/MRK alközpont NYÁK-lapjaihoz

rakni pl. 4051-es tokokat, címzővezetékükkel összekötve, és kész a 8-ról 1-re kapcsolás. Ezen túl az az előny is megy, hogy a mért szinteket nem változtatjuk meg, és az egész áramkör oda-vissza állítható, így esetleg generálhat is lehet logikai jelket adott belső pontokra. Ezt csak a 12 V-os tápfeszültségnél jellemző mintegy 80 Ω-es ellenállás korlátozza, de 2−3 bemenet párhuzamos vezérlése már nem ütközik nehézsége. Az áramkör TTL kompatibilitás, végül nem utolsó szempont az sem, hogy a MOS multiplexerek fogyasztása nagyon kicsi, tehát külön tápegység alkalmazása nem szükséges. A mechanikai csatlakozást egy fix tűággal kívánjuk megoldani.

HÍREK — ÉRDEKESÉGEK

PCM MULTIPLEX VIZSGÁLÓ BERENDEZÉS

A PCM-rendszerek a hírközlési módszerek között az utóbbi 10 évben erősen elterjedt. Az egyes műszaki paraméterek azonban nem voltak egyértelműen megfogalmazva, ezért az International Telegraph and Telephone Consultative Committee (CCITT) egybehangzott a különböző definíciókat, bekapcsolva munkájában a British Post Office (PBO) és a Conference European of Post and Communications Administrations (CEPT) szakvéleményét is.

A Marconi cég ennek ismeretében továbbfejlesztette a már forgalomban levő TF 2807 típusú berendezését és egy módszerrel elkerülte a hangsúlyosan hozott forgalomba TF 2807A jeléssel, mely a fenti követelmények megfelel.

Marconi PCM multiplex vizsgáló berendezés

Híradóstechnika XXXII. évfolyam 1981. 6. szám

231
Érdekességek a BHG-ban

Svéd vendégek a BHG-ban

Hangsúlyozta, hogy a svéd cég és vállalatunk kapcsolatát a jövőben tovább szeretnénk fővétlen, természetesen a kölcsönös előnyök alapján. A megbeszélés után a delegáció gyárhatóta előtt vett részt.

A svéd minisztér nagy érdeklődésre hallgatta a delegációja tagjáknak jelenlévő, az L. M. Ericsson elnökélyettesének, Bo Landiszné ürmek a két vállalat közötti együttműködésére és a további lehetségekre vonatkozó megjegyzéseit.

(Képünkön: vendégeink a QA-üzemben.)

Együttműködési szerződés a BUDAVOX-szal

A kereskedelmi munka színvonalának emelése érdekében a Telefogyár Modul szocialista brigádja és a BUDAVOX Rt. propaganda osztálya XI. kongresszus nevet viseli brigádja szocialista szerződést kötött.

Az együttműködés célja a Telefogyár által termelt és a BUDAVOX által exportálandó termékek értékesítésének elősegítése a reklám eszközeivel, valamint az exporttermékekre vonatkozó információ-

csere, mind a termelésre, mind az értékesítésre kiterjően, a propaganda- és marketingmunkához szükséges mértékben.

Az amerikai „3M” cég bemutatója a Telefogyárban

Múlt év szeptember 30-án és október 1-én a „3M” Amerikai Egyesült Államok-beli vállalat alkatrész-bemutatót tartott a Telefogyárban a Budaovak aktív közreműködésével.

A kiállításonak kapcsolatban a cég szakemberei előadásokat is tartottak. Így szó volt a Scotchflex szalagkábelrendszer csatlakozóitól és ezek felhasználási lehetőségeitől. Ismertették az ezek szorosan összefüggő, elsősorban oktatási célokat szolgáló, európai szabvány szerint is készülő Breadboard családot. Előadás hangzott el a főként konzumer berendezésekben felhasználható felületváltás nyomtatott huzalozású panelekről, amelyeknek gyártási technológijáit is ismertették.

A többi előadás a mikrohullámú készülékeken, berendezésekhez használt alkatrészkétre és alapanyagokra, a számítóközpontokban alkalmazható szál-optikai kábelek és csatlakozókról szóló, ami újoncsága folytán érthetően nagy érdeklődést váltott ki.

Végül az integrált áramköri szereléstechnológia forradalmának legjárat eredményeitől szólók, egyrészt az oránként több ezer felvezető integrált áramkör szerelésére alkalmas filmhordozós technológiáról, másrészt az ezzel kombinálható, az IC-k beépítési helyigényét közel harmadára csökkenti elemhordozós fokozási technológiáról.

A bemutatón a Telefogyár szakemberei kivül több mint tíz vállalat és felsőoktatási intézmény szakemberei vettek részt.

Előadás a Mobil távbeszélőközpontról

A Postai és Távközlési Tárgyaló Szakosztály és a Hiradástechnikai Tudományos Egyesület közös rendezésében a közelmúltban vetették képes előadást tartott Balogh Miklós a Budapesti Távbeszélő Igazgatóság Fejlesztési Osztályának vezetője az egyesület székházában.

Az előadás címe: A Mobil telefonközpontok és ezek vizsgálati tapasztalatai. Az előadást a részt vevő harminckét szakember nagy érdeklődésbel hallgatta, majd szemlélte az anyagértékéért kézbe kapták a BHG „Mobil Telefonközpont” című ismertető anyagát.
A TR—10 rendszer továbbfejlesztéséért

A Telefongyárban évekkel ezelőtt átterte a termelés számítógépes segítésére. Ennek érdekében 1980-ban az előkészület, az adatellenőrzés, hibafelülvizsgáló és korrigálás jelentette a fő feladatokat a mintegy 420 ezer adattal kapcsolatban.

1981-ben már kapacitástiterhelés-számításra, rendelésirányításra is alkalmas lesz az adatbázis. A másik meghatározó feladat a műveleti állomány számítógépes feldolgozása, ami több százezres számítógépes adatsor feldolgozását jelenti. A feladat nagyságrendje körülbéül olyan, mint a TR—10 struktúrállományának a létrehozása.

Hosszúálló szerződés a japánokkal
a Telefongyárban

Figyelemreméltó szerződést írtak alá a MARUBENI-CORPORATION japán külföldi vállalat budapesti irodájában a Telefongyár és a japán cégek közti kapcsolat, amikor a japánok terveket szállítottak a Telefongyárunknak. A szerződés lehetővé teszi egyes nyugatnemű gyártói-üzemek eredményes kiváltását, mivel a nyugatnemű cégek kapcsolatban utóbbi időben szállítási és ellátási gondok merültek fel.

A japán cégegés zöv, VI. ötletésre terv során most megállapított fix áron szállít, így olyan a nyugatnemű árról. A meggyezés szerint a japánokTokióból a lehívás szerint, naponkon belül a gyárba szállítják a két mennyiséget. Emellett a szerződés az éves szükséglet 25 százalékát szortimentben készlezei.

Tizenötmillió forint újtáÉból

A Telefongyárban 1980-ban 96 újútást nyújtottak be, amelyek közül 41-et fogadtak el. Az eredmény 15 millió forint, a kifizetett újtási díj 434 ezer forint, az átutalási idő 51 nap.

Jelentős az újtásokból adódó normára és anyagmegtakarítás, ugyanis 4 ezer 396 normára és 4 millió 741 ezer forint értékű anyagmegtakarítást eredményeztek az újútások.

Új vonalasztók az újászaltról

A külső formaterv szerint a hagyományos fémdoboz helyet mélynyag burkolatba került a vonalasztózó. A szébb külső mellett pld. a kötelelemek számát is minimálisra csökkentették. Az elektromos és mechanikus funkciói is átgondoltan újra terveztek.

Korszerű szovjet elektronikai alkatrészek

"Korszerű szovjet gyártmányú elektronikai alkatrézek és felhasználásuk" címmel kétípos műszaki szemináriumot rendezett január végén a SZU EIM és a magyar Ipari Minisztérium irányításával működő "Alkalmazási munkacsoport", az Elektronorgtéchnika Külföldi Vállalat, az EMO, a HTE és a Magyar Kereskedelmi Kamara szovjet tagozatának közreműködésével.

A kiállítással egybekötött szemináriumon 7 szakélloshoz hangzott el. Előadások után konzultációkra került sor, amelyen részt vettek a Telefongyár érintett szakemberei is.
A BHG új gyártmánya a KA 5001 típusú COMBI-X központ

A KA 5001 központot a BHG Híradástechnikai Vállalat fejlesztette ki. Az alapot a vállalat által évek óta gyártott ARB főközpont képezi, megtartva annak minden tulajdonságát és szolgáltatását, kiegészítve a hagyományos és a legmodernebb alközponti szolgláttásokkal.

Felhasználásának lehetőségei a következők:
- önálló nagykapacitású alközpontként,
- vegyes központként tehát előfizetőket és mellékállomásokat is kiszolgálhat egyszerre,
- tranzit fokozattal kiegészítve, függőleg hálózat tranzit központjákként,
- CENTREX központként.

Mivel a KA 5001 központ az AR-rendszerben bevált jelzésrendszert alkalmazza, így külön átalakítás nélkül beépíthető az országos hálózatba.

Az alapvető alközponti szolgáltatásokon kívül kibővíthető egyéb, korszerű szolgáltatásokkal, melyeket erre jogosult mellékállomások vehetnek igénybe. Röviden ismertetjük ezeket az opcionális szolgáltatásokat:

- Az elsőbbségi jog lehetőségét biztosít a hívó számára, hogy foglalt vonal esetén a régi kapcsolatot erősödésén felbontja.
- A hívásfenntartási jog olyan esetekben alkalmazható, amikor a hívott szám foglalt. Amint a hívott mellékállomás szabadabbá válik, a központ szaggatott csegéssel jelzi, s a készülék felületére automataként csengeti a számot.
- A hívásáthelyező esetében a mellékállomásoknak lehetőségük van arra, hogy a készülékeikre irányuló hívásokat átírhatnak bármelyik mellékállomásra.

- A személykeresés lehetővé teszi, hogy a személykeresésbe bevont mellékállomást bármilyen speciális számmal felhívhatja. A keresett személy egy a magával hordott mini berendezés hang- és fényjelzésével értesül a hívásról. A hozzá legközelebb eső készüléken, egy speciális szám beállításával kapcsolatba léphet az öt hívó fél közben letette a készülékét vagy mással beszél, újra csenget illetve figyelmeztető jelzést ad.

- A konferenciabantervezés segítségével több mellékállomás folytatja csoportos megbeszélést is.

- Az éjjeli és napi munka helyezését és meghódítását az ügyféllet téli ritmussal kell beállítni.

Mivel a távhívásokat nem csak közös számlán mérhetik, hanem lehetőség van a távolsági beszélgetések egyedi mérésére is, ez lehetőséget ad arra, hogy például a szolgálati lakásokba kihelyezett mellékállomások egy-egy alkalmora teljes jogú előfizetőként a nyilvános távhatározatba bekapcsolódhatnak.

A KA 5001 típusú központ kiepítésére 600 vonalból 40—50 ezer vonalig terjedhet, így vonalkapacitása és korszerűsége következtében alkalmas arra, hogy több nagyvállalat közös központjákként működjön.

A KA 5001 típusú központ korszerű, szolgáltatásai-val, vonalkapacitásával, rugalmassággával méltán tarthat számat széleskörű érdeklődésére.

A jó munkakapcsolat eredménye a hálózatfejlesztési tervteljesítés

A BHG Híradástechnikai Vállalat és Budapesti Távbeszélő Igazgatóság közös baráti találkozót rendezett, amelyen bejelentették az Állami Tervbizottság „Terven felüli távbeszélő fejlesztés 1880-ig” tárgyában hozott határozat teljesítését.

A Posta-vezérigazgatóság 1977 augusztusában fordult levélben a BHG-hoz, amelyben 12 pontban foglalta össze a terven felüli távbeszélőigényét.

Ez az igény Budapesten 35 000 vonal kapacitását bővített, országosan összesen 45 000 vonalbővítést jelentett.

Hogyan is valósult meg az ATB határozata, amit a BHG-n belül „Pulilaj program”-nak nevezték el?

Először átfogó intézkedési tervet dolgoztak ki, amely szerint és határidőre lebontva szigorúan ütemezték a szerződéskötési, fejlesztési, tervezési, gyártási és szerelési feladatokat.

A sikeres végrehajtás érdekében felévenként számonkérték az intézkedési terv előrehaladását, s minden alkalommal megállapították a szükséges feladatokat.

Ezen túlmenően a BHG Híradástechnikai Vállalat a Postavezérigazgatóság illetve a Budapesti Távbeszélő Igazgatóság szoros együttműködéssel segítette egymást a közös munkában.

A fejlesztési, gyártási, szerelési problémák közbeni megoldása, a Postavezérigazgatóság szakembereinek rendszeres együttműködése például a Ferenc tiz mobil központ fogadóközpont kiepítésével, a Belvárosi előben való bővítésével, a mobil típusú központok fejlesztésével jelentős mértékben elősegítette az eredményes teljesítést. A BHG mintegy 63 000 vonallal egyenértékű munkát végzett.

E baráti találkozó nemcsak egymás munkájának értékelésére, de annak fennmaradt közös gondok, problémák, és azok sikeres megoldásának felelevenítésére volt jó alkalom, hanem a már eddigi is megfelelő jó munkakapcsolatok továbbfejlesztésére, sőt a következő tervidőszak várható feladatainak megbeszélése is.

Az új BHG központrendszer sikere

Kedves Vezérigazgató elválasz!

György és Mosonymagyaróváron, valamint a két város környékén 1980. október 17-én a több éves beruházási tevékenység eredményeként új távbeszélőközpont-rendszer próbázott kezdődött meg.

Az új rendszerre való áttelepítése eddig tapasztalatai kedvezik, s ez biztos jel a központrendszer további működését illetően is.

Mint az új központrendszer gyártó és a helyzeten szereplő vállalatok ezekben mondható közelöntöttek és a beruházáson dolgozó valamennyi munkatársainak, azért, hogy a berendezések próbázott határidőre, a szolgáltatás meglevő szintvonalát biztosítva megkezdődhetett.

Kirkovits István

Igazgató
Tovább bőví a QA-üzem a BHG-ban

Az üzem 1979-től létezik a BHG-ban. Az eddig eljutott időszak nem nagy idő, de különösen nem egy újonnan létrehozott termelő egységeiben, és egy újonnan bevezetett termék előállításával kapcsolatban rengeteg munkatapasztalatot szerzhet az ember.

Wagner György, a 28-as üzem vezetője örömmel és élégedetten számol be arról, hogy 1980-as készületvűket 100 vonallal túlterjesztették.

— Most eredményesen zárta az elmúlt évet. De vajon milyen súlyos száll fel az új esztendő első időszakára tekintve?

A QA központok egy továbbfejlesztett változataival a reed blokkot kiváltó elektronikus kapcsolóező kivitelrel is meg ismerkedhetünk.

Csak kvalifikált szakemberekkel oldhatjuk meg jól és maradéktalanul az idei feladatainkat. Ehhez még

Wire-Wrap felautomaták a QA üzemben

QA 96 berendezések végviszgálata QA üzemben

elengedhetetlenül szükséges a szakmai önkapézés is. Mindezre fokozottabb tisztségének, nagyobb munka-egyelemmel kell együttjárni.

A megnövekedett tervfeladatok teljesítésének egyik feltétele biztosítva most tovább terjeszkedik a QA-üzem.

1981. évi TERTA kiállítások

A Telefonygár reklám- és propaganda tevékenysége a vállalati stratégia függvényeként 1981-ben is beljövőre és külföldre irányul.

Célja: — a meglevő picok fenntartása és bővítése,
— új picokon történő bemutatkozás,
— a tőkés árbevétel növelése,
— új termékek bevezetése,
— kooperációs lehetőségek felkutatása,
— a vállalat helyzetének, kapcsolatának és pozícióinak javítása,
— good-will fejlesztés.

Az árufedezet tervezésénél a gazdaságosságot vetők figyelembe. Működő berendezéssel önálló vállalati bemutatót veszünk részt, a tényleges berendezéseket grafikai megoldásokkal, fotóba épített egyégekkel helyettesítjük. Rendszeresen alkalmazzuk az audiovizuális eszközöket, a PH filmet és diapositórozatokat.

Ezeket alkalmazva az alábbi kiállításokon és vásárokon mutatkozunk be:

Híradóstéchnika XXXII. évfolyam 1981. 6. szám
Új, nagy dielektromos állandójú kerámiai kondenzátor

Az elektronikai célokra alkalmazott kerámiai kondenzátorok területen az utóbbi évek jelentősébb újdonságainak egyike az 50—100·10^8 permittivitás-sal rendelkező belső záróréteg kondenzátor. Kis méretekben nagy kapacitásiértékek érhetők el, így a miniaturizálás igényeit is kielégítik kis feszültségű áramkörökben.

A belső záróréteg kondenzátor felépítése és működése lényegesen eltér az eddig ismeretes felületi záróréteg kondenzátoroktól, ahol a záróréteget a kerámia alaptest zsugorítása, majd redukciója (H₂-ben való égetés) után képezik ki egy további kritikus munkamenetben, amikor a félvezető felületen nagy kilépésű munkájú fémem, pl. Ag, Au, Cu hatására Schottky típusú zárórétegek képződnek. Ezek a kondenzátorok csak tárcsa alakban állíthatók elő, névleges feszültségük 16—30 V között van, szigetelési ellenállás értékük polaritás függőséget mutat és értéke 10 Mohm nagyságrendben mozog.

A belső záróréteg kondenzátorok legtöbnyire Ba/Sr/TiO₃ alapú kerámiai. A kerámia félvezetővé alakítása változó vegyértékelv alapján idegen ionok beépítésével (Sh⁺⁺, Nb⁺⁺, La⁺³⁺) történik, amikor az n típusú vezető alakul ki a kristályársaságban.

A félvezető polikristályos BaTiO₃ szemcseshatárában zárórétegek képződnek. Ezek a nagy térlötésű zárórétegek makroszkopikusan nagy permittivitás értéket (50—100·10^8) kéプviselnek.

A kapacitásértékek az adalékanyagok koncentrációjával és a szemszeméretekkel szabályozhatók.

A belső záróréteg kondenzátorok kristályszerkezetét az 1. ábra mutatja.

A belső záróréteg kondenzátorok felépítéséből, szerkezetétől következik, hogy a kondenzátorok egyéb dielektromos tulajdonságait is, melyekből most néhányat bemutatunk.

A permittivitás hőmérsékletfüggése

A belső záróréteg kondenzátorok legelőnyösebb tulajdonsága, hogy a nagy ϵ-értékűhöz képest kis mérteke a permittivitás hőmérsékletfüggése.

Míg az ϵ ≈ 10 000 kondenzátorok esetében (T10 000) a permittivitás értéke igen erősen függ a hőmérséklettől — 2. ábra, szaggatott vonal —, a belső záróréteg kondenzátor (T50 000) hőfokfüggése az ϵ4000 (T4000) dielektrikumhoz hasonló (folyamatos vonal).

A permittivitás feszültségfüggőssége

A kapacitásérték feszültségfüggőséget a C ~ \sqrt{\frac{1}{U_D + U}} egyenlet értelmében várnánk, azonban a kondenzátorra helyezett egyenfeszültség hatására a zárórétegek kiszélesednek, benyomulnak a szemszemébsők irányába. Így a permittivitás feszültségfüggőségét a zárórétegek száma és vastagsága is befolyásolja.

Az eredő feszültségfüggés jellegét egy T10 000 anyagú fólia kondenzátor feszültségfüggőségével összehasonlítva — szaggatott vonal — a 3. ábra mutatja.

2. ábra. A kapacitás hőmérsékletfüggése

236

Híradótechnika XXXII. évfolyam 1981. 6. szám
Szigtelési ellenállásérték

Mivel az egyes kristálytözök felületén levő jól szigtető zárórétegekre a kondenzátora adott külső feszültségnek csak a tört része jut, ezért a szigtetelési ellenállás értéke 40 V-on, a névleges feszültségen érli a 10^6 Mohm értéket is. Ez az érték kisebb ugyan a hagyományos 2. típusú kondenzátorok szigtetelési ellenállás értékénél, de az alkalmazások túlnyomó többségében elegendően nagy.

A szigtetelési ellenállás értéke a külső feszültség növekedésével reverzibilis módon monoton csökkenést mutat, viszont áramköri kapcsolásoknak egy soros ellenálláson keresztül jut a feszültség a kondenzátorra, így egy időszakos túlfeszültség esetén a kondenzátor átítése nehezében következik be.

A belső záróréteg-kondenzátorok öregedése

Míg a hagyományos ferroelektrikus kerámiaknál ε<4000 (T=4000) a kapacitásérték csökkenés a spontán polarizációval összefüggésben 5—10% értéket mutat, a belső záróréteg kondenzátorok esetében ez az érték csak 2%. Ez azzal magyarázható, hogy a kapacitív működő zárórétegeknél nincs polarizáció.

A belső záróréteg kondenzátoroknál a szokásos kapacitás-értéktartomány pár nF-tlól néhány száz nF-ig terjed. Fő alkalmazási területe megegyezi a 2. típusú kondenzátorkéval (csatoló és hidegítő célkra).

A belső záróréteg kondenzátort a Kőbányai Porcelángyár T50 000 néven hozza forgalomba társa kivitelben, műgyanta és impregnált műgyanta bevonattal.

TRM műgyanta bevonattal
TRIM műgyanta bevonattal és impregnalva

Műgyanta bevonat esetén a D átmérő és a V vas-
tagság méret 1 mm-rel nagyobb.

Névleges feszültség [U_n] 40 V——
Vizsgálati feszültség 2,5 U_n
Névleges kapacitás tűrése —-20 +50%
Kapacitás hőmérsékletfigyel-
gése
VESZETESI TÉNYEZŐ
(1 kHz-en; 1 V-on; 20°C-on) ≈ 500×10⁻⁴
Időállandó (10 V-on) ≈ 10 sec (Mohn μF)
Klimaállóság
TRM kivitelben 25/85/04
TRIM kivitelben 25/85/21

Jelzés
A termékre vonatkozó vizsgálati szabvány
MSZ 11393/3—76

<table>
<thead>
<tr>
<th>Típus</th>
<th>Jel</th>
<th>D [μm]</th>
<th>E [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>75</td>
<td>5</td>
<td>5,0</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>8</td>
<td>5,0</td>
</tr>
<tr>
<td>4</td>
<td>47,68,100</td>
<td>12</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Főlida a megrendelésre: Tárcakondenzátor műgyanta bevonattal

TRM ≈ 12 100 nF (— 20 +50%)
T 50/2, 40 V

Hrabovszky Lászlóné

Termékeinket beföldre közvetlenül a Kőbányai Porcelángyár forgalmazza. A Híradótechnikai Gyáregység
Felhasználási Össztály (telefon: 373-111/281. mellék) várja felhasználónk érdeklődését és mindenkor készességel
áll rendelkezésükre.

FIM
KŐBÁNYAI PORCELÁNGYÁR

Híradótechnika XXXII. évfolyam 1981. 6. szám
R535
Szénréteg-ellenállás

Szerkezeti felépítés
HORDOZÓ: alkáliionszegény kerámia
ELLENÁLLÁS: szénréteg
KIVEZETŐK: önozott rézhuzalak
BEVONAT: több rétegű védőlakk

Villamos jellemzők
HŐELLENÁLLÁS (Rₚₚ)

<table>
<thead>
<tr>
<th>W</th>
<th>0,35</th>
<th>0,5</th>
<th>0,71</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/W</td>
<td>240</td>
<td>170</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Névleges terhelhetőség [W]</th>
<th>Méretek [mm]-ben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dmax</td>
<td>Lmax</td>
</tr>
<tr>
<td>0,35</td>
<td>3,0</td>
</tr>
<tr>
<td>0,5</td>
<td>4,2</td>
</tr>
<tr>
<td>0,71</td>
<td>5,4</td>
</tr>
</tbody>
</table>

HŐMÉRSÉKLETI TÉNYEZŐ
-55 °C...+125 °C
-600·10⁻⁶/K

ZAJFeszültség
R ≥ 10 kΩ, max. 3 μV/V

IMPULZUSTERHELÉS (DIN 44051 alapján)
1000 óra
dR/R max. ±5%

Környezetálóság
KULCSSZÁM 55/125/10

Tartósság
terhelés Pᵥ vagy Uₙ (amelyik kisebb)
hőmérséklet +40 °C
időtartam 1000 óra
dR/R max. ±3%

Impulzus terhelésnél betartandó előírások
Az impulzus feszültség (Uᵯ) nem szabad, hogy meghaladja a következő értékeket:
| | Uᵯ ≤ Cₒ · Pᵥ·R |

A megengedett terhelésből számitva azonban a feszültség nem lehet nagyobb, mint
| | Uᵯ ≤ Cₒ · Uₙ |

Az impulzus teljesítmény középértéke nem lehet nagyobb, mint a környezeti hőmérséklethez tartozó üzemi terhelhetőség.
Pₛ = Pᵥ

Az impulzus időtartamot (tᵯ) és a periódus időtartamot (tₒ) úgy kell megválasztani, hogy az impulzus sorozat teljesítményének időbeli középértéke (Pₛ) a megengedett terhelhetőséget (Pᵥ) ne lépjje túl.

Híradástechnika XXXII. évfolyam 1981. 6. szám
R538
Fémréteg-ellenállás

![Diagram](image)

Ajánlott felhasználás
Kis rezisztenciójú ellenállást igénylő berendezésekben, tranzisztorizált áramkörökben pl.: munkapont beállítás céljára.

<table>
<thead>
<tr>
<th>Névleges terhelhetőség [W]</th>
<th>Méretek [mm]-ben</th>
<th>Lmin</th>
<th>Lmax</th>
<th>d</th>
<th>lmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>3,0</td>
<td>7,0</td>
<td>0,6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>4,2</td>
<td>10,8</td>
<td>0,8</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Szerkezeti felépítés

HORDOZÓ: alkáliionszegény kerámia
ELLENÁLLÁS: áram nélkül leválasztott nikkel réteg
KIVEZETŐK: önozott rézhuzalok
BEVONAT: több rétegű védőlákk

<table>
<thead>
<tr>
<th>Névleges terhelhetőség [W]</th>
<th>Névleges rezisztencia (R) tart.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E12</td>
</tr>
<tr>
<td></td>
<td>E24</td>
</tr>
<tr>
<td></td>
<td>E48</td>
</tr>
<tr>
<td></td>
<td>E96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rn [W]</th>
<th>Rezisztencia sor szerint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>±0,1 Ω</td>
</tr>
<tr>
<td>0,5</td>
<td>±5 %</td>
</tr>
<tr>
<td></td>
<td>±2 %</td>
</tr>
<tr>
<td></td>
<td>±1 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rezisztencia turóssel</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0,1 Ω</td>
</tr>
<tr>
<td>±5 %</td>
</tr>
<tr>
<td>±2 %</td>
</tr>
<tr>
<td>±1 %</td>
</tr>
</tbody>
</table>

HŐMÉRSÉKLETI TÉNYEZŐ

R > 4,7 Ω
±200-10⁻⁶/K

TÜLTERHELÉS

folyamatos

Pn = 0,25 W
2-Pn
100 h

Pn = 0,5 W
1,5-Pn
100 h

dR/R
max. ± (1%+0,1 Ω)

Környezetálvóság

KULCSSZÁM
55/125/21
KÖRNYEZETÁLLÓSÁGI VIZSGÁLATSOROZAT UTÁN

dR/R
max. ± (2%+0,1 Ω)

Tartósság

időtartam
1000 h
vill. terhelés
Pn
környezeti hőmérséklet
+70 °C

dR/R
max. ± (2%+0,1 Ω)

Csomagolás

Hevederezve, dobra csévélve és dobozba helyezve az RX-77.357/3 szabvány szerint, vagy omlesztve, a karton dobozban.

Felhasználási, beszerelési előírás

Az ellenállások max. 50W teljesítményű, max. 270 °C hőmérsékletű pákával forraszthatók be. A forrasztás ideje max. 2 s.
A forrasztás távolsága az alkatrészből való kilépési pontotól számított legalább 6 mm legyen.
Nyomtatott huzalozási felhasználásnál az önfürdő hőmérséklete 230 ± 5 °C, a bemászás időtartama 2 ± 0,5 s legyen.
A kivezető az alkatrészből való kilépési ponttól számított 6 mm-ig merülhet a fürdőbe.

Villamos jellemzők

Indukcióssegény kivitel: R ≦ 1,8 Ω, jele: L
(1 Ω alatti értékek korlátozott darabszámban, külön megállapodás szerint rendelhetők.)

Ezen alkatrészeinket az ELEKTROMODUL forgalmazza. Megkeresésükre küldünk katalógust.
Kereskedelmi Főosztályunk (telefon: 573-033) várja érdeklődésüket és készséggel áll rendelkezésükre.

Rádiotechnikai Vállalat Budapest, X. Pataki tér 20.

Híradótechnika XXXII. évfolyam 1981. 6. szám

239
TARTALOM

ETO 611.325—181.48
Pongrácz Gy.: Mikroprocesszorok architektúrájának fejlődése
HÍRADÁSTECHNIKA 1981. 6. sz.

Az alábbiakban áttekintettük a mikroprocesszor architektúrák fejlődését irányzó az M6800 család elemek keresztül. Az itt bemutatott tendencia figyelhető meg a többi mikroprocesszor gyártó termékeitől is (pl. Intel 8080/8086, Zilog 80/8000 stb.), ami egyesről a 16 bites processzorok, másrészt az egyetlen integrált áramkörrel megvalósított mikrochipok megjelenését jelenti. A 16 bites mikroprocesszorok teljesítőképessége megkönnyíti, sőt sok esetben megvalósítja a korábbi memóriapályák/BSW-lehetőségeit. Utasításkészletükben érezhető több magas szintű nyelvre ortenált és a moduláris programozást elősegítő utasítások találhatók. A technológiai fejlődés azonban nem áll meg a 16 bitekkel, mivel az elért alkatrészületikik, két évenként megújulnak. Így a 80-as évek elejére várható a 32 bites mikroprocesszorok megjelenése.

ETO: 621.3.049.771.14.002.2/778.155.4

Beke I.—Bereczki F.: Az ábrálemezés optimalizálásának lehetőségei LSI maszok készítéséhez
HÍRADÁSTECHNIKA 1981. 6. sz.

A nagy bonyolultságú integrált áramkörök technológiájában egyre fokozódó követelményt jelent az egyes rétegek kialakítására szolgáló maszkok előállítása. A szerzők a cikkben egyrészt azt vizsgálják, hogy hogyan lehet minimális számú expozicionálával lekövetni az ábrázatot, másrészt azt keresik, hogy adott számú expozícióval hogyan lehet minimális költségekkel végrehajtani.

ETO: 534.861-681.8/4

Mányoki Zs.: Vízfűrészkezése műsorhang-közvetítő berendezések a vezetékes hírközlésben
HÍRADÁSTECHNIKA 1981. 6. sz.

A szerző ismerteti a külső helyszíni közvetítéshez a Magyar Posta ablakkozott műsorhang-közvetítő berendezéseket. Ezek között részletesen tárgyaljuk az S 42922—A 401—A1 típusú, műszaki és sztereofonikus műsorjegyek átvitelére egyaránt alkalmas, a CCITT és a GMTT által ajánlott berendezéstípust.

ETO 621.396.43.821.397.743

Malesiner F.: Mikrohullámú hírközlő rendszerek
HÍRADÁSTECHNIKA 1981. 6. sz.

Az 1980. évi olimpiai játékok televíziós közvetítése nagyrészt a magyar gyártású, mikrohullámú hírközlő rendszerek keretében történt. — A cikk áttekintést ad a hazai mikrohullámú gyártások hajtására tapasztalatok, röviden áttekinti a mikrohullámú berendezéseket és antennarendszereket, ismerteti a berendezések szerkezetét és elektromágneses felületeit. Képesszerűen mutatja be a berendezések fejlődését és a szerkezet megoldásokat.

ETO: 621.395.6.049.7/621.317.7—52

Nagy S.—Frigyes I.: Digitális telefontehnikai kártéjak vizsgálata „TESTOMAT-C” műértomatán
HÍRADÁSTECHNIKA, 1981. 6. sz.

A digitális NYÅK-apakk vizsgálata a BHR-ban „TESTOMAT-C” műértomatán történik. A közlemény első része röviden ismerteti a számítógéstechnikai és automatizálási kutatási törvényt (SÁKTI) kifejezett mérővastagságot, a továbbiakban pedig részletesen foglalkozik azokkal a kérdésekkel, amelyeknek a gyár használatra során a BHR-ban jelentkezhetnek.

INHALT

DH 611.325—181.48
Pongrač, D.: Entwicklung der Architektur der Mikroprozessoren
HÍRADÁSTECHNIKA (HIDARALETECHNIKA, Budapest) 1981. 6.

Die Entwicklung der Architektur der Mikroprozessoren wird in der überwiegenden Mehrzahl der Arbeitskreise auch in der deutschen Industrie von den Firmen Intel 8080/8086, Zilog 80/8000 und anderen bislang nicht verfügbar sind. Der zentrale Gesichtspunkt ist die Leistungsfähigkeit der 16 Bit-Mikroprozessoren, die es ermöglichen, zukünftige Produktionsländer zu entdecken, wo eine Zusammenarbeit mit dem deutschen Markt sinnvoll ist. In diesen Ländern werden die 16 Bit-Mikroprozessoren von 20 Jahren Vorteil haben, was bedeutet, dass sich die Zukunft für diese Unternehmen entwickelt.

ÜBERBLICK

DH 621.3.049.771.14.002.2/778.155.4
Bekes I.—Bereczki F.: Möglichkeiten der Optimierung der Chromatographie für die Produktion LSI Schaltkreise
HÍRADÁSTECHNIKA (HIDARALETECHNIKA, Budapest) 1981. 6.

Die Technologie von Schaltkreisen ist ein wichtiger Aspekt für die Produktion von LSI Schaltkreisen. In diesem Artikel wird über die Möglichkeiten der Optimierung der Chromatographie für die Produktion LSI Schaltkreise berichtet. Die Autoren erläutern, wie durch Verbesserung der Chromatographie die Produktion von LSI Schaltkreisen verbessert werden kann.

ÜBERBLICK

DH 534.861-681.8/4
Mányoki Z.: Überblick über die Entwicklung der Mikrowellentechnik in der Fernsehtechnik
HÍRADÁSTECHNIKA, 1981. 6.

Die Entwicklung der Mikrowellentechnik in der Fernsehtechnik wird in diesem Artikel überblickartig behandelt. Die Autoren beschreiben die wichtigsten Entwicklungen und Lösungen, die in der Mikrowellentechnik in der Fernsehtechnik verwendet werden.

ÜBERBLICK

DH 621.396.43.821.397.743
Malesiner F.: Überblick über die Entwicklung der Mikrowellentechnik
HÍRADÁSTECHNIKA, 1981. 6.

Die Entwicklung der Mikrowellentechnik wird in diesem Artikel überblickartig behandelt. Die Autoren beschreiben die wichtigsten Entwicklungen und Lösungen, die in der Mikrowellentechnik verwendet werden.

ÜBERBLICK

DH 621.395.6.049.7/621.317.7—52
Nagy S.—Frigyes I.: Überblick über die Entwicklung der digitale Telefontechnik
HÍRADÁSTECHNIKA, 1981. 6.

Die Entwicklung der digitale Telefontechnik wird in diesem Artikel überblickartig behandelt. Die Autoren beschreiben die wichtigsten Entwicklungen und Lösungen, die in der digitale Telefontechnik verwendet werden.

ÜBERBLICK
DK 681.3.409.771.14.002.7.778.155.4
Beke I. — Bereczki F.:
Optimalisierungsmöglichkeiten der Bildabbildung zur Erzeugung der LSI Masken
HÍRADÁSTEchnIKá (Budapest) 1981. Nr. 6.

Immer grössere Forderung bedeutet die Erzeugung der zur Bild-
durch das eigene Schichten werden sichtbaren Wirkung gibt bei den integrierten Strukturkomponenten, wie die Verfasser prüfen in
den über die aufgetretene Streuflächen und die Konstruktion der -
und die reproduzierbare Wirkung auf die redaktionelle Strukturkomponenten,
von GGTT und GMMT empfohlenen für Übertragung der
und stereotopen Programmmodule gleicherweise ange-
denen Erscheinungstyp S 1402—A 401—A.

DK 621.396.43/621.397.743
Malsiner F.:
Mikrowellennachrichtensysteme
HÍRADÁSTEchnIKá (Budapest) 1981. Nr. 6.

Die Fernsehvermittlung der Olympischen Spiele im Jahre 1980 erfolgt im grossen Teil durch die Mikrowellen Nachrichtensysteme
und damit die Erzeugung von Fernsehempfang. — Der Artikel hat eine kurze Durch-
sicht vom Beginn bis heute über die Fernsehvermittlung und die Integritäts-
systeme, macht den konstruktions- und elektronischen Aufbau
der Erscheinungstyp S 1402—A 401—A.

DK 621.395.5.049.7.621.317.7—52
Nagy S. — Frigyes I.:
Prüfung der digitalen telephonentechnischen Karten am Messautomat „TESTOMAT-“
HÍRADÁSTEchnIKá (Budapest) 1981. Nr. 6.

Die Prüfung der digitalen telephonentechnischen Karten am Messautomat „TESTOMAT-“, der erste Teil der Mittelung benach-
kurz über dem im Fernsehen und Automatisierung entwickelten Messautomaten, im Weiteren benutzt sie sich ausführlich mit den elektronischen Einheiten und die Anwendung der Maschinen im BHT aufgestauchten. Zu diesem Beitrag der Ar-
tikel zur BHT verfeinerte, mit dem hilfe der Erzi-
er zu prüfenden Panele bedeutend erweitert wurde.
Diszpécserközpont berendezés

Electronikus társasvonali távbeszélőrendszer kezelőkészlete

Ezek a rendszerek általában egy központi hely irányításával működnek úgy, hogy az irányító személy a mellékállomásokról érkező információk ismeretében intézkedik, illetve lehetősége van a mellékállomásokkal közvetlen, gyors kapcsolat létrehozására. Ezek a diszpécser távbeszélő berendezések alkalmasak konferencia beszélgetések kapcsolására, szükség szerint a beszélgetések magnetofonnal való rögzítetésére is.

A NAD 00.00. típusú diszpécser távbeszélő központ berendezés sugarasan kiépített hálózaton (max. 10 km) levő mellékállomásokkal tart fenn kapcsolatokat.

Az átviteli út a központ és a mellékállomások között 2 huzalos áramkör.

A központ berendezés — az alkalmazott vonalszerelvények típusától függően — mind CB, mind LB készülékhez, mind pedig automata központokhoz csatlakoztatható.

A központ hangosbeszélő végződéssel rendelkezik, amely beszélőkészletre átkapcsolható.

A berendezés kétféle kialakításban max. 20, illetve 39 vonal csatlakoztatására készül.

A 20 vonalas kivitelhez a NAD 70.20 típusú, a 39 vonalashoz a NAD 70.10 típusú kezelőkészlet tartozik.

Helyi vonalaknál a jelzésátvitel 60 V 25—50 Hz-en történik. Közvetlen szerelvényen a max. hurokellenállás 1 kOhm.

Tápfeszültség: 220 V ±10% 50—60 Hz, vagy teleppézsmell 24 V ±10%.

A diszpécser berendezés +5 °C és +40 °C üzemi környezeti hőmérsékletek között, 25 °C-nál méretető legfeljebb 85% relatív páratartalom mellett üzemeltethető.

BHG Híradástechnikai
Vállalat
1509 Budapest Pf.: 2.
Telefon: 453-390