Felelős szerkesztő:
DR. TÓFALVI GYULA

Szerkesztő a szerkesztő bizottság
A szerkesztő bizottság elnöke:
HORVÁTH IMRE

Szerkesztők:
ANGYAL LÁSZLÓ
MÉREY IMRÉNÉ
SZOLLOSI GYÖRGYNÉ

SZEKERESZTY BIZOTTSÁG

HTE
Roavitavészeti Mérey Imréné
Dr. Flesch István
Főtiszti Győr
Gál Ferenc

BGH
Roavitavészeti: Angyal László
Tudományos szerkesztő: Dr. Frajka Béla
Bernhardt Richard, dr. Eisler Péter,
Dr. Gondos György, Horváth Ödön, Küng Miklós,
Laczó Endre, Tóth Györgyi László

MEV
Roavitavészeti: Kászonyi László
Tudományos szerkesztő: Dr. Korenay Teréz
Balogh Albert, Csomai László, Csermann Mihály,
Hidai György, Huszka Zoltán,
Dr. Léget Róbertné, Dr. Móray Géza,
Dr. Molnár György, Schödl Ervin

ORION
Roavitavészeti: Lakabik Béla
Tudományos szerkesztő: Dr. Frigyes István
Gerencz János, Fereczkés Károly, Szabó Sándor,
Szász Géza

REMIX
Roavitavészeti: Hoppel Géza
Tudományos szerkesztő: Dr. Kóvács Géza
Kovács Géza, Mészáros Sándor, Molnár László,

TKI
Roavitavészeti: Dr. Baranyi András
Tudományos szerkesztő: Dr. Lajtha György
Dr. Hénon Tamás, dr. Kása István, Mogyoródy Csaba,
Dr. Sárosy Tamás, dr. Simonov Érnő

TERTA
Roavitavészeti: Bánságh Pál
Tudományos szerkesztő: Dr. Gáspár Géza
Hajdu Tibor, Benedek István, Halmi Gábor,
Hutter Miklós

* Szerkesztőségi ügyekben
* és kéziratokkal kapcsolatban
* felvilágosítást ad: Szollosi Györgyné
* telefon: 495-098

ROVATOK

Egyesületi élet
Roavitavészeti Mérey Imréné

ROVATGAZDÁK

HTE (H)

ROVATTÁRSAK

BEAG

HTV

KONTAKTA

BME

KÖPORC

BRG

EMO

KFKI

TFK

El. szöv.

M. Posta

FMV

ML

GMMA

MM

HFSZ

MFKI

HAGY

TFUNSGRAM

TARTALOM

KESSELYÁK PÉTER—VARGA GÁBOR: AR típusú távbeszélő-
központok alkatrészbeli átalakítására vonatkozó megbízhatósági
naplóval 529

Szenne 535

Beszámoló a IV. Nemzetközi Megbízhatósági és Karbantartthatósági
Konferenciáról (Franciaország, 1984. május 21—25.) (Balogh
Albert) 536

DR. GEFERTH LÁSZLÓ: Specifikáció-érzékenység és gyártási
specifikáció 538

Compstat '84 szimpózium (Prágá, aug. 27—31.) (Kovács János) 543

DR. KOCSIS FERENC: Gyors eljárások a diszkrét Fourier-transfor-
máció számítására. I. rész 544

Könyvismertetés 549

DR. VESZELY GYULA—DR. ZOMBÓRY LÁSZLÓ: Monolit integrá-
ált áramkörök adalékolási és oxidálási technológiai kérdések
kérdéserősítmény vizsgálása. 550

DR. EISLER PÉTER—GÁTMEZEI JÓZSEF: Új módszerek a ha-
gyonmásos kapcsolóberendezések üzemfelügyeletére és karbantar-
tartására 559

Constronic '84 (Budapest, okt. 9—11.) (Bánságh Pál) 563

REMIX: Fémesebb polipropilén kondenzátorok ajánlott termék-
viázastéka '84 564

KONTAKTA: Miniatur és szubminiatur billenőkapcsoló-család 568

Beszámoló a IV. Energiaipari Távközlési Szemináriumról (Siófok,
szept. 19—21.) (Halász Miklós) 572

Alkatrész-személykódul '84 (Siófok, szept. 26—28.) (Brada Ferenc) 573

Tartalmi összefoglalások 575
AR típusú távbeszélő-központok alkatrészsbázisára vonatkozó megbízhatósági tapasztalatok

KESSELYÁK PÉTER—VARGA GÁBOR
BHG Fejlesztési Intézet

ÖSSZEFoglalás
Viszonylag kevés hazai tapasztalatai áll rendelkezésre üzemelő berendezéseken működő alkatrészek számszerű megbízhatósági mutatói
ra vonatkozóan, pedig ezek ismerete nélkülönböztet a gyártmány,
fejlesztésében, valamint a karbantartás és tartalékellátás gazdaságos
tervezéséhez. A cikk ismerteti a BHG és a Szegedi Postaigazgatóság
együttműködésében az LM licence alapján gyártott AR típusú
távbeszélő-központok 5 éves megbízhatósági referenciafigyelése-
ekr — alkatrészszámozásra vonatkozó — legfontosabb számításai
adatát, továbbá rövid ismertetést ad magáról az adatgyűjtő és feldolgo-
pó rendszerre is.

A hazai híradástechnikai alkatrész- és berendezés-
gyártó ipar szintén kevés tapasztalata van arról, hogy termékkel a gyárkaput elhagyas, az üzemeltetés során milyen számszerű megbízhatósági
mutatókkal jellemezhetők. Ennek ismertetésére pedig a piaci versenyképesség felméréséhez, a gyártmány
fejlesztéséhez, a karbantartás és tartalékellátás haté-
kony és gazdaságos megtervezéséhez elengedhetet-
lenül szükség van.

A BHG Híradástechnikai Vállalat a Szegedi Posta
igazgatósággal együttműködve 5 éves megbízhatósági
 referencia megfigyelést folytató LM licence
alapján gyártott crossbar rendszer és postai üzem
ben működő ARF, ARM és ARK típusú központjain,
több között egy 1200 ívpontos ARM tranzitköz-
ponton és egy 11 000 vonalas ARM városi központon — abban a célból, hogy a beépített áramkörök és
alkatrészek megbízhatósági mutatóit, valamint a
karbantartás jellemzőit meghatározza.

Az 1982 decemberében befejezódőt — több száz
milliárd alkatrészora terjedelmű — adatgyűjtés
központjainak nemzetközileg korszerű megbízhatósági
szintjét tanúsította, áramkori és alkatrész szín-
ten egyaránt. Nem célunk foglalkozni a speciálisan
telefontelek alkatrészválasztékkel — így a jel-
fogókkal, kapcsolóképekkel és sávszerelvényekkel, —
hanem csupán néhány, a híradástechnikai ipar egés-
ztért érdekő alkatrészfelszín megbízhatósági adatait
kívánjuk közrebecsülni.

1. A vizsgált központok alkatrészsbázisának
jellemzése

A vizsgált központok alkatrészsbázisa javarészett BHG
gyártása jellegőkőből, kapcsolóképekőből, sávszerel-
vényekből, egyoldalas nyomottatott áramkori lapok-
ból és 20 políusú dugaszokból tevődik össze, másod-
sorban tartalmaz hazai alkatrészgyártó ipar által

Beérkezett: 1984. III. 20. (*)

Híradástechnika XXXV. évfolyam 1984. 12. szám

529
lyen — szikraltó RC-tagok, illetve diódák nyújtottak megfelelő védelmet. Az áramköröki tervezés gondoskodott arról, hogy a beépített alkatrészek névleges terhelhetőségüknek legfeljebb 60%-át legyenek üzem szerűen kihasználva.

2.4. Külön ki kell emelni, hogy az alkatrészek megbízhatóságát kedvezően befolyásoló tényezők közül a legdöntőbb és leghatékonyabban a telefontechnikai áramkörökbe tervezett funkcionális hibatűrő képesség. Ennek a lényege az, hogy az alkatrész minősítésének alapjául szolgáló hibakritérium és az alkatrész kritikus paraméterének funkcionális áramköröki hibát okozó közbőrtéke kő zött mnél nagyobb biztonsági sváv helyezkedik el. Ha ezt a sávot sikerül elég nagyra tervezni, akkor ezáltal az áramkör megbízhatóságát és vele együtt az alkatrész-megbízhatóságot másfél — két nagyságrenddel fokozatjuk annélkül, hogy ehhez az alkatrészek fizikai megbízhatóságát fokozni kellene. A telefontechnikai áramkörökben nagyon sok ilyen jellegű redundancia található, ami kedvezővé teszi az alkatrészek megbízhatóságáról nyerhető tapasztalati képet [1], [2].

Fentiek előrebecsülése után nem lesz meglepő az az adatok, amelyet itt be kivánunk mutatni a 8 évvel ezelélő hazai és import alkatrészbeli telefontechnikai alkalmazásban tapasztalt megbízhatóságáról.

3. A referencia megfigyelés terjedelme

Az egyes alkatrészfélésekre vonatkozó megfigyelesek terjedelmet alkatrészórán kifejezve az 1. táblázat foglalja össze. Megjegyezzük, hogy a táblázat nem tartalmazza a jelfogókat, crossbar gépeket és speciális telefontechnikai szerelvényeket, amelyek együtt megbízhatósági volumen másik 100 milliárd alkatrészóra nagyságrendet tesz ki.

4. Az eredmények értelmezése

Feltételezve, hogy az alkatrészek mibízhatósága időben exponenciális eloszlású, eredmény gyáran mindenütt az alkatrészek mibízhatósági rátájának 60%-os felső konfencia-határát adtuk meg, hiha-

intenzítás egységben, FIT-ben kifejezve. (1 FIT = 10⁻⁸ hiba/ora.) A 60%-os felső konfencia-határ azt jelenti, hogy ha a megfigyeléssorozatot más, de felépítésben azonos AR központokon, hasonló alkalmazási feltételek között megismételjük, akkor az esetek 60%-ában jobb (kisebb) valódi hibaráta értéket tapasztalhatunk, mint a konfencia-határként megadott hibarátaérték.

Az eredményeket azért nem átlagértékben adtuk meg, mert sok alkatrészfélés esetében egyáltalán nem fordult elő hiba a megfigyelés során (r = 0), így ezeknél a mibízhatósági rátá átlagértékeinek (4 = 0) nem volna értelme. A 60%-os konfenciahatár azonban ekkor is értelmezhető, és ez a tény egységes, összehasonlító értékelést tesz lehetővé a különböző alkatrészfélések megbízhatósága között. Az r = 0 hiba alapján számított eredményeket szaggatottan alakíva megjelöltük, figyelmeztetve arra, hogy a megfigyelés továbbfolytatását esetén feltethetően jobb (alkonyahab) hibarátát kaphatjuk.

5. Konkrét eredmények

Az 5 éves referencia legfotossabb tapasztalatait alkatrészafijtánként táblázatokba tömörítettük, amelyek a 2 — 5. táblázatban láthatók. A 2. táblázat az R 527 típusú szénretég-ellenállás mibízhatósági rátáját mutatja — az ellenállás névértékek nagyságrendje szerint olv-tartományokra bontva. Az első tartományba a 31 ohm alatti ellenállások tartozak.

1. táblázat

<table>
<thead>
<tr>
<th>Név</th>
<th>Alkatrész-felület-millió</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB 527</td>
<td>5 000 000</td>
</tr>
<tr>
<td>1N 4007 dióda</td>
<td>227 000</td>
</tr>
<tr>
<td>GE 20 polux - dugasz</td>
<td>57 200</td>
</tr>
<tr>
<td>M180 22 - díszkép</td>
<td>21 700</td>
</tr>
<tr>
<td>B 100 általas</td>
<td>12 800</td>
</tr>
<tr>
<td>Miniatur 1 - oldalas NYAK-lap</td>
<td>19 000</td>
</tr>
<tr>
<td>HIFA PEG 124 faktor kond.</td>
<td>10 700</td>
</tr>
<tr>
<td>Egyéb kondenzátor és fővezető</td>
<td>16 600</td>
</tr>
<tr>
<td>Reed jel fogó</td>
<td>1 280</td>
</tr>
</tbody>
</table>

Híradástechnika XXXV. évfolyam 1984. 12. szám
<table>
<thead>
<tr>
<th>R 527 szénréteg-ellenállás megbízhatósága</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 éves megfigyelés</td>
</tr>
<tr>
<td>(OHM)-tartomány</td>
</tr>
<tr>
<td>(1)+ (10)</td>
</tr>
<tr>
<td>(100)</td>
</tr>
<tr>
<td>(1 k)</td>
</tr>
<tr>
<td>(10 k)</td>
</tr>
<tr>
<td>(100 k)+ (M)</td>
</tr>
<tr>
<td>Együtt</td>
</tr>
</tbody>
</table>

Az 5. táblázatban a különféle elektromechanikai szerelvények megbízhatósági mutatót foglaltuk össze. Igen jó eredmény született a forrasztási pontok megbízhatóságára (0,26 FIT). A többi elem megbízhatósága nem zárkozott fel az elektronikai elemek megbízhatóságához, bár az eredmények abszolút értéken nem rosszak. A rend jelzégek megbízhatősága nem kielégítő.

Külön megjegyzendő, hogy az ezúttal a számítási eredmények, 20 pólusú csatlakozó dugaszok egyenlő olyan hiba sem fordult elő, ami dugaszesert tett volna szükségessé, az érintkezési hibák száma azonban nem volt elhanyagolható. Azt tapasztaltuk, hogy a kalasztrofálás hibára vonatkozó megbízhatósági ráta (= 1 FIT) legalább 2 nagyságrenddel alacsonyabb az érintkezési hibára vonatkozó hibaráthalló (104 FIT per 20 érintkező) a nyomtatott áramköri lapra kapott megbízhatósági adatok nem a mai modern, 2-oldalas BHG nyárgyártási technológiára vonatkoznak.

Valamennyi elektromechanikai szerelvényénél megfigyelhető, hogy megbízhatósági intenzitásuk magasabb az ARM központban, mint az ARF-ben, jól lehet a különbség nem olyan éles, mint az elektronikai elemek esetében.

6. Néhány következtetés

6.1. A referenciamegfigyelés eredményei bebizonyították, hogy ismeretlen vagy bizonytalanság megbízhatósági alkatrészektől is lehet korai megbízhatósági követelményeknek eleget tevő benézést gyártani, ha az alkatrészek működési feltételeit gondosan választjuk meg, alkalmazva a fizikai alátérhelés, a szabványos hibával képeslegényessé válás, a szabványos hibával képeslegényessé válás, a szabványos hibával képeslegényessé válás, a szabványos hibával képeslegényessé válás és az alkatrészek szabadon kibocsátott körülmények nélküli gyártását nyújtotta lehetőségeket.

6.2. A mikroelektronika korszakának kiépülésében fokozott figyelmet kell fordítani a mikroelektronikai alkatrészhatás elektromechanikai szempontok megbízhatóságára, mert ezek az elemek a berendezésgyártás műszaki fejlődésének a jelenlegi fokozatát és a felsőfokú szinteket, kis áramokat átvívó dugaszeszinteket.
3. táblázat

Különbső kondenzátorok megbízhatósága

<table>
<thead>
<tr>
<th>Alkatrész</th>
<th>5 éves megfigyelés volume alkatrészére</th>
<th>Hiba száma, (r)</th>
<th>A megbízhatósági intenzitás 60%-os felső konfidencciahátartára P(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMIX M9001 RC szikra-oltó 600 (\Omega), 470 nF</td>
<td>2,5(\times)10(^9)</td>
<td>2 1 3</td>
<td>3,13 1,32 1,68</td>
</tr>
<tr>
<td>REMIX C223 políészter kondenzátor 250 V, 2,2 (\mu)F</td>
<td>2,83(\times)10(^9)</td>
<td>0 0 0</td>
<td> 0,34</td>
</tr>
<tr>
<td>RIFA PEG 124 elektrolit kondenzátor 10 (\mu)F, 64 V</td>
<td>470,7(\times)10(^9)</td>
<td>1 1 2</td>
<td>11,4 6,77 6,59</td>
</tr>
<tr>
<td>RIFA PFE 216 políészter kondenzátor 39,2 nF, 200 V</td>
<td>106,0(\times)10(^6)</td>
<td>0 0 0</td>
<td>8,96</td>
</tr>
<tr>
<td>REMIX C220 políészter kondenzátor 39,2 nF, 63 V</td>
<td>89,2(\times)10(^6)</td>
<td>0 0 0</td>
<td> 10,65</td>
</tr>
</tbody>
</table>

4. táblázat

Diódák és tranzisztorok megbízhatósága

<table>
<thead>
<tr>
<th>Alkatrész</th>
<th>5 éves megfigyelés volume alkatrészére</th>
<th>Hiba száma, (r)</th>
<th>A megbízhatósági intenzitás 60%-os felső konfidencciahátartára P(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNGSRAM 1N4007 dióda 1000 V, 1 A</td>
<td>9,97(\times)10(^9)</td>
<td>1 3 4</td>
<td>2,0 0,47 0,53</td>
</tr>
<tr>
<td>TUNGSRAM AA 117 dióda 90 V, 15 mA</td>
<td>57,5(\times)10(^4)</td>
<td>0 0 0</td>
<td> 16,5</td>
</tr>
<tr>
<td>Egyéb diódatípusok összesen</td>
<td>132,0(\times)10(^9)</td>
<td>1 0 1</td>
<td>15,2</td>
</tr>
<tr>
<td>Összes diódatípus együtt</td>
<td>10,11(\times)10(^6)</td>
<td>2 3 5</td>
<td>2,92 0,46 0,62</td>
</tr>
<tr>
<td>2 N2905A tranzisztor 60 V, 3 W</td>
<td>66,0(\times)10(^5)</td>
<td>0 0 0</td>
<td> 14,4</td>
</tr>
<tr>
<td>Összes tranzisztor típus együtt</td>
<td>105,7(\times)10(^6)</td>
<td>0 1 1</td>
<td>18,9</td>
</tr>
</tbody>
</table>

5. táblázat

Elektromechanikai szerelvények megbízhatósága

<table>
<thead>
<tr>
<th>Alkatrész</th>
<th>5 éves megfigyelés volume alkatrészére</th>
<th>Hiba száma, (r)</th>
<th>A megbízhatósági intenzitás 60%-os felső konfidencciahátartára P(\alpha)</th>
<th>Megjegyzés</th>
</tr>
</thead>
<tbody>
<tr>
<td>LME RAG 601, RAG 602 REED-jelfogó</td>
<td>57,3(\times)10(^4)</td>
<td>1 2 3</td>
<td>102,6 81,9 73,3</td>
<td> érintkező hiba</td>
</tr>
<tr>
<td>BHG/LME 20-pólusha esatiázó dugasz ezüst- nikkél érintkezővel</td>
<td>950,4(\times)10(^4)</td>
<td>49 46 95</td>
<td>163,5 77,1 104</td>
<td> dugasz cesere</td>
</tr>
<tr>
<td>BHG olvadó biztosíték betét, 0,5–3 A</td>
<td>563,7(\times)10(^9)</td>
<td>4 3 7</td>
<td>33,1 10,4 14,9</td>
<td></td>
</tr>
<tr>
<td>Forrasztási pont</td>
<td>1,88(\times)10(^11)</td>
<td>46</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>BHG 1-oldalas NYÁK-lap, 50 cm(^2)</td>
<td>836,5(\times)10(^6)</td>
<td>4 2 6</td>
<td>15 6,38 8,73</td>
<td></td>
</tr>
</tbody>
</table>

Átlag 79,6 m\(^2\) NYÁK-felületen évente 1 hiba

Híradástechnika XXXV. évfolyam 1984. 12. szám
zók megbízhatóságát fel kell zárkóztatni a mikroelektronikai többi alkatrészeken megbízhatósági szintjéhez. Ehhez elsősorban az szükséges, hogy a mikroelektronikai jellegők, kapcsolók és csatlakozók dittartam-visszázavarok során tegeznek el olyan új, a döntés előtt megbízhatósági követelményeknek, amelyek főként milliónsoros feszültségek és mNa nagyságrendű áramok biztonságos és stabil átvitelére vonatkoznak.

6.3. Szeretnénk elolvasztani azt az illúziót, hogy egy berendezésbe beépített valamennyi alkatrész típusra külön megbízhatósági mutatót lehet meghatározni. A hazai viszonyok között nagy volumenűnek számító AR megbízhatósági referenciaegyüttes bebizonyította, hogy

A legfontosabb meghibásodási intenzitásértékeket (alkatréztípusként, illetve családonként, vegyesen) nagyság szerint sorba rendezve a 6. táblázatban adtuk meg. Az adatok itt útmutatják a látogatókat — kivéve a C223 polijeszter kondenzátor hibárállapotját. (Énél r=0 hiba miatt itt és a 60%-os felső konfindentciáhatárt tiltottuk fel.)

A megbízhatósági adatok közreébocsátása után nem érdemtelen röviden áttekintést nyújtani arról az adatgyűjtő rendszerrel, amelyben az eredmények megszülettek.

7. A megbízhatósági adatgyűjtés és feldolgozás módszere
A hazai üzemeltető, karbantartó vállalatok és az berendezésgyártók szervezet viszonyában az elhárított hibák általában csak az anyagköltség és munkaidő ráfordítás elszámolása céljából adminisztrálják, de a gyártási megmérlese és igazolások korlátozott, akár kis mértékben is meggyőződési és határáttakarókat nem gyűjítik. Arra is több példa adható, hogy az adminisztratív úton, általánosan elrendelt megbízhatósági adatgyűjtés megbuktat, mert a karbantartók

— írótatol a „papírmunkádíj”;
— nem voltak erdékeltek abban, hogy — akár csedély mértékű — többletmunkát végezze;
— felalakultak alacsony szakmai színvonalon, hiányosan végezték;
— az adatokat meghamisították, hogy mulasztásokat „közmetikázzák”, vagy hogy többletjövedelemre tegeznek szert.

A BHG a megbízhatósági adatgyűjtés megszervezésekor kezdettől foga kétszempontot tartott szem előtt:

— adatgyűjtést csak megfelelő szakmai színvonal, rátermett és személy szerint kijelölt karbantartó végezhet, adott megbízhatósági referencia körzetében; személy- és helyvállalat nélkül, általánosan rendelt adatgyűjtés nem elérhető;

— a kijelölt karbantartókat az adatgyűjtéssel járó többletmunkáért évente anyagi ösztönzést, számlázást és számlázásért, kikapcsolja az adatok „tänttermelésében”, „közmetikázásában” vagy elhalaltában való esetleges érdekeltséget.

Ilyen feltételek mellett került sor a szegedi AR göckerzet sikeres megbízhatósági referenciaegyüttese 14 postai karbantartó bevonásával. Az adatgyűjtés és feldolgozás módszere a BHG Fojtítő Intézet rendszerszabályozási főosztályán dolgozott különböző adatokat az adatok R 20 által bonyolított feldolgozásához a BHG Számlázóközpont nyújtott segítséget. A kitétés többnyire a megfelelő „elférézve...”
Részlet a számítógépes eredménytablák jegyzékéből

<table>
<thead>
<tr>
<th>Soranum</th>
<th>Tablásanum</th>
<th>Megnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Az „eszélés forrása” kódok spektruma</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>A hibászilások körzeti idők (TBF) eloszlása</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>A hibánkénti hibakeresési idők eloszlása</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>A hibánkénti hibakeresésre fordított összes karbantartási munkaidők eloszlása</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>A hibánkénti javításra és ellenőrzésre fordított idők eloszlása</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>A hibánkénti javításra és ellenőrzésre fordított összes karbantartási munkaidők eloszlása</td>
</tr>
<tr>
<td>7</td>
<td>20–11</td>
<td>A hibászilások üzemkéses idők eloszlása</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>A hibánkénti forgalomáterzés képesség csökkenésének eloszlása</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>Az „üzemzavar megnevezése” kódok spektruma</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>Az „üzemzavar forráséhely” kódok spektruma</td>
</tr>
<tr>
<td>11</td>
<td>32A</td>
<td>A különféle áramkörí jelű keretekben elszét hibák aránya az összeshez képest</td>
</tr>
<tr>
<td>12</td>
<td>32D</td>
<td>A különféle áramkörí jelű keretek meghibásodási intenzitása</td>
</tr>
<tr>
<td>13</td>
<td>34/37/41A</td>
<td>A különféle áramkörí jelű sanakban tapasztalt hibák szálszakaszos aránya</td>
</tr>
<tr>
<td>14</td>
<td>34/37/41B</td>
<td>A sáv szintű egységek „neme kóddal” jelzett csoportjában előfordult hibák szálszakaszos aránya</td>
</tr>
<tr>
<td>15</td>
<td>34/37/41D</td>
<td>A különféle áramkörí jelű sávok meghibásodási intenzitása</td>
</tr>
<tr>
<td>16</td>
<td>35/38/42/45A</td>
<td>A különféle szerelvényekben tapasztalt hibák szálszakaszos aránya</td>
</tr>
<tr>
<td>17</td>
<td>35/38/42/45B</td>
<td>A szerelvények „neme kóddal” jelzett csoportjában tapasztalt hibák szálszakaszos aránya</td>
</tr>
<tr>
<td>18</td>
<td>35/38/42/45C</td>
<td>A különféle rájukként szerelvényekben tapasztalt hibák szálszakaszos aránya</td>
</tr>
<tr>
<td>19</td>
<td>35/38/42/45D</td>
<td>Szerelemek meghibásodási intenzitása</td>
</tr>
<tr>
<td>20</td>
<td>43/44/46/47B</td>
<td>Az alkatrészek „neme kóddal” jelzett csoportjában előfordult hibák szálszakaszos aránya</td>
</tr>
<tr>
<td>21</td>
<td>43/44/46/47C</td>
<td>A különféle rajzsszám alkatrészekben tapasztalt hibák szálszakaszos aránya</td>
</tr>
<tr>
<td>22</td>
<td>43/44/46/47D</td>
<td>A különféle rajzsszám alkatrészek meghibásodási intenzitása</td>
</tr>
<tr>
<td>23</td>
<td>53</td>
<td>A „hiba megjelenési formája” kódok spektruma</td>
</tr>
<tr>
<td>24</td>
<td>52</td>
<td>A „hiba oka” kódok spektruma</td>
</tr>
<tr>
<td>25</td>
<td>53</td>
<td>A „hiba elhárításmódja” kódok spektruma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soranum</th>
<th>Tablásanum</th>
<th>Megnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>14+18/30</td>
<td>Az „üzemzavar megnevezése” kódokhoz tartozó hibakeresési+ jav. ésell. idők súlyozott átlaga</td>
</tr>
<tr>
<td>27</td>
<td>14+18/31</td>
<td>Az „üzemzavar forráséhelye” kódokhoz tartozó hibakeresési+ jav. ésell. idők súlyozott átlaga</td>
</tr>
<tr>
<td>28</td>
<td>14+18/51</td>
<td>A „hiba megjelenés formája” kódokhoz tartozó hibakeresési+ jav. ésell. idők súlyozott átlaga</td>
</tr>
<tr>
<td>29</td>
<td>14+18/52</td>
<td>A „hiba oka” kódokhoz tartozó hibakeresési+ jav. és ell. idők súlyozott átlaga</td>
</tr>
<tr>
<td>30</td>
<td>14+18/53</td>
<td>A „hiba elhárításmódja” kódokhoz tartozó hibakeresési+ jav. és ell. idők súlyozott átlaga</td>
</tr>
<tr>
<td>31</td>
<td>25/30</td>
<td>Az „üzemzavar megnevezése” kódokhoz tartozó forg. áteresztő képesség csök. súlyozott átlaga</td>
</tr>
<tr>
<td>32</td>
<td>23/52</td>
<td>A „hiba oka” kódokhoz tartozó forg. áteresztő képesség csökk. súlyozott átlaga</td>
</tr>
<tr>
<td>33</td>
<td>32A/14+18</td>
<td>A különféle áramkörí jelű keretekben tapasztalt hibákhoz tartozó hibakeresési+ jav. ésell. idő</td>
</tr>
<tr>
<td>34</td>
<td>32A/23</td>
<td>A különféle áramkörí jelű keretekben tapasztalt hibákhoz tartozó forg. áteresztő képesség csökk.</td>
</tr>
</tbody>
</table>

válasz aláhúzását igényelte cseleve. Az adatgyűjtés és feldolgozás kiterjedt a rendszer- és áramkör meg- bizthatóság, a karbantartathatóság és használatosság szempontjaira. Ezen kívül az áramkör és alkatrész-megbízhatóságú mutatók meghatározásához szükség volt számos, ún. hálózat gyújtésére és feldolgozásra. Ki kellett dolgozni emettel a hibák helyének egyértelmű behatárolását és számítógépi kódolását lehetővé tevő hierarchiarendszert, amely egyuttal alkalmas a központokba beépített elemek darabszámaiak pontos meghatározására is.

A megfigyelty nagy bonyolultságú telefonközpontok indokoltak, hogy rendszertéchnikailag szinte borom- va kezeljük azokat. Őszintes hierarchiarendszert dolgoztunk ki ahhoz, hogy a meghibásodások helyét egyértelműen megjelöljessük. Ez alapkerdés volt a meghibásodási referencia adatgyűjtés beindításához. A hierarchiaszintek a következők: 1. keret szint; 2. áramkör szint; 3. sáv szint; 4. szerelvény szint; 5. alkatrész szint. A szinteken belül egység, illetve alkatrész családokat határoztunk meg. A telefonközpontokban levő összes egységet és alkatrész fel- térképeztünk, és minden hardware elemet valame-
Szemle
Összeállította: GÁL FERENC

Plac kutatást végeztek az NSZK-ban a felhasználói áramkörök placának várható alakulásáról. 1982 és 1992 között a felhasználói áramkörök piaci részesedése 24%-ról 37%-ra növekszik. Ezen belül vizsgálták a két alapvető eljárással, a saját kialakítású logikai cellák és a szabványos cellák alkalmazásával készülő áramkörök jövőjét is. Míg a saját fejlesztésű logikai cellákkal építkező áramkörök részaránya 1%-ról 28%-ra emelkedik. Ez 5,5 milliárd dollárnak felel meg. Erről a piacra az jellemző, hogy csak kevés olyan vállalat van, mely egyénel több eljárást tud alkalmazni. Így a felhasználók egy mesterszaritott szállítót nagyon nehezen kaphatnak semmilyen étkezést, hogy sajátos lehetőségeikhez melyik eljárást lenne a legalacsonyabb. Jellemző továbbá, hogy a szabványos cellákkal építkező felhasználói integrált áramkörök gyártóinak jelenleg a kis konkurencia következtében még viszonylag szabad kezük van az árak alakításában.

(Der Elektroniker, 1983. 13.)

(Electronics Industry, 1983/19.)

Plac kutatást végeztek az NSZK-ban a felhasználói áramkörök placának várható alakulásáról. 1982 és 1992 között a felhasználói áramkörök piaci részesedése 24%-ról 37%-ra növekszik. Ezen belül vizsgálták a két alapvető eljárással, a saját kialakítású logikai cellák és a szabványos cellák alkalmazásával készülő áramkörök jövőjét is. Míg a saját fejlesztésű logikai cellákkal építkező áramkörök részaránya 1%-ról 28%-ra emelkedik. Ez 5,5 milliárd dollárnak felel meg. Erről a piacra az jellemző, hogy csak kevés olyan vállalat van, mely egyénel több eljárást tud alkalmazni. Így a felhasználók egy mesterszaritott szállítót nagyon nehezen kaphatnak semmilyen étkezést, hogy sajátos lehetőségeikhez melyik eljárást lenne a legalacsonyabb. Jellemző továbbá, hogy a szabványos cellákkal építkező felhasználói integrált áramkörök gyártóinak jelenleg a kis konkurencia következtében még viszonylag szabad kezük van az árak alakításában.

(Der Elektroniker, 1983. 13.)

(Electronics Industry, 1983/19.)

Az amerikai Strategic Inc. cég szerint a CMOS technológiával készülő áramkörök világmérnöki piaca 1990- re elérheti a 26,8 milliárd dollárt. A legjelentősebb változást az IC-parban az NMOS dinamikus RAM-ok megjelenése és ipari elfogadása jelentette. Az elkötvekész néhány évben a CMOS technológia az NMOS helyére lép minden alkalmazási területen. A CMOS előnye a sebességben, a teljesítményben, a megövezkedett biharzéktelenségben (az alfa részecskék bevezetése következtében), és nem utolsósorban a funkciókra számított alacsonyabb költségekben jelentkezik. Az amerikai és japán vállalatok ma már nagyteljesítményű CMOS-chippeket gyártanak. Japán azonban nem tudja az USA-fő telephelyén, hogy az USA a CMOS technológiát a mikroprocesszorokra is alkalmazza.

(Prodinform Tájékozotó – VH-52/83)

* * *
Beszámoló a IV. Nemzetközi Megbízhatósági és Karbantarthatósági Konferenciáról
(Franzia ország, 1984. május 21–25.)

A franciaországi Perros-Guirec-ben negyedik alkalommal rendezték meg a nemzetközi részvételi megbízhatósági konferenciát. Ez a rendezvény több vonatkozásban — a tématételeket és az egyes részvétő szakemberek személyét is figyelembe véve — szoros kapcsolatban van a hazai hasonló témájú konferenciával (Megbízhatóság az elektronikában szimpozium). Ezért a francia konferencia szervezésével és lebonyolításának technikai kérdéseivel kapcsolatos tapasztalatok, amelyekre jelen beszámoló nem tér ki, közvetlenül hasznosíthatók az 1985-ben megrendezésre kerülő Recletronic 85 szimpoziumon. A francia konferencia műszaki-tudományos eredményeinek rovid összefoglalásában meg kell említeni, hogy a konferencián 26 ország több, mint 600 szakembere vett részt. Az elhangzott 120 előadás (hagyomány előadás, poszter-előadás és űn., „találkozó” előadás) témaválasztása, az előadásokat követő igen élénk vita és a neves külföldi szakemberek véleménye alapján megállapítható volt, hogy a szakterület legfontosabb fejlődési irányait a következők:

— integrált áramkörök minőségének és megbízhatóságának biztosítása és az előzők szint igazolása-ra vizsgálati rendszer kidolgozása,
— elektronikai alkatrészek és alapanyagok vizsgálat a gyártónál és a felhasználónál egyaránt, a felhasználók követelményei,
— hibafizikai vizsgálatok a hibamechanizmusok feltárására,
— rendszerek megbízhatóságának, karbantarthatóságának és használatoságának értékelése költségtagyöző függvényével,
— a Bayes-módszer és a faktorialis analízis módszereinek alkalmazása a megbízhatóságú jellemzők meghatározására,
— software megbízhatóságú modell kidolgozása,
— megbízhatóság előrejelzése és az üzemeltetési megbízhatóság értékelése.

Az előzőekben felsorolt tématételek közül ki kell emelni az integrált áramkörök megbízhatósági kérdéseivel foglalkozó előadásokat. Ezek a beszámolók részletesen tárgyalják többek között a DIFOX 1 technológiájának megvalósított gyors hipotális integrált áramkörök megbízhatóságának értékelését, a VLSI és gate-array áramkörök minőségének meghatározási módszerét, valamint az integrált áramkörök felhasználónál végzett vizsgálatokkal kapcsolatosan eljáráskot ismertetnek az LSU áramkörök (64 Kbits EPROM-ok és 64 Kbits dinamikus RAM-ok) felhasználói szempontú megbízhatósági értékelésére vonatkozóan.

A DIFOX 1 technológiával készített bipolaros integrált áramkörök magas hőmérsékleten (275 °C réteghőmérsékleten) végzett 8000 órás vizsgálatából 2.10⁻⁷/óra meghibásodási ráta értéket határoztak meg. A legfontosabb hibamechanizmus — a francia előadók megállapítása szerint — az elektronnavigáció volt. Bajgiet (Franccország) gate-array áramkörök 125 °C hőmérsékleten végzett 2000 órás vizsgálatairól számolt be. A CMOS technológiáival előállított áramkörök megbízhatóságát a technológiafolyamat szigorú ellenőrzésével biztosították, így érték el, hogy a megbízhatósági vizsgálatok már az eszközök kiváló minőségét igazolták.

Számos japon (Ihata, Kawanaka, Yoshida) és olasz (Bambilla, Benedini, Pollino) felhasználó vállalatnál dolgozó megbízhatósági szakemberek foglalkoztak a főként műholdakban alkalmazására kerülő mikroelektronikai eszközök megbízhatóságának vizsgálatával. Megállapították, hogy az eszközök szállítóinak minősítésének túlnövekedése szükséges a megfelelő hibamechanizmusok megtagadására, a kutatást követően a 200 °C és 250 °C hőmérsékleten végzett 3000 órás vizsgálatából, a töltés előzetes hibamechanizmusához tartozó 0.7 eV aktíváció energia figyelembevételével, 55 °C-ra extrapolaáltak az eredményeket, így 50 fit=5×10⁻⁸/óra meghibásodási ráta értéket kaptak, amely a felhasználói követelményeknek megfelelő érték.

CMOS integrált áramkörök esetében mind a gyártónál, mind a felhasználónál végzett vizsgálatok közül legfontosabbnak a 85 °C hőmérsékleten, 85% relatív légndvesesség-tartalom melletti vizsgálatokat tekintették, mivel ezek a legalaszcababbok az alumiínum fémzés korai szakadása, fémzéses hibák kiváltását elkerülése érdekében (Rooney [USA], ITO [Japán]).

Az integrált áramkörök megbízhatóság és minőség-biztosítási tevékenysége különös jelentőséget szerepel a minőség-biztosítását foglalkozó kerekasztalvitányban is. Arciszewski (Franccország) vaidító előadásában külön kitűnt a nagy bonyolultság memóriaik és memóriaik meghibásodásának fontosságára már a technológiafolyamatok ellenőrzése során, majd ismertette a nemzetközi szervezetekben (például IEC) kidolgozott vizsgálati rendszereket és javasolt szükséges vizsgálati módszereket. Az előadást követő vitában a hozzájárulók szükségesen korábban miatt elfogadott, hogy az egyes minőség-jellegű vizsgálati sorozatokhoz — az USA-ban kidolgozott rendszerhez hasonlóra — a korábbi rendszerhez hasonlóan — Európában is rendelkeznek hozzá minőségi eszméltetéseket, illetve minőségét tettek ki. Híradóstechnika XXXV. évfolyam 1984. 12. szám
Rubat (Franciaország) a VLSI áramköri minőségbiztosítás során feltétlenül szükségesnek tekintette a scanning elektromikroszkóp használatát. Birolini (Szváj) egy független vizsgáló intézetben végzett tevékenység tapasztalatairól számolt be. Rámutatott arra, hogy az IC-felhasználóknak kereskedelmi minőségi eszközök esetében 100%-os idegénru ellenőrzést és szűrővizsgálatot kell elvégezniük. LSI és VLSI eszközök esetében azonban a bonyolultságból adódó mérsékrechnés gi miatt és az újabb — miniatúrizálásból adódó — hibamechanizmusok feltárása érdekében a vizsgálatok elvégzésére a független vizsgáló intézeteket kell felkérniük.

Az előadások egy jelentékeny része foglalkozott a megbízhatóság előrejelzés kérdéséivel, valamint az üzemeltetési adatok értékelésével. A felhasználói tapasztalatok fontosságát emelte ki Degrade (Franciaország) és rámutatott arra, hogy a gyártó és felhasználó közötti együttműködés hogyan csökkenti az üzemeltetés során megfigyelt meghibásodások százalékos arányát. A telefonközpontok és az azokban felhasznált elektronikai alkatrészek üzemeltetési megbízhatóságát értékelte több előadás, így RYDBECK (Svédország), DUTT (NSZK), és LELIEVRER-MONFORT (Franciaország). Megállapították többek között, hogy még LSI áramköri esetében is 10^-8/óra nagysárgrendű meghibásodási rátát figyeltek meg. A

műanyag tokozású eszközök esetében a meghibásodások oka az esetek 60%-ában a korrozió volt.

Az elméleti tématerületeken, így a matematikai-statistikai módszek alkalmazása területén egyre fontosabb szerepet kap a Bayes-módszer és a faktorális analízis módszereinek alkalmazása (I. HRYNIE-WICZ [LNK], Carlotti [Olaszország], Boulet [Franciaország]), Masude (Japán) egyszerű módszert ismertetett a Weibull-elsőság paraméterének becsülésére rendezett mintaelemekből.

A rendszer-megbízhatóság értékelése területén a rendszer hatékonyság számításával foglalkozott Behmann (Kanada), Fischer (NDK), az angol Feather-thone pedig a rendszer-megbízhatóság szimulációs kérdéseit tárgyalta.

Végezett a software megbízhatóságát jellemző modelllek kapcsolatos előadást kell megéníteni, amelyben a japán Ohba a nem-homogén Poisson-folyamatok felhasználásával modellizte a software hibákat. Decroix (Franciaország) pedig a software és hardware megbízhatóság értelmezése közötti különbséget mutatott rá. Hangsúlyozta, hogy a software megbízhatóság meghatározása során figyelembe kell venni azt a tényt, hogy degradációs meghibásodásokkal az esetben nem kell számolni.

Balogh Albert

Híradótechnika XXXV. évfolyam 1984. 12. szám
A specifikáció-érzékenység a kihozatalnak a specifikáció szerinti érzékenység, segítségével a kihozat megváltozás fülböző specifikációiból változtatások hatására amellett számítható ki, hogy újabban, újabban statisztikus analízisel kellene végezni. A környezet hatásoknak kitett áramköreik jellemző megváltoznak, ezért az eredetéhez száraz, úgynevezett gyártási specifikációt kell előírunk, hogy a belköztéri változásnoknak tartalkot képezzünk. E gyártási specifikációt szintén a specifikáció-érzékenység segítségével határozhatjuk meg algoritmusikus módon az eddigi heurisztikus megőrzéseket helyett.

Elektronikus áramköreök gyártását gazdaságosabban tevő egyik lehetőség a tolerancia-központosítás[1–3], amelyet alkalmazva úgy változtatjuk meg az áramköri elemek névleges értékét és toleranciáját, hogy a kihozatal a lehető legnagyobb, a költség a lehető legkisebb legyen. A tolerancia-központosítással tehát az áramköretervező mindent megért azért, hogy a leggazdaságosabb áramkört állítsa elő az adott fél, változtathatatlan specifikációhoz.

A rendszertervező oldalára azonban más a helyzet, a specifikáció változtatható. Egy rendszer különböző áramkörekből áll, amelyek specifikációt sokféle képpen írhatjuk elő oly módon, hogy az egész rendszerre nézve a specifikáció ugyanaz maradjon. Eppen ezért hasznos lehet a rendszertervező számára olyan információ, hogy melyek azok a kritikus frekvenciák, amelyeken a specifikáció nehéz tartani. Ezek azok a frekvenciák, amelyek a kihozatalt erősen befolyásolják. Amennyiben a rendszertervező számszerű információt is kap arról, hogy a specifikáció megváltozatása milyen mértéken hat a kihozatalra, eldöntheti, hogy szükséges-e, ill. lehetséges-e a specifikációt megváltoztatni.

A következőkben először a kihozatalnak a specifikáció megváltozása szerinti érzékenységét (röviden specifikáció-érzékenységet) defináljuk, s megadjuk a kiszmáitást módot differenciális és nagy változásos esetben[4–6].

A specifikáció-érzékenység fontos alkalmazása az úgynevezett gyártási specifikáció meghatározása. A környezeti hatásnak, hőmérséklet-, nedvességváltozásnak, ill. öregedésnek kitett áramköreik paramétereinek értéke megváltozik a gyártáskori értékekhöz képest. Emiatt azonban az áramkör jellemzői is megváltoznak. Ebből következik, hogy gyártáskor szigorúbb specifikációt, az ún. gyártási specifikációt kell teljesítenie az áramkörnek, mint az eredetit, hogy tartalkot képezzünk a fent említett változások számára.

Az eddigi heurisztikus módszerek helyett a specifikáció-érzékenység segítségével a gyártási specifikáció

1. A specifikáció-érzékenysége

Bármely esélyedő érzékenységet definiálhatunk a következő módon (abszolút érzékenység):

\[S_i = \frac{\partial Y}{\partial p_i} \]

ahol \(Y = f(p_1, p_2, \ldots, p_n) \) és \(p_i \) a független változó. A definíció csak azt kivánja meg, hogy az \(Y \) függvény deriválható legyen \(p_i \) szerint. Eztünkben a kihozatal, a független változó pedig a specifikáció. Könnyen belátható, hogy a kihozatal a különboző frekvenciákon a specifikációknak folytonosan deriválható függvénye. Így a definíció alkalmazható.

Ugyancsak definiálható a gyakorlat számára fontos eset, amikor is a specifikációt véges nagy \(\Delta p \)-vel változtatjuk meg:

\[S_i^\Delta = \frac{\Delta Y}{\Delta p_i} \]

ahol \(\Delta Y \) a kihozatalnak a tényleges megváltozása akkor, ha a specifikációt \(\Delta p \)-vel változtatjuk meg. \(S_i^\Delta \) a nagyváltozási érzékenységnek nevezhetjük.

\[Y = f(e_1, \ldots, e_m) \]

Összefüggés megadása explicit formában szinte lehetetlen, nehézségi fokában összefüggő ez az \(Y = f(e_1, \ldots, e_m) \) összefüggés felírásával. Ez utóbbi a kihozatal, mint az áramköri elemek és toleranciák függvényét adja meg. E függvény a tolerancia-központosítás célfuggvénye. A tolerancia-
központosításnál sem törekedtünk arra, hogy a kihozattal explicit formában felírjuk, hanem közelítő módszereket alkalmaztunk: statisztikus és determinisztikus eljárásokat. Mivel a statisztikus módszerek a tolerancia-központosításban beváltak, ítt is ezeket fogjuk alkalmazni.

2. Differenciális specifikáció-érzékenység

Vizsgáljuk a kihozattal az i-edik frekvencián! Legyen egy p_i^- alsó és egy p_i^+ felső specifikációs pont! Tekintsük ezen az i-edik frekvencián az F_i hálózatfüggvény H_i valószínűségsűrűség függvényét (1. ábra). A specifikációs pontokat szintén feltüntetjük. Az F_i hálózatfüggvény $F_{i_{\text{min}}}$ minimum és $F_{i_{\text{max}}}$ maximum értékei az áramkör elemeik és toleranciák ismeretében határozhatók meg.

Tételezzük fel átmenetileg, hogy csak ezen az i-edik frekvencián van specifikáció és a többin nincs! Ebben az esetben a kihozatal az alábbi módon fejezhető ki:

$$\frac{r_i^+}{r_i^-} = \int_{F_{i_{\text{min}}}}^{F_{i_{\text{max}}}} H_i(F_i) \, dF_i$$

$$Y = \frac{r_i^+}{r_i^-} = \int_{F_{i_{\text{min}}}}^{F_{i_{\text{max}}}} H_i(F_i) \, dF_i$$

(3)

azaz a p_i^- és p_i^+ specifikáció belül levő jó áramköröket arányítjuk az összes áramkörhöz végzeten sok legyártott áramkört felételezve. Normalizáljuk a H_i valószínűségsűrűség függvényt az áramkörök összességéhez, azaz a nevező legyen egységnyi!

Terjesszük ki most már a specifikációt a többi frekvenciára is! Ezért be kell vezetnünk az 1. ábrán és a (3) kifejezésbe azt, hogy vajon a többi specifikációt teljesíti-e az áramkör vagy sem. E célból egy második, G_i-vel jelölt valószínűségsűrűség függvényt vezetünk be, amely azt azt tartalmazza F_i bármely értékére, hogy milyen valószínűségsűrűséggel tértik meg az áramkörök a többi, egy, kettő vagy az összes specifikációt. G_i-t szintén az áramkörök összességére normalizáljuk. G_i bevezetésével igy az összes specifikációt összfogva integráljuk az H_i-et.

2. ábra. A H_i és G_i valószínűségsűrűség függvények figyelembe vettük: az i-ediket H_i^--vel, az összes többit összegezve G_i-vel (2. ábra).

A kihozatal egyetlen frekvencián H_i^--vel és G_i-vel kifejezve kapjuk az

$$Y = \int_{F_{i_{\text{min}}}}^{F_{i_{\text{max}}}} \{H_i(F_i) - G_i(F_i)\} \, dF_i$$

(4)

összfogást, azaz az i-edik frekvencia specifikációt jelieuő áramkörök ből le kell vonni azokat, amelyek legalább egy másik specifikációt megsértetnek.

A kérdés most az, hogyan változik meg a kihozatal, ha az i-edik frekvencián megváltoztatjuk az egyik specifikációt, miközben a másik nem változik. A kihozatal egyetlen frekvencián, mint egyetlen specifikáció (vagy az alsó, vagy a felső) függvénye megkapható, ha csak az egyiket tekinthetjük változnak, a másikat rögzítenjük:

$$Y = f(p_i^-) \mid p_i^+ = 0; \quad Y = f(p_i^+) \mid p_i^- = 0.$$ \hspace{1cm} (5)

A (4) kifejezésből a specifikáció-érzékenység az alsó specifikációra:

$$S_i^- = \frac{\partial Y}{\partial p_i^-} = H_i^--G_i^-,$$ \hspace{1cm} (6)

a felsőre:

$$S_i^+ = \frac{\partial Y}{\partial p_i^+} = H_i^+-G_i^+,$$ \hspace{1cm} (7)

ahol H_i^- a H hisztogram, míg G_i^- a G_i hisztogram értékeit jelöli a p_i^- helyen stb.

3. Nagyváltozású specifikáció-érzékenység

Az előző pont eredményeivel kapcsolatban két probléma merül fel. Az egyik az, hogy a valószínűségsűrűség függvényt nem ismerjük. A másik az, hogy a specifikációt csak véges értékekkel változtathatjuk, hiszen csak ennek van értelme. Ily módon a véges változtatás a fontosabb számunkra. Szerencsére a két probléma egyszerre oldható meg.

A valószínűségsűrűség függvényeket hisztogrammal közelítjük. Ehhez egy Monte Carlo, statisztikus
analiziszre van szükségünk, amelynek során az áram-köri elemek véletlenszerűen kapnak értéket toleranciájukon belül. Minden egyes áram-köri mintának meghatározuk az F_i hálózatfüggvényét, s minden frekvencián külön-külön ellenőrizzük, hogy teljesíti-e a specifikációit. Minden frekvencián felépítjük a H_i és G_i haszogramokat, amelyekkel a H_i és G_i valószínűségsűrűség függvényeket közelítjük. A haszogramok intervallumainak ΔP_i méretét a tervező adja meg. Ez egyenlő lehet az értékekkel, amellyel a specifikáció változtatható (3. ábra).

Jelöljük a H_i és G_i haszogramoknak a $\left[p_{i+}, p_{i}^{*} + \Delta P_{i}^{*}\right]$ intervallumbeli értékét H_{i+}^{+} és G_{i+}^{+}-val, amelyek tulajdonképpen:

$$H_{i+}^{+} = \int_{p_{i}^{+} + \Delta P_{i}^{*}}^{p_{i+}} H_i(F) \, dF, \quad G_i(F) = \int_{p_{i}^{+} + \Delta P_{i}^{*}}^{p_{i+}} G_i(F) \, dF$$

azaz a következő kifejezés - eltekintve a közelítés pontatlanságától - valóban a kihozatal tényeges megváltozását adja meg akkor, ha a specifikációt ΔP_i-szal változtatjuk meg:

$$\Delta Y = H_{i+}^{+} - G_{i+}^{+}$$

A közelítés pontossága a minták számának növelésével fokozható.

4. Illusztratív példa

Egy áramkör Monte Carlo analízise eredményeképen 89%-ot kapunk a kihozatal becsülésére. Az áteresztő tartományban reflexiós csillapítás, míg a záróban csillapítás az előírás. Tehát csak alsó specifikáció (p_{i}^{*}) létezik, s így a kihozatal megváltozásának számításához a p_{i}^{*} előírástól balra eső intervallumok az érdekesebb. Az illusztráció céljára nem a haszogramokat, hanem az egyes intervallumokat felvetett értékeit tüntettük fel az 1. táblázatban. A hozzászük tervezési és beállítási érdekében.

1. táblázat

A kihozatal százalékos megváltozása a specifikáció megváltoztatásának hatására

<table>
<thead>
<tr>
<th>Az intervallumok százalékos értékei (méret: 0,5 dB)</th>
<th>A kihozatal százalékos megváltozása az alábbi értékű specifikáció-változásra</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_4</td>
<td>I_3</td>
</tr>
<tr>
<td>H_1</td>
<td>0</td>
</tr>
<tr>
<td>G_1</td>
<td>0</td>
</tr>
<tr>
<td>G_2</td>
<td>0</td>
</tr>
<tr>
<td>G_3</td>
<td>0</td>
</tr>
</tbody>
</table>

3. ábra. A H_i és G_i függvények közelítése haszogramokkal

1, 1,5 és 2 dB specifikáció-változásnak felel meg. Például a 3. frekvencián 9%-a az áramköröknek szerint meg a specifikációt. E 9%-ot a H_3 haszogram I_1, I_2 és I_4 intervallumok értékeinek összegzésével kaptuk meg. A G_1 haszogram I_1 intervallum mutatja továbbá, hogy ebből a 9%-ből 2% más frekvencián sem teljesít a specifikációt. Így tehát a kihozatal változása 4%, 6%, 7%, ahonnan a specifikációt 0,5, 1, ill. 1,5 dB-ra enyhítjük.

5. A gyártási specifikáció

Az áramkői paraméterek értéke környezeti hatások-ra megváltozik. Ilyen hatások lehetnek pl. az áram-köri elemek öregedése, a hőmérséklet megváltozása stb. A paraméterváltozás nyomán az áramkör jellemzője, pl. a csillapítás, szintén megváltozik. Ebből azonban az következik, hogy egy adott specifikációra tervezett áramkör általában nem teljesíti azt környezeti hatások alatt. Ezért egy úgynevezett gyártási specifikációt kell meghatározni a gyártási specifikációt úgy definiálni kell, hogy ha egy áramkör a gyártáskor, gyártási feltételek mellett — hőmérséklet stb. — teljesíti a gyártási specifikációt, akkor az eredeti specifikációt környezeti hatások alatt is teljesíteni fogja. A gyártási specifikációt a specifikáció érzékenység felhasználásával határozhatjuk meg.

Az R_A megengedett tartomány, ha a környezeti hatásokat is figyelembe kívánjuk venni, azon pontok halmazán az n-dimenziós paraméter térben, amelyekhez tartozó áramkőrök mind gyártáskor, mind környezeti hatások alatt teljesíthetik az eredeti specifikációt. Vizsgáljuk meg, hogyan alakul ki a megengedett tartomány!

Az áramkői paramétereknek a gyártáskori értékeit tekintjük és ábrázoljuk a továbbiakban.

Híradástechnika XXXV. évfolyam 1984. 12. szám
A tolerancia-központosítás feladata a névleges értékek és toleranciák meghatározása, más szavakkal a tolerancia test legkedvezőbb helyének és méretének meghatározása az \(R_A \) megengedett tartományban. Ez azonban csak az egyik feladat az áramkörtervezésnek, hiszen gyártások ellenőrizni kell, vajon az áramkörök belül vannak-e a megengedett tartományon. Ez az ellenőrzés végezhető el a gyártási specifikáció segítségével. Környezeti hatásnak kitett hangotható áramkörök esetében pedig a gyártási specifikáció irhatjuk elő hangsúlyozását.

Tekintük most a hálózatfűggvények teret! Az egyszerűség kedvéért kétdimenziós esetet mutat az 5. ábra. A két dimenzió két frekvenciának, vagy két azonos frekvencián, de különböző főszegénynek (pl. csillapítás és futási idő) felelhet meg. A \(p_{1}^{*}, p_{1}', p_{2}^{*} \) és \(p_{2}' \) előírásokkal határolt \(R_p \) területet a tolerancia-központosítási használatszerű „tolerancia test” mintája „specifikáció test”-nek nevezzük. E test határai értelemszerűen párhuzamosak a tengelyekkel. Az ábrán feltüntetett \(R_p^{*} \) és \(R_A \) tartományok \(R_d \) és \(R_A \) transzformáltjai. \(R_d \) és \(R_A \) határai nem párhuzamosak a tengelyekkel. Feladatunk most a gyártási specifikáció meghatározása, azaz a „gyártási specifikáció test” legjobb helyének és méretének meghatározása az \(R_A \) megengedett tartományban. Ennek a testnek a lehető legnagyobbnak kell lennie abból a célból, hogy elkerüljük a túl szigorú előírásokat. Az 5. ábrán a szaggatott terület mutatja az \(R_A \) tartományt, a „gyártási specifikáció test” méreteit pedig \(p_{1}^{*}, p_{1}', p_{2}^{*}, p_{2}' \) által.

Figyeljünk fel arra, hogy a gyártási specifikációk, mint „gyártási specifikáció test”-nek a meghatározása, nagyon hasonlít a tolerancia test meghatározására a tolerancia-központosításban. Ily módon a tolerancia-központosításban alkalmazott módszerek (ha nem is mindegyik) bizonyos értelmező átalakítások után itt is alkalmazhatók. A módszerek közül a gradiens típusú statisztikus optimalizálást választottuk. A grádiens a specifikáció-érzékenységből számítjuk ki.

Tekintettel arra, hogy feladatunk a specifikáció

\[
\begin{align*}
R_A &= R_p \cap R_e.
\end{align*}
\]

Az \(R_A \) megengedett tartományt a 4. ábrán a szaggatott terület adjá.

Az \(R_d \) tartomány alakja hasonló az \(R_p^{*} \)-hez, a tartományok határai párhuzamosak. Az \(R_p^{*} \) tartomány a specifikáció határolja, azaz a határvonalan konstans hálózatfűggvény értékeknek felelnek meg. Ez azonban nem igaz \(R_p^{*} \)-re, s így \(R_{A} \)ra sem. Mivel a konstans hálózatfűggvényhez tartozó szintvonalak általánban nem párhuzamosak a paraméter térből. Megjegyzendő, hogy a környezeti hatásra bekövetkező változás sokkal bonyolultabb. Determinisztikus változás esetén is csak a százalékos változások azonosak, azonban a változás nem determinisztikus, hanem statisztikus. A konstans \(d \) vektor feltételezése csak az \(R_A \) megengedett tartomány kialakulásának megmagyarázását könnyíti meg szükség. Könnyen belátható, hogy az \(R_A \) megengedett tartomány határai általában nem felelnek meg konstans hálózatfűggvény értékeknek.

5. ábra. A gyártási specifikáció meghatározása

\[
\begin{align*}
R_d^{*}, R_{A} \text{ eredeti specifikáció} \\
R_p^{*}, R_e \text{ transzformáltja} \\
R_d^{*}, R_A \text{ transzformáltja} \\
p_{1}^{*}, p_{1}', p_{2}^{*}, p_{2}' \text{ a gyártási specifikáció}
\end{align*}
\]
6. ábra. A mintaáramkör gyártási specifikációja a_t: eredeti specifikáció, amelyet mind gyártáskor, mind környezeti hatás után teljesíteni kell a_{gr}: gyártási specifikáció szüksége, az algoritmust azokból a mintákiból indítjuk, amelyek teljesíthetek az eredeti specifikáción, függetlennél attól, hogy környezeti hatások alatt teljesítek-e vagy sem. A gyártási specifikáció meghatározásának algoritmusát ezek után a következőként:

1. lépés: A specifikáció-érzékenység segítségével meghatározunk a kihozatali gradientot. Más szavakkal: kiszámoljuk, hogy az egyes specifikációs pontokat egymáshoz képest milyen mértékben kell megváltoztatni.

2. lépés: A gradiens vektor irányával ellentétben megváltoztatjuk a specifikációs pontokat egy megfelelő lépésmérséggyal. Annak érdekében, hogy a legnagyobb -gyártási specifikáció test'-et érjük el, a specifikációt folytonosan és nem diszkrit lépésekben változtatjuk meg.

3. lépés: Abban az esetben, ha az összes (vagy előírt arányú) olyan minta, amelyik teljesíti az újonnan számolt gyártási specifikációt, teljesíti az eredeti specifikaciót mind gyártáskor, mind pedig környezeti hatások alatt, leállítjuk az optimalizálási eljárást, ellenkező esetben visszatérünk az 1. lépésre.

6. Példa a gyártási specifikáció megfelelő működésénél

Egy számítógépprogram (neve: GHU) készült a fentiekek implementálására FORTRAN IV nyelven egy ICL System 4–70 számítógépre. A példa mintaáramköre egy LC csatornaszóró 10 db hangolt induktivitással és 17 db tolerált kapacitással. Az eredeti specifikáció CCITT 1/20 volt 24,3 és 27,4 kHz közötti áteresző tartománnyal. A környezeti hatás a hőmérséklet 40 °C-kal való megváltozása. Referencia-ként a gyakorlatban használtos CCITT 1/40-et választottuk. Az ISOA szimulációs program azt mutatta [7], hogy a CCITT 1/40-re behangolt áramköröknek csak a 82%-a teljesíttette az eredeti CCITT 1/20 specifikációt hőmérsékletváltozás után.

7. Összefoglalás

A specifikáció-érzékenység új fogalom a kihozatal javításában és a költségek csökkentésében. A rendszerverzé alapfokú és számszerű visszaajlézést kap a kritikus specifikációs pontokról, s így a specifikációt jobban szét lehet osztani egy berendezés áramköreire között. Egy lazább specifikáció nagyobb kihozalást eredményez, sőt akár egy új áramkör tervezhető kevésbé elemzéssel.

A nyert információ ára csupán egy Monte Carlo analízis, amelyet azonban tolerancia-közponzisítás után mindeneképpen el kell végezni az eredmények ellenőrzésére. Az ehhez járul két hírszolgálat felépítésének ideje elhangyolgat lehet az előbbiek mellett.

Mivel a névleges értékek és toleranciáik nem változnak, hanem csak a specifikáció, nincs szükség újabb Monte Carlo analízisre a specifikáció-érzékenységnél vagy a specifikációmegváltozás hatásának a kiszámításához.

Egy nagyon fontos alkalmazás az úgynevezett gyártási specifikáció meghatározása, ha az áramköre környezeti hatásnak van kitéve. Az algoritmus alkalmazásához az áramköreknél a gyártáskori (gyártási feltételek melletti mért vagy szimulált), valamint a környezeti hatás alatti jellemzőre, hőmérséklet-változásra van szükség, amelyet pl. megfelelő Monte Carlo analízis program szolgáltathat. Az eljárást a gyártási specifikáció eddigi heurisztikus meghatározása helyett algoritmusok utat mutat. A tolerancia-közponzisítás feladata a névleges értékek és toleranciáik meghatározása. Ez azonban csak az egyik feladatra az áramkörtervezésnek, hiszen gyártáskor ellenőrizni kell, vajon az áramkörök belül vannak-e a megengedett tartományon. Ez az ellenőrzés végezhető el a gyártási specifikáció segítségével. Hangolható áramkörök esetében pedig a gyártási specifikáció irhatjuk elő behangolási utasításuként.

Végezve arra érdemes rámutatni, hogy a gyártási specifikáció megfelelő működésénél csak az áramkörei gyártáskori és környezeti hatás alatti jellemzőre van szükség. Ha ezek a jellemzők rendelkezésre állnak, a specifikáció-érzékenység és a gyártási specifikáció meghatározható. Ily módon az elv nincs csak a lineáris hálózatokra, sőt egyáltalán nincs áramkörökre korlátozva. A jellemzők bármilyen fizikai rendszerhez tartozhatnak, amelyek jellemzőiket gyártás után megváltoztatják, s ezeket a jellemzőket mért vagy szimulálni tudjuk.

Irodalom

Híradótechnika XXXV. évfolyam 1984. 12. szám

542
Compstat '84 szimpózium

A számítógépes statisztikával foglalkozó, sorrendben hatodik szimpóziumot ezuttal először rendezték meg szocialista országban.

A szimpózium augusztus 27-én délelőtt orgona-hangversenyel egybekötött ünnepélyes megnyitóval kezdődött. Ezután a számítógépes statisztika történetéről és kialakulásáról hallatunk összefoglalást P. Sint (Ausztria) előadásában.

A tudományos program egyidejűleg négy szekcióban folyt. A konferencia ideje alatt ezenkívül soft- ware kiállítást és számítógépes bemutatót is szerzett.

A konferencián elhangzott előadások a következő fontosabb tématerületeket ölelték fel:
- sztochasztikus folyamatok,
- a számítógépes statisztika alkalmazásai,
- különféle statisztikai és adatvizsgálati módszerek,
- statisztikai programok mikrocomputerekre,
- optimalizálási eljárások a statisztikában.

A híradástechnikai problémával foglalkozó vizonylag kevés előadás közül érdemes megemlíteni N. Valette (Francíország) a szintetizált beszéd statisztikai vizsgálati módszereivel foglalkozó előadását. Erdekes volt továbbá B. S. G. Cherry (Anglia) sarkvidéki hőmérsékleti adatok sztochasztikus szimulációjáról szóló, és R. Kulhávc (Csehszlovákia) „Lassan változó paraméterek becsülése a Bayes-döntés alapján” címet viselő előadása.

A számítógépes statisztika felhasználásának széleskörűségére jellemző, hogy a kábitészer-fogyasztás alakulásától kezdve egészen a meteorológiai és orvosi problémákig sokféle alkalmazási területet ismertet-tünk meg.

A tudományos program 31-én, pénteken dőltén ért véget.

Néhány szót a szervezésről. A rendezők apró figyelmességekkel is gondoskodtak a résztvevők kényelmé-ről, így például közlekedési bérletet kaptunk, amely a konferencia idején ingyenes közlekedést biztosított a tömegközlekedési eszközökön. Szinte minden napra jutott valamilyen — többnyire ingyenes — kulturális program: koncert, városnézés, hajókirándulás. Az előadások pontosan kezdődtek, és gördülékényen zajlottak le.

A COMPSAT '84 szimpózium hasznos fórum volt a számítógépes statisztikával kapcsolatos ismeretterek cseréjére, tudományos eredmények ismertetése-sére, tapasztalatok szerzésére. Remélhetőleg 1986-ban Romában megrendezésre kerülő COMPSAT '86 konferencián több a híradástechnikai területet érintő színvonalas előadást hallhatunk majd, és több magyar szakember képviselheti majd országunkat.

Kováts János
TKI
ÖSSZEFOGLALÁS

A digitális jelfeldolgozás egyik legfontosabb műveletének, a digitális Fourier-transzformáció (DFT) az elvégzésére szolgáló gyors eljárás keresését tűztük ki célul egy gyakorlatban is felmerülő feladat kapcsán. A DFT számítási bonyolultságának a mérésére a szük-séges valós szorzások számát választva, összefüggést számítottunk a köztük idejű (real-time) jelfeldolgozás maximális frekvenciájának a valós szorzások száma függvényében történő meghatározására. A közvetlen kiterjesztés köztük idejű feladatok megoldására csak kor-látott módon alkalmazható, műveletideje $O(N^2)$. A jelfeldolgozás frekvencia növelése érdekében a szorzások számát alapuló algoritmusokat készítettük. A fokozatos részre osztás algoritmus a $O(N\log N)$-vá csökkentette, a transzformáció pontszámára tett bizonyos feltévek esetén (egyenlőkévalisz számok szorzata bontható) az egydimenziós DFT (többdimenziós transzformáció alakítja). A fokozatos részre osztás lehetőségeinek kiterjesztése után a DFT számítását elválasztjuk módon más feladat megoldására próbáltuk visszafejteni. Ha a pontszám $N=2, 4, p, p^2$ vagy $2p^2$ (p páratlan prím alakú, akkor a přem döntéseki elváltozására a periodikus kovariáció meghatározására. A lineáris és a periodikus kovariáció kiterjesztése a polinomokra vonatkozó kis mérdéktét felhasználásával $O(N)$ szorzásigényt algoritmus származtathat. Röviden összefoglaljuk az 1. periodikus konvolúcióval való visszafejtést számításhoz a kis pontszámú modulok összehibázását a Good-algoritmussal, ill. a Winograd-jelöléssel (WFTA). Utóbbi szorzásigénye $O(N)$. Végül elemzések az egyes algoritmusok a gyorsított meg-hatalmasított szempontjából.

1. Bevezetés

A digitális jelfeldolgozásban központi szerepet játszik az N elemmel leírható (véges vagy periodikus) számsorozathoz rendelt Fourier-spektrumot $X(k)$ egy-mástól egyenlő távolsgú ponton vett mintaként megadott döntöd jelfeldolgozás (DFT). Definíció szerint véges, vagy periodikus sorozatoként egy-dimenziós DFT Fourier-transzformáltján (1-D DFT) az

$$ X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N} \tag{1-1} $$

sorozatot értjük. $x(n)$ a szóban forgó számsorozat, vagy annak egy periodusa, $X(k)$ a transformált értékek sorozata. Periodikus esetben N a jel egy periodusra eső pontjainak száma, míg véges sorozatnál N a sorozat pontjainak a száma.

A DFT lineáris transzformáció, alapvető tulajdonságainak elemzése megtalálható pl. a [9], [10], [21] művekben. A transzformáció pontsorozatot képezi azazos számú pontot tartalmazó pontsorozatban:

$$ \{x(n)\} \rightarrow \{X(k)\} $$

Mátrixalakban:

$$ X = W_N \cdot x, \quad \text{ahol} \quad W_N = \begin{bmatrix} 1 & 1 & \ldots & 1 \\ w_N & w_N^2 & \ldots & w_N^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ w_N^{N-1} & w_N^{N-2} & \ldots & w_N^{-1} \\ \end{bmatrix} a $$

transzformációs mátrix, $X^T = \{x(0), x(1), \ldots, x(N-1)\}$ a transformált értékek vektorja és $X = [x(0), x(1), \ldots, x(N-1)]$ a köldületi pontmait leíró vektor. X^T és x^T elemi általános esetben komplexes és lehetnek.

Egy, a műszaki gyakorlatban felmerülő feladat kapcsán egységes keretbe foglaljuk a DFT gyors meghatározására kidolgozott eljárásokat [5], [8], [11], [13], [23], [28]. A lényeges pontokat a mérnöki gyakorlat követelményeinek figyelembe vételével rövid leírásokkal támasztjuk alá. Kifejezés számításkor DFT felhasználásával történő, köztük idejű jelfeldolgozás feladatok (pl. spektromanálisis) maximális sajátossággal (a maximális jelfeldolgozási frequenciát) és a DFT kiszámításához szükséges valós szorzások száma közönséges leírásra, majd annak felhasználásával érvényezik az egyes DFT algoritmusok összehasonlító értékelését.

A továbbiakban szükségünk lesz az egyes DFT számítási eljárások értékelésénél valamilyen mérték-re, amely alapján az egyes algoritmusok egységes alapok összehasonlító, értékelhetők. A gyakorlati alkalmazások szempontjából egyik döntő tényező a DFT kiszámításához szükséges idő sok feladatban ez korlátozza az elérhető maximális jelfeldolgozási frekvenciát. A jelenlegi áramkori technikák és ismeretek mellett a DFT kiterjesztése során a szorzás a legfőbb fontos tényező. Pélthezegye, hogy a szükséges szorzások ideje mellett az egyéb műveletek (összeadások, kivonások, léptetések, adatmozgatások stb.) ideje elhanyagolható, a következőkben egy DFT eljárás számítási bonyolultságának a szükséges valós szorzások $f(N)$ számát értjük.

Beérkezett: 1984. VI. 6. (→)
Tekintsük a következő problémát (amely összetett digitális jel feloldogázási feladatok része is lehet): valamely folytonos jelből egyben követően t_i idő intervallumoként N pontot tartalmazó mintákat veszünk, és képezzük ezen sorozatok dízskrént Fourier-transzformáltjait. A kapott spektrumot esetleg további jel feloldogázási műveleteket kívánunk végezni. A kötött idejű (real-time) feldolgozás feltétele, hogy az N ponthoz rendelt spektrumot legfeljebb t_i idő alatt elő tudjuk állítani (különösen az egyes sorozatok feldolgozásának már az első lépése is átlagolódnia a következő részszorozat feloldogázási intervallumára). Ha egyetlen valós szorzás elvégzéséhez $t_{	ext{szorás}}$ időre van szükség, akkor az átlagolás határhozatében (a DFT számításához szükséges idő éppen a következő mintasorozat vétélhez szükséges t_i idő):

$$(1-3) \quad t_i = f(N) \cdot t_{\text{szorás}}.$$

Az egy pontra eső t_i/N átlagos feloldogázási idő értékéből a mintavételi frekvenciára vonatkozó Nyquist-kritérium ($f_{\text{mintavet}} = 2/f_{\text{max}}$) felhasználásával a maximális, még feldolgozható jelfrekvencia:

$$(1-4) \quad f_{\text{max}} = \frac{N}{2 \cdot t_{\text{szorás}}, f(N)}.$$

Az összefüggeszből látható, hogy az f_{max} növelésének két útja kiindulhat:

- a $t_{\text{szorás}}$ értékének csökkentése, ami új áram-körök, technológiák kidolgozását jelenti;
- az $N/f(N)$ hányszós értékének növelése. Az egyik lehetőség N (a pontszám) csökkentése. Sok esetben azonban a pontoszám értékét más követelmények (pl. felbontóképesség) határozzák meg. Emiatt járóhat útkiend elsősorban $f(N)$ értékének csökkentése marad.

A továbbiakban algoritmikus eszközökkel próbáljuk $f(N)$ értékét csökkenteni. A vizsgálatok során azonban meghatározzuk a DFT számításához szükséges összeadások számát is.

A dolgozat három részből áll, irodalomjegyzék azonban csak az első részből kapcsolódik. A többi részben levő hivatkozások az első részbeli irodalomjegyzék sorszámai szerintek.

A jelen első részben először az (1-1) definíció sze-rinti össz közvetlen kiírtékelésével próbáljuk le. Ezt követi az algoritmuselméletben gyakran használt fokozatos részekre osztás (divide and conquer) elvek alkalmazása. A részekre osztási korlátaiknak felmérése után a második részben más úton kíséreltek: az eredetileg kitűzött feladatot olyan más feladattal megkíséreljük meg átalakítani ekvivalens módon, amelynek megoldásával már ismert hatékonyság elérjük. Kimutatható, hogy bizonyos feltételek teljesülése esetén az egydimenziós $(1-D)$ DFT többdimenziós $(n-D)$ DFT-be alakítható át. A számelmélet eredménye felhasználásával egyes esetekben a DFT számítása periodikus konvolúció kiírtékelésére vezetett hívó, amely elvégzése a polinomok elmentetének eredményei alapján adható igen hatékony algoritmus. A harmadik rész foglalkozik a DFT gyors konvolúciós eljárások felhasználásával történő meghatározásával. Az $1-D$ és $n-D$ DFT együttható-mátrixai közti összefüggés felhasználásával kétfele módszert (a Good-eljárást és a Winograd-algoritmus) mutatunk be nagyobb pontszámú DFT kisebb pontszámú transzformáltakból történő előállítására. Végül a szükséges műveletsszám alapján röviden összehasonlítjuk az ismertetett algoritmusokat, értékeljük az eredményeket.

2. A DFT számítása közvetlen kiírtékeléssel

A közvetlen kiírtékelés műveletigényének becslése alakítsuk át az alapkifejezést (általános esetben $x(i) = a(i) + b(i)$ alakú komplex szám a és b valósak):

$$(2-1) \quad X(k) = x(0) + \sum_{i=1}^{N-1} x(i) e^{-j(2\pi/N) ki} = x(0) + \sum_{i=1}^{N-1} (a(i) + b(i)) \left(\cos \left(\frac{2\pi ki}{N} \right) \right) - j \sin \left(\frac{2\pi ki}{N} \right)$$

Két komplex szám szorozása elvégezhető 4 valós szorzás és 2 valós összeadás felhasználásával. A (2-2) azonosságok alapján azonban egendő 3 valós szorzás is, aminek ára az összeadások számának 5-re történő növekedése:

$$(2-2) \quad (a+b)(c+d) = p + q, \quad w_2 = d(a+b), \quad w_3 = c(b-a)$$

Ekkor a közvetlen számítás műveletigénye $f(N) = 3 \cdot (N-1)^2$ valós szorzás és $A(N) = (N-1)(N-2)$ valós összeadás. A bonyolultság vizsgálatok során szokásos jelölés móddal $f(N) = O(N^2)$ és $A(N) = O(N^3)$. Általában azt mondjuk, hogy egy f függvény $O(g(N))$ rendű, ha létezik olyan c állandó, amelyre az $f(N) \leq c \cdot g(N)$ összefüggés legfeljebb véges számú érték kivételével minden egész, nem negatív N értékre teljesül.

N nagyobb értékeire a DFT konkrét meghatározása kötött időben igen nagy problémát jelenthet. Az (1-4) kifejezés alapján, gyors szorzóáramkört használva ($t_{\text{szorás}} = 200$ ns) egy típus ismétlésben $(N = 10^6)$ az f_{max} maximális jel feloldogázási frekvencia értéke: $f_{\text{max}} = 833$ Hz, ami a gyakorlati esetek többségében túl kis.

Az $\{x(i)\}$ jelsorozat speciális tulajdonságaira vonatkozó előzetes információ ismeretében a közvetlen kiírtékelés műveletsszáma jelentősen csökkenthető. Ilyen információ lehet pl. az adatok valós volta, az $\{x(i)\}$ sorozat szimmetrikus stb. Kimutatható azonban, hogy a szükséges szorzások $f(N)$ számá a lehetőséges szorzások számájának finomítása után is $O(N^2)$ rendű, csupán a c állandó értéke csökkenti. Ez azt jelenti, hogy az f_{max} frekvencia értéke csak azonos nagyságrenden belül növehető.

Híradásotechnika XXXV. évfolyam 1984. 12. szám
3. A DFT meghatározása fokozatos részekre osztással

3.1. Számítás a részekre osztás elvének felhasználásával

Az algoritmuselmélet gyakran alkalmazott fogása a klindulási probléma kisebb méretű részekre történő felbontása, az ezekhez tartozó megoldások megkeregéséhez, majd a kapott eredmények összekombinálásával az eredeti feladat megoldásának összefoglalása. A módszer gyakran vezet a közvetlen meglöggésnél gyorsabb (kisebb művelőigényű) megoldásra különösen akkor, ha a részekre osztásnál az eredeti feladat kisebb méretű változatai állnak elő. Ezen megoldás-típusokat „divide-and-conquer” (fokozatos részekre osztás) típusú algoritmusoknak szokás nevezni. Próbáljuk meg a módszert nagy méretű (nagy pontszámú) DFT számítására alkalmazni, azaz több kisebb méretű DFT meghatározására visszavezetni.

Feltéve, hogy az eredeti DFT N pontszámú összefüggés, a tényleg kibontott elvégzve: \(N = N_1 \cdot N_2 \cdot \ldots \cdot N_n \) ahol az egyes \(N_j \) (1 \(\leq j \leq n \)) ténylegek azon kívül, hogy egészek, semmilyen megállítást nem tesznek. A \(P = N_1 \cdot N_2 \cdot \ldots \cdot N_n \) változását az (1-1) definíció összefüggésben az indexeket \(N_1 \) és \(P \) lineáris kombinációjaként kifejezve:

\[
\begin{align*}
 k &= k_1 + k_2 P \\
 i &= i_1 + i_2 N_1
\end{align*}
\]

Az indexek más felbontása (nemlineáris, nem algebrai stb.) is elképzelhető, azonban a gyakorlatban leginkább hasznos a (3-1) típusú lineáris összefüggés. A felbontás láthatóan kölcsonosan egyértelmű leképezést teremt \(k \rightarrow (k_1, k_2) \) és \(i \rightarrow (i_1, i_2) \) között. A definíció összefüggésbe helyettesítve:

\[
(3-2) \quad X(k_1, k_2) = X(\underbrace{0, 0}_{i=0, j=0}) \quad = \sum_{i_{1}=0}^{N_1-1} \sum_{i_2=0}^{N_2-1} x(i_1 + i_2 N_1) e^{-j \left(\frac{2\pi}{N} \right) i_{1} i_{1}} e^{-j \left(\frac{2\pi}{N} \right) i_{2} i_{2}} e^{-j \left(\frac{2\pi}{n} \right) i_{2} N_2}.
\]

Azonos átalakítások után \(e^{-j \left(\frac{2\pi}{N} \right) i_{2} N_2} = 1 \):

\[
(3-3) \quad X(k_1, k_2) = \sum_{i_{1}=0}^{N_1-1} \sum_{i_2=0}^{N_2-1} x(i_1, i_2) e^{-j \left(\frac{2\pi}{N} \right) i_{1} i_{1}} e^{-j \left(\frac{2\pi}{N} \right) i_{2} i_{2}}.
\]

A belső összeg csupán \(k_1 \) és \(i_1 \) függvénye:

\[
(3-4) \quad X_1(k_1, i_1) = \sum_{i_{0}=0}^{N_1-1} x(i_1 + i_0 N_1) e^{-j \left(\frac{2\pi}{N} \right) i_{1} i_{0}}.
\]

\(X_1 \) értékcsészete \(N_1 \cdot P = N \) db értékből áll (valójában \(N \) elemi kétdimenziós tömb \(i \) \((i_1, i_0) \) indexekkel). Közvetlen kiértékelésnél a külső szorzások száma (eltekinthet a \(k_0 = 0 \) esetben lehetséges egyszerűsítéstől) \(M_1 = 3 \cdot P \cdot 2^{n} \) a közönséges technika. A külső összeg belső összegeből való számításának lépészámára \(M_2 = 3 \cdot N \cdot 2^{n} \cdot P \) valós szorzás. A teljes művelőigény: \(f(N) = M_1 + M_2 = 3N(N_1 + P) \). Látható, hogy a belső összeg valójában egy \(P \)-pontos DFT. A tényleg kibontott folyamat, és az előző

gondolatmenetet követve az eredeti DFT végül kisebb méretű DFT-k számítására vezethető vissza. Az eljárás \((n-1)\) lépésben ér véget (n a tényleg szerű \(N \) folyamatban). Az összes valós szorzások száma:

\[
(3-5) \quad f(N) = 3N \cdot (N_1 + N_2 + \ldots + N_n),
\]

ahol:

\[
N = \prod_{i=1}^{n} N_i.
\]

Ha \(N_1 = a_1 b_1 \) \((a \text{, } b_1 > 1)\), akkor \(a_1 + b_1 \leq N_i \), így általában (de nem minden esetben, mint azt majd látni fogjuk) célszerű \(N \) értéket a lehető legtöbb tényleg történő felbontáshoz, azaz a törzstényezős felbontásból kiindulni. \(N = \prod_{i=1}^{p} P_i \) esetén (3-5) alakja:

\[
(3-6) \quad f(N) = 3N \sum_{i=1}^{p} a_i b_i.
\]

Ha \(N > 4 \), akkor \(\sum_{i=1}^{p} a_i b_i < \prod_{i=1}^{p} P_i \), azaz \(f(N) \) rendre valóban csökkent az \(f(N) = O(N^2) \)-hez képest.

\(N = 2^p \) esetben \((p \text{ prim})\) \(f(N) = 3 \cdot N \cdot \log_2 N \) vagyis \(f(N) = O(N \cdot \log_2 N) \). A gyakorlatban különösen fontos \(N = 2^p \) esetben \(f(N) = O(N \cdot \log_2 N) \). A DFT ily módon történő számítását sokszor gyors Fourier-transzformációk (FFT) nevezi.

3.2. A nem trivialis szorzások számának meghatározása 2 és 4 szerinti faktorizáció esetén

A pontos műveletszám meghatározásának során egy őszirústő tényleg is figyelembe vehető. \(N = 2^p \) esetén a \(2 \times 2 \) exponentiális tényleg történő szorzás korábban is egyenlő, \(\pm 1 \) értékek való szorzásra redukálódik (trivialis szorzások), amit a tényleges számítás során természetesen nem szorzásként veszünk figyelembe. A szorzások nem trivialis szorzások számának meghatározásához írjuk fel az (1-1) definíció összefüggésben szereplő \(i \) és \(k \) indexeket kettes számrendszerben (ez minden különösebb feltétel teljesülése nékül megtethető).

\[
(3-7) \quad k = 2^{n-1} i_{n-1} + \ldots + 2^0 i_0, \quad k_0 = 0, \quad 0 \leq i_0 \leq n-1.
\]

Az alapösszefüggésbe helyettesítve:

\[
X(k_0, k_1, \ldots, k_{n-1}) = \sum_{i_0=0}^{1} \sum_{i_1=0}^{2^0} \ldots \sum_{i_{n-1}=0}^{2^{n-1}} x(i_0, i_1, \ldots, i_{n-1}) e^{-j \left(\frac{2\pi}{2^0} \right) i_{0} i_0} e^{-j \left(\frac{2\pi}{2^1} \right) i_{1} i_1} \ldots e^{-j \left(\frac{2\pi}{2^{n-1}} \right) i_{n-1} i_{n-1}}.
\]

Blehelyettesítve, átrendezve és a minden \(e \) egészre érvényes \(e^{-2\pi \text{e} \cdot 0} = 1 \) azonosságot figyelembe véve:

\[
\begin{align*}
(3-9) \quad X(k_p, k_1, \ldots, k_{n-1}) &= \sum_{i_0=0}^{1} \sum_{i_1=0}^{2^0} \ldots \sum_{i_{n-1}=0}^{2^{n-1}} x(i_0, i_1, \ldots, i_{n-1}) e^{-j \left(\frac{2\pi}{2^0} \right) i_{0} i_0} e^{-j \left(\frac{2\pi}{2^1} \right) i_{1} i_1} \ldots e^{-j \left(\frac{2\pi}{2^{n-1}} \right) i_{n-1} i_{n-1}}.
\end{align*}
\]

Híradótechnika XXXV. évfolyam 1984. 12. szám
A legelső összeg láthatóban \(N/2 \) db 2-pontos DFT. Kiértékeléséhez nem szükséges szorzás. Általában az \((n-p)\)-ik összegben az előző fokozatban keletkezett \(N \) db értéket kell szorzozni egy exponenciális taggal, amelynek kivetője:

\[
- \frac{2\pi}{N} \sum_{i=0}^{N-1} k_i 2^i.
\]

A legmagasabb indexű \(k \) taggal való szorzás ismét 2-pontos DFT-t jelent, amelynek számításához — mint már említettük — nincs szükség szorzásra. Az összeg többi tagjával történő szorzás forgatást jelent. Az összeg második tagjával \((k_{p-1})\) való szorzások kiesnek, mivel \(e^{-\frac{2\pi}{N} i p k_{p-1}} \) értéke \(i_{p-1} \) és \(k_{p-1} \) lehetséges értékeire +1, illetve -1. Azon kívül még nincs szükség valós szorzásokra, ha \(i_{p-1}=0 \), ill. a \(\sum_{i=0}^{N-1} k_i 2^i \) összegben az összes \(k \) együttható értéke zérus. Az előző fokozatbeli számítások után adódó \(n \)-változás eredménye:

\[
x_{n-p}(k_{p-1}, k_{p-2}, \ldots, k_0, i_{n-p}, i_{n-p}, \ldots, i_0).
\]

A többi \(i_{n-p} \) változó \((1 \leq p \leq 1)\) a korábbi összegzegek során eltűnik, és helyükre a \(k \) értékei \((0 \leq s \leq p-1)\) kerülnek. Ha \(i_{n-p}=0 \), akkor a többi változó értékétől függenél nincs szükség szorzásra, így az eredetileg \(N \) db szorzásból \(N/2 \) kisik. Kiesnek még azok a szorzások, amelyeknél a \(\sum_{i=0}^{N-1} k_i 2^i \) összeg zérus, azaz \((p-2)\) db \(k \) együttható zérus. Ez en feltetelek mellett az \(x_{n-p}(k_{p-1}) \) kifejezés lehetséges értékeinek száma \(2^{p-1} (N-p) \) db íj \((0 \leq s \leq N-p-1)\) változó és a \(k_{p-1} \) változó értékei. Azaz az \(n-p \)-ik összegzésben a szükséges komplex szorzások száma:

\[
M_{n-p} = N - N/2 - 2^{p-1} = N/2 \left(1 - 2^{p-2}\right).
\]

A (3-9) összefüggés nyilván csak \(p=3 \)-ra érvényes, mivel az első két összefüggésben csak a DFT-k, ill. a trivális forgatás szerepel. Az egyes fokozatbeli szorzások számát összegezve:

\[
M_N = \sum_{p=3}^{\infty} N/2 \left(1 - 2^{p-2}\right) = N/2 \log_2 N -\frac{3N}{2} + 2,
\]

ill. komplex szorzásonként 3 valós szorzást és 5 valós összleadást számlolva:

\[
M_N = 3N/2 \log_2 N -\frac{9N}{2} + 1.
\]

A szükséges összleadások száma: fokozatónként \(N \), amikor jön a forgatások miatti szorzásokból adódó összleadások száma:

\[
M_N = 3N/2 \log_2 N -\frac{9N}{2} + 10.
\]

Hasonló gondolatmenetet alkalmazva \(N=4^a \) alakú pontszámokra 4 szerinti faktorizációval (a 4-pontos DFT számításához sincs szükség szorzásokra, azok csak a forgatásokat leíró exponenciális tagokkal kapcsolatosak), a szükséges komplex szorzások száma:

\[
(3-16) \quad M_N = \sum_{p=2}^{\infty} \left(9N/16 - \frac{N}{4p}\right) = 9N/16 \log_2 N -\frac{31N}{4} + 1/3,
\]

amiből:

\[
(3-17) \quad f(N) = 3M_N = \frac{27N}{16} \log_2 N -\frac{31N}{16} + 1.
\]

Az összleadások száma az előzőekhez hasonlóan adódik:

\[
(3-18) \quad A(N) = 2N \log_2 N + \frac{5}{3} f(N) =
\]

\[
= \frac{67N}{16} \log_2 N -\frac{155N}{4} + 5/3.
\]

A (3-17) és (3-18) kifejezések csak \(N \approx 16 \) értékei erényesek.

3.3. A fokozatos részekre osztás eredményének értelmezése

A fokozatos részekre osztás egyúttal azt is jelentette, hogy az (1-1) definíciós összefüggésben az \(i \) és \(k \) indexeket több indexváltozó lineáris kombinációjára bontottuk. Hatása: a kiindulási egyediinformáció pontsorozatot több indexszel elérhető többdimenziós pontsorozattal alakítottuk át, aminek következtében a számításokhoz szükséges adatsorrend eltérhet az eredeti adatsorrendtől. Úgyanaz az a transzformált értékeket tartalmazó sorozatra is. Következésképp a DFT meghatározásához a hagyományos aritmetikai műveleteken kívül (szorzás, összeadás, kivonás, léptetés) más műveletekre (adatomagazs) is szükség lehet, amelyek a gyakorlati megvalósítás során esetleg nem elhanyagolhatóak. Léteznek olyan eljárások is, amelyek a fokozatos részekre osztást úgy szervezik, hogy a számításokhoz az adatok eredeti sorrendjére van szükség, és az eredmény is az eredeti sorrendben készülők. A továbbiakban az átrendezés problémáját azonban részletesen nem vizsgáljuk. A (3-3) összefüggés másképp is értelmezhető. Mint arról már korábban szó volt, a belső összeg \(N_1 \) db p-pontos DFT számítását jelenti. Azonos átalakítás után (3-3) új formája:

\[
(3-19) \quad \sum_{\substack{i_1=0 \\ i_2=0}}^{N-1} e^{-\frac{2\pi i_1}{N} k_1} \cdot e^{-\frac{2\pi i_2}{N} k_2}.
\]

Látható, hogy a külső összeg az \(e^{-\frac{2\pi}{N} i a} \) szorzótermézeitől eltekintve \(N \)-pontos DFT-t definiálja, azaz a (3-19) kifejezés számításának algoritmusja:

1. \(N_1 \) db \(p \)-pontos DFT számítása;
2. a kapott \(N_1 \) p-pontos \(N \) érték szorzása a megfelelő \(e^{-\frac{2\pi}{N} i a} \) értékekonként \((0 \leq i_a \leq N-1, 0 \leq k_2 \leq N-P-1)\), azaz egy forgatást kell végrehajtani a complex számokban;
3. a külső összeg által meghatározott \(P \) db \(N \)-pontos DFT meghatározása.
A számítások 2. lépésében szükséges szorzások nélkül az eredetileg 1–D DFT számítását 2–D DFT számítására lehetne visszavezetni. A szükséges szorzások száma:

\begin{equation}
(3-20)
|f(N)| = N_1 |f(P)| + P \cdot |f(N_1)| + N = \frac{N}{2} |f(P)| + \frac{N}{2} |f(N_1)| + N.
\end{equation}

A kiinduló feltévek szerint \(P = N_2 N_3 \cdots N_n \) vagyis a fokozatos részre osztás tovább folytatott a (3-19) kifejezésben szereplő belső összeg (P-pontos DFT) felbontásával. A korábbiakban követett eljárás ismételt alkalmazásával adódik [24]:

\begin{equation}
(3-21)
|f(N)| = \sum_{j=1}^{n} \frac{N}{N_j} |f(N_j)| + (n-1)N.
\end{equation}

A felbontási módszertől következik, hogy a fokozatonként szükséges korrekció tagját eltérítve (2. lépés) lényegében az 1–D DFT \(n \times 1 \)-D DFT-be való átalakítást kaptuk, azaz az eredeti nagy méretű feladatot változatban több, kisebb méretű, azonos típusú feladattal sikerült felbontani. A részre osztást általában célszerű primitív bázis alakig elvégzni, bár egyes esetekben a gyakorlati követelmények más felbontás alkalmazását tehetség szükségesse.

Elnézést kérünk a (3-21) összefüggés jelentése. Az első tag jelenti az \(N_1 N_2 \cdots N_n \) pontos 1–D DFT számításának műveletiintervallját, ha \(|f(N)| = |f(N_j)| \), akkor a (3-5) összefüggés számításánál is alkalmazott gondolatmenet kisebb műveletsszámmal vezet (nem bontjuk fel a (3-3) összefüggés külső összegén az exponenciális tagot két exponenciáis tag szorzatára):

\begin{equation}
(3-22)
|f(N)| = 3N^2 - |f(N)| = \sum_{j=1}^{n} \frac{N}{N_j} \cdot 3N^2 + (n-1)N = 3N(N_1 + N_2 + \cdots + N_n) + (n-1)N.
\end{equation}

Ha azonban \(N(N_2) = N(N_3) \), akkor remélhető, hogy a (3-21) a (3-5) egyenlőséggel meghatározott műveletsszámmal kevesebbre vezet. Amennyiben \(N = 2^n \), akkor:

\begin{equation}
(3-23)
|f(N)| = n2^{n-2} |f(2)| + (n-1)2^n.
\end{equation}

Mivel \(|f(2)| = 0 \) (\(X(0) = x(0) + r(1) \), \(X(1) = x(0) - r(1) \)),

\begin{equation}
(3-24)
|f(N)| = 2^n - (n-1)2^n = N \log_2 N = N \log_2 N,
\end{equation}

mint azt az előzőekben meghatároztuk.

Küzdulva ismét az \(N = \sum_{i=1}^{n} p_i \) törzstényezős alakkal és \(N \) értékét a lehető legtöbb ténylegő bontva:

\begin{equation}
(3-25)
|f(N)| = N \sum_{j=1}^{n} \frac{|f(P_j)|}{P_j} + N \left(\sum_{j=1}^{n} |z_j - 1| \right).
\end{equation}

Ha \(N = p \) (\(p \) prim), akkor \(|f(N)| = |f(p)| \), azaz a fenti módon történő fokozatos részekre osztással nem érhetünk el eredményt (egyébként is kiindulási feltétel volt, hogy \(N \) összetett szám). \(N = p \) esetén;

\begin{equation}
(3-26)
|f(N = p^s)| = z |p|^{s-1} |f(p)| + (x-1) p.
\end{equation}

Az egyszerű átalakításokkal kimutatható, hogy \(N = p \) esetben \(|f(N)| = N \) még akkor is, ha \(|f(p)| = 0 \).

(3-23)-ből az \(f(N) \) bonyolultsági mérték (valós szorzások száma) esőként két közvetlen módja adódik. Egyrészt visszavezetünk az 1–D DFT számítását valóban \(n \times 1 \)-D DFT meghatározására: ekkor ugyanis a (3-21) összegben \((n-1)N \) alakú második tag elmarad. Ennek feltétele, hogy a számítási algoritmus 2. lépésében az exponenciális taggal való szorzásra (forgatása) ne legyen szükség. A másik lehetőség az \(|f(p)| \) értékek esőként: prim-vonalakhoz heurisztikus vagy szisztémakori után olyan algoritmustokat származtatni, amelyekre \(|f(p)| \leq 0 \).

A továbbiakkban megvizsgáljuk, mi a feltétele, hogy az \(1 \times n \)-D DFT \(n \times 1 \)-D DFT-be legyen átalakító.

(A cikk ugyanezen folyóirat későbbi számai folytatódik.)

IRODALOM

Könyvismertetés

Mikroelektronikai berendezés-orientált árakomők tervezése.

Szerkesztette Tarnay Kálmán. Készült a Mikroelektronikai Közösségbázis megbízásából 1984-ben, 984 oldal + 54 színes mellélet.

A berendezés-orientált árakomők megjelenése új megköze-

lősmódot kíván mind az alkatrészek, mind a készülékek elő-

állításának részei – ugyanakkor számos eddigi ismeretlen

lehetőséget is nyújt. Az új területen való tájékozódás talán a

legfontosabb lépéseje annak az újratanulási folyamatnak,

amely a közélebbi egyetlen műveletéből sem vonhatja ki

magát napjainkban.

A könyv természetesen gyorsan változó terület, amely

azonban az árakomők tervezésének és használata

során fel kell adni azt az elterjedt, nagyon kényelmes, ámde

so-

hase helyeselt álláspontot, amely szerint a berendezések

építőinek egy-egy integrált árakomők sok logikai funkcióival

kellene csupán foglalkozniuk, nem törödve a tok belsejében

bejelölészöld folyamatokkal. A könyv szerencsés arányokkal

segít a helytelen álláspont revidálását: az I–II és az V–VII

rézésekben felfrissítő és homogenizálja a különböző eredető-

küldésű villamosműködők ismeretanyagát annak érdekében,

hogy a III–IV. és a VIII–IX. létreolvasztott, legtöbb új ismeretet tartal-

mas rézéket megalapozza.

Fentiekkel a recenzió átfogó kedvet is akar eserni azoknak,

akik netán eliránának a mintegy 1000 oldal összterjedele-

mől. A gondos szerkesztésnek köszönhetően az egyes rézek

„öntartolási” emlékei ellenére sincsenek zavaró ismétlék a

könyvben.

Külön kell szólni az elkészítés tempójáról, amit talán példa

nézhet a magyar műszaki könyvkiadás történetében. Az

első szerző egyszerű megbeszélés éppen egy évevel a könyv

kiadását a nyomdóból. A rendkívül gyors átfutás ellenére sem tű

sok a nyomdahiba, sajnos a meglevő viszont megelőzően zavara-

ról (indexek leverése, felhívások elhagyása, ábrák töred-

ése, ábrákra való hivatkozás). Tudomásom szerint készülőben

van egy részletes hibajegyzék.

A könyv döntéktájékitetel értékel a melléletben levő színes

ábrák és a III–IV. fejezethez tartozó, egyenileg kidolgozandó

feladatlapok.

Mindent összefoglalt, a színvonalas könyv gyorsan, a legjobb

időben jelent meg és bizonyul nagy segítségére lesz a magyar

elektronikai ipar idősebb megjelenülésének.

Dr. Ambrózy András
Monolit integrált áramkörök adalékolási és oxidálási technológiai lépéseinek kétdimenziós szimulációja. Ósszefoglaló.

DR. VESZELY GYULA — DR. ZOMBORY LÁSZLÓ
Budapesti Műszaki Egyetem
Elméleti Villamoságán Tanszék

ÓSSZEFÖLGLALÁS
A cikk ismerteti azokat az effektusokat, amelyek az adalékolás kétdimenziós szimulációjának összefoglalóját, továbbá a technológiai lépések indokolódását.

"A hasonló csak hasonló által ismerhető meg." — Emerson

Bevezetés
A félvezetősok közöklő technológiai szimulációja kettős célta szolgál. Egyrészt a szimuláció eredményeit a mérésre a szimulátorok szerinti kijelzést képezve az elképzelést ábrázolja, másrészt a modells a megfelelőségét teszi lehetővé.

Természetesen bármely fizikai (tehat térben és ideben lejátszódó) folyamat szimulációjának az első-ként megválaszolandó kérdések közé tartozik: a valódi vagy transzfomált formában történő átalakítás és a valódi formában a közvetlenül összefüggés között közvetítés. A modells csupán azokra az eseteket, amelyeket az optikai modellzés igényére szolgáló eszközök tekintetében kísérelnek megadni és az alkalmazást.

Kén Tarnay professzor és munkatársai létrehozták a nemzetközi gondolkodás jelentőségét.

Mikor szükséges a kétdimenziós szimuláció?

"Ki mit jól keres, Rájún — de elszalasztja, mire gondja nincs" — Szophoklész

Az egydimenziós technológiai szimuláció nyilvánvaló sikerei ellenére is fokozottan előtérbe kerül a kétdimenziós modellezés szükségessége [1]. Ennek indoka a planáris technológia esetén nyilvánvaló, és alapvetően az eszköz fizikai működésének modellezése igénylő.

Az egydimenziós technológiai szimuláció nyilvánvaló sikerei ellenére is fokozottan előtérbe kerül a kétdimenziós modellezés szükségessége [1]. Ennek indoka a planáris technológia esetén nyilvánvaló, és alapvetően az eszköz fizikai működésének modellezése igénylő.

Az egydimenziós technológiai szimuláció nyilvánvaló sikerei ellenére is fokozottan előtérbe kerül a kétdimenziós modellezés szükségessége [1]. Ennek indoka a planáris technológia esetén nyilvánvaló, és alapvetően az eszköz fizikai működésének modellezése igénylő.

A bipolaris transzisztors alapján, hogy a tolerancia és a rekombinációs bázisáram gyorsabbabb, a MOS transzisztort, a szükséges áram, rá értékelhető a lépést időpontjának ismeretében.

Meg kell említenünk, hogy a technológia egyes lépéseit közül az új, lokális oxidáció, valamint az adalékolási során a felülettel párhuzamosan elmozduló adalék eloszlása szintén csak kétdimenziós szimulációval írható le helyesen.

A legalább kétdimenziós szimuláció igénye már az 1960-as években létrehozta az első stacionárius algoritmusokat és ezek az 1970-es évek első felében széles körben használatosak változó. A 70-es évek
végén, 80-as évek elején jelentek meg a háromdimenziós stacionárius szimulációs programok.

Ezek egyrészt az eszközök fokozatosan csökkentő méretéből adódó új effektsok, másrészt az eleve háromdimenziós struktúra (lásd például [3]) vizsgálatának igényével születtek. Létrehozásukat a hatalmas méretekben növekvő számítógépes lehetőségek mellett a hatékony numerikus eljárások kifejlesztése tette lehetővé.

Megjelentek egyúttal a két terbieli dimenzióval számoló dinamikus szimulációs programok is.

Mindezek a korszerű eszköszsimulációs eljárások csak akkor használhatók széles körben és jó eredményekkel, ha a vizsgált térrezs geometriája (oxidáció, elektrod sb.) és az adalékeloszlás legalább két terbieli dimenzióban ismert. Ezt szolgálja tehát a két-dimenziós technológiai szimuláció.

Milyen jelenségeket tudunk (ill. nem tudunk) modellezni?

,,A tudomány nem próbál magyarázni, alig is próbál interpretálni, a tudomány főként modelleket állít fel’

(Neumann János)

Litográfia

- optikai
- elektronsugaras
- röntgen
- ionsugaras

Maradás

- nedves
- gőzőlés

1. ábra. Planáris bipolaris tranzisztor meteszete

2. ábra. Rövid csatornás MOST potenciáleloszlása

3. ábra. Ionimplantáció a maszk éle mellett

Az egyes lépéseket modellezhetősége nem egyformá, de kétdimenziós modellezésünk nem is egyformán szükséges.

A litográfia és a maradás szerepet játszik a két-, ill. háromdimenziós struktúra kialakulásában. Ez a szerep azonban nem meghatározó a termikus folyamatokhoz. Ezért még egydimenziós kinetikus modellezésük is csak a közelből indult meg. Bárméd a lépéseknéz léteznek kezdeti kétté dimenziós modelljei, ezeknek megalapozottsága még igen sok kívánnivalót hagy maga után.

A rétegnöveztés modelljei fizikailag ma még kevésbé megalkotottak, lényegében fenomenologikusak. A kétdimenziós effektusokban kevés szerepet játszanak.

A továbbiakban ezért részletesen a termikus folyamatok címzés alatt összefoglalt technológiai lépések modelljeivel, ill. simulációjával foglalkozunk részletesen. Megjegyzendő, hogy az ionimplantáció jobb gyújtófogalom hiánynál került ebe a csoportba. Mivel azonban a legtöbb termikus folyamat tartalmaz egy vagy több implantáció adalékelőt és a kialakult adalékkprofil a többi folyamat kiindulási adata, szerepe azonos a többi ide sorolt folyamatvá.

Ionimplantáció

Az implantáció kinetikus modellezése igen bonyolult. Ezért a szimulációjának a kinetikus modellekből nyert analitikus vagy félempirikus eloszlásfüggvényeket, illetve ezek szuperpozícióját használják az implantációjával nyert adalékeloszlás leírására. Az ún. csatornafiózképződésből eltekintve — ez egyes irányokban, „csatornák” mentén igen mély behatolást eredményez — az eloszlásfüggvény Gauss profil, illetve ilyen eloszlásfüggvények szuperpozíciója.

\[
C(x, y) = \frac{C_\infty}{2\pi\sigma_x\sigma_y} \int_{-\infty}^{\infty} \exp \left[-\frac{(y - \eta)^2}{2\sigma_y^2} \right] \exp \left[-\frac{(x + d_{ef}(\eta) - R)^2}{2\sigma_x^2} \right] d\eta,
\]

(1)
ahol C_0, a felületegységre jutó ionok száma, σ_0 és σ_1 az eloszlás vertikális (x irányú) és laterális (y irányú) szórása, R_p az eloszlás várható értéke maszk nélkül és d_{eff} a maszk effektív vastagsága, amely arányos d-vel.

Az (1) formulát néhány egyszerűsítő feltéve mellett analitikusan is ki lehet értékelni. A számunkra legfontosabb eredmény, hogy a laterális eloszlás komplementer hibafüggenyen írható le, pl.

$$d_{eff} = \begin{cases} 0 & y < 0 \\ \infty & y \geq 0 \text{ esetén} \end{cases}$$

$$C(x, y) = \frac{C_0}{2 \sqrt{2\pi} \sigma_0} \exp \left[-\frac{(x-R_p)^2}{2\sigma_1^2} \right] \frac{y}{\sqrt{2\pi} \sigma_1}. \quad (2)$$

B és As adalék esetén az eloszlás azsimmetriáját néha jobban tükrözi mélységi eloszlásfüggvényt választanak. Ez lehet két „fél-Gauss eloszlásból” kombinálva, vagy az ún. Pearson-IV. típusú eloszlásfüggvény. Mindkét függvény használata az egydimenziós modellzésben is. Számunkra a hozzájuk tartozó laterális eloszlás érdekese. Ezt általában erfc függvénynek választják, de van olyan modell, amelyben ezt is Gauss eloszlás írja le.

Oxid- (nitríd-) réteg növeítése

A felületi passzív réteg olyan módon növekszik a Si felületen, hogy az oxidáló (nitrídlé-) anyag átdiffundál a már kialakult passzív rétegen és az érintkező felület mentén kémiai reakcióba lép a Si-mal.

A felületi passzív réteg növeztetésének modelljét azzal a feltételel határozzák meg, hogy a növekedés eléggé lassú ahhoz, hogy 1., az oxidáló anyag eloszlása az oxidában minden pillanatban stacionárius legyen (adiabatikus közletés), 2., a nyomás relaxáció ideje kisebb az oxidáció idejénél (viszkózus csúszó folyás). Utóbbinak a kétdimenziós modellzésnél van szerepe, hiszen a Si és SiO₂ eltérő módban fogatja az érintkező felületen feszültséget hoz létre, amely szétterjed az oxidában.

Az 1. feltétel figyelembevétele egydimenziós esetben a rétegvastagságra a következő összefüggéshez vezet

$$X = L \cdot \ln \left(\frac{2L^2 + Bt + \sqrt{(Bt)^2 + (L^2A^2 + 4L^2)Bt + 4L^2A^2}}{2L^2 + AL} \right), \quad (3)$$

ahol L a diffúziós hossz, A és B a növekedést jellemző paraméterek. Valamennyiken a hőmérsékletfüggése legényeszerűbben

$$G = G_0 \exp \left(-\frac{E_A}{kT} \right) \quad (4)$$

alakú összefüggéssel írható le. Ennél bonyolultabb összefüggéseket is használnak.

A (3) összefüggés által leírt növekedés sematikusan a 4. ábrán látható. Az ábrából kitűnik, hogy amennyiben $L > X$, (a diffúziós hossz jelentősen felülmúlja a rétegvastagságot) a görbe logaritmusban „telítődő” szakasz a görbe számunkra érdekes szakaszról eltűnik. Ez igen jó közelítés oxidnövekedés esetén. Ekkor (3) határesetben az

$$X = -\frac{A}{2} + \sqrt{\frac{A^2}{4} + Bt} \quad (5)$$

4. ábra. Növeztett réteg vastagságának időfüggése

Híradástechnika XXXV. évfolyam 1984. 12. szám
rugalmas nitridréteg a növekedés során fokozódó mértékben nyomja az oxidot.

Amint látjuk az oxid (nitríd) növekedését leíró modell nem kinetikus. Még kevésbé az a növeksztett réteg adalékkóslásának leírása szempontjából. Az adalékral feltételez, hogy diffúzióval vándorol az oxid (nitríd) réteg belsejében. Ez azonban már átvezet a következő ponthoz.

Diffúzió

A technológiai lépések végrehajtása során a diffúzió a leggyakrabban megjelenő folyamat. Használják magas hőmérsékleten predepozícióra, alacsonyabb hőmérsékleten behajtásra, hőkezelésre. Diffúziós adalék-újrakereszttával jár valamennyi magashőmérsékletű művelet, elsősorban a termikus rétegnyomészet (oxidálás, nitridálás).

A diffúzió alapegyenlete a folytonossági egyenlet:

\[\frac{\partial C}{\partial t} + \text{div} \mathbf{J} = 0, \]

ahol \(C \) a koncentráció, \(\mathbf{J} \) pedig az anyagarány (fluxus) sűrűség.

Utóbbinak a fenomenológiai kifejezésre egyetlen semleges diffundáló anyag és csak termikus hatások esetén

\[\mathbf{J} = -\text{grad} \ C. \]

Ez az összefüggés nem tartalmazza a kereszteljükutakot, azaz az elektronos, kristályrács, ill. több diffundáló közeg kölcsönhatásokat. Ezeket az összefüggéseket (különösen, ha nem lineáris karakterük) felépískik diffúziósgörgösgyakorlati közelítések.

Ezek azonban kevésbé prediktív erőjeik azon a tartományon kívül, amelynek vizsgálati eredményeiből származtatják őket.

A diffúzió kétdimenziós modelljeiben ezeket a hatásokat ugyanúgy modellezik, mint egydimenziós esetben. Ezért csak igen röviden tekinthetők át őket, hiszen jelentős irodalom foglalkozik a témaival (l. pl. [5]). Az egyetlen jelentős többlet, hogy többdimenziós esetben a diffúzió anizotróp lehet, azaz eltérő kristálytáli irányokba más és más a \(D \) diffúzió együttható értéke. Legáltalánosabb esetben a \(D \) tenzer lehet. Az egyes komponensek tulajdonságai azonban hasonló módon függenek a kereszteffektusoktól, mint egydimenziós esetben.

A legfontosabb modellezett hatások

a) diffúziónyomészet saját elektronos tér hatására,

b) diffúziónyomészet vakanciak hatására,

c) diffúziónyomészet a felületi oxidnövelés hatása,

d) diffúziócsökkenés a koncentrációnyomészet okozta adalékkósmosodás (clusterképződés) hatása,

e) diffúzió változása több adalék együttes diffúziójá esetén.

Különleges effektusokat modelleznék foszfor diffúziójá esetén [6]. Általában nem modellezik a sugárzások okozta diffúziónyomészet és a nyomásváltozások okozta diffúzióváltozást. E jelenségek megértése további kísérleti munkát is igényel.

Vegyük ezek után sorra a modellezett effektusokat

a) A diffundáló adalék ionizálódik. Lokális töltéscsökkenés terén feltételezve az elektronos potenciált, ill. gradienst kiszámítható. Az elektronos tér okozta drámszürűség megőrzi az adalék összármat. Más szemlélettel: a lassan diffundáló adalékon és a gyorsan diffundáló szabad töltéshordozó között kialakuló elektronos tér gyorsítja az adalékon diffúzióját. Együtt játszik és az alábbi effektív diffúziós állandóval vehető figyelembe:

\[D = D_i \left(1 + \frac{C}{2n_i} \frac{1}{\sqrt{C/2n_i}} \right). \]

(8)\]

b) A vakanciakon keresztül történő diffúzió megítélezése a diffúzió sebességét az interszclátoros mechanizmustukra viszonyítva. Felderítésében Fair és munkatársai eredményei alapvetőek [7]. A modell kialakításánál tett feltételezések a következők:

1. a töltéssel rendelkező vakanciák sűrűsége jóval kisebb az adalékkülsőnél; 2. a töltött vakanciák betöltsé arányát az adalékokkal kialakult lokális egyensúly szabja meg; 3. a vakancia-idealék kölcsönhatása mindig két részecske kölcsönhatása, nem bonyolultabb. Ezekkel a feltételezésekkor diffúziós állandóra az alábbi kifejezést kapjuk

\[D = D^0 + D^+ \frac{P}{n_i} - D^- \frac{n_i}{n_i} + \frac{D}{n_i} \]

(9)\]

ahol a tagok rendre a semleges, a pozitív, valamint az egyszeres és kétzeres negatív töltésű vakanciákon keresztül történő diffúzió hozzájárulását adják. A formula egy adalék és egy töltött mechanizmust figyelembevételeivel az igen eltérő

\[D = D_i \left(1 + \frac{\beta f}{1 + \beta f} \right) \]

(10)\]

ahol a tagok rendre a semleges, pozitív és negatív vakanciákkal kialakult lokális egyensúly szabja meg. Megemlíthető, hogy (8) és (10) kombinációja eleget tesz a vakanciakon keresztül történő diffúzió hozzájárulását adják. A formulák szerint,

\[D = D_i \left(3.8 \alpha + 0.1 \right) \]

ahol \(\alpha \) egy adaléknak, \(D_i \) pedig az alapadaléknak.

2) Kísérleti tény, hogy termikus oxidáció során az oxid alatti térzésben megjelenik a diffúzió állandó értéke. Figyelembe vételezve – kielégítő elvén nem levén – felépískik összefüggéseket javasolnak, amelyek figyelembe veszik az oxidnövekedés sebességét és az oxidrétegtől mért távolságot.
d) Nagy koncentrációk esetén az adalékból csomók (clusterek) képződnek és kiválnak a rácspből. Ezek a kivált adalékatomok elektromosan inaktívvá válódnak, nem vesznek részt elektronos kölcsönhatásban. Ennek következtében a diffúzió folyamata lelassul.

A csomók képződés kINETikusak is modellezhető. A csomók kialakulásának és felbomlásának karakterisztikus ideje azonban olyan rövid a diffúzió idejéhez viszonyítva, hogy a dinamikus leírással felesleges bonyolult a számolás.

Feltételezzük tehát, hogy a csomókon levő adalékatomok száma a rácsban elhelyezkedő adalékatomok száma közötti egyensúly van minden időpontban. Az egyensúly feltétele a

$$\left(\frac{C_{c}}{C_{s}} \right)^{m} = \frac{C_{s}}{C_{s}}$$ \hspace{1cm} (11)

alakba írhatjuk, ha a csomóban m atom található. Itt C_{s} a rácsban és C_{c} a csomóban levő atomok koncentrációja, C_{s} pedig egy karakterisztikus érték, amelynél a két koncentráció meggegyezik. A teljes adalékatómiség (11) alapján a

$$C_{s} = \frac{C_{s}}{C_{s}} + m \left(\frac{C_{s}}{C_{s}} \right)^{m}$$ \hspace{1cm} (12)

alakba írható, amelyet gyakran

$$C = C_{0} + m n C_{0}$$ \hspace{1cm} (13)

alakban használunk. A konkrét számértékeket méretté sekkel határozzák meg. Ha esetén $n = \ldots$ B esetén $n = \ldots$ Egy (az előzőeknél könnyebben kezelhető) empirikus formula a rácsban levő, tehát aktív és az összes adalék arányára

$$C_{s} = C_{0} / [1 + (C/C_{m})^{2}]^{1/2}.$$ \hspace{1cm} (14)

A csomósodás figyelembevételével a diffúziós áramot az alábbi módon közelítjük:

i) Csak az aktív adalékatomok mozognak és csak a diffúziós fluxust vesszük figyelembe

$$J = -D \ \text{grad} \ C_{s},$$ \hspace{1cm} (15a)

ahonnan

$$J = -D \ \frac{\partial C_{s}}{\partial C} \ \text{grad} \ C = - \frac{D}{1 + m^{2} k C_{s}^{2}} \ \text{grad} \ C \ (15b)$$

Láthatóan az effektív diffúzió állandó a koncentráció növekedésével rohamosan csökken.

ii) A termikus diffúzióból valamennyi adalékatom részben vesz az elektronos tér hatására kialakuló drifttáramot azonban csak az elektronosan aktív atomok szolgáltatják.

$$J = -D \ \text{grad} \ C_{s} \frac{q}{kT} D_{c} \ \text{grad} \ \varphi.$$ \hspace{1cm} (16)

ahol a felső előjel az akceptor, az alsó a donoratomokra érvényes.

iii) Csak az aktív adalékatomok mozognak, de ezek diffúziós és drift járulékát is figyelembe kell venni. (Ez kompromisszum az előző két modell között.)

$$J = -D \ \text{grad} \ C_{s} \frac{q}{kT} D_{c} \ \text{grad} \ \varphi.$$ \hspace{1cm} (17)

A (16) és (17) összefüggésekben szereplő φ potenciál termikus egyensúly és lokális semlegesség feltételezésével az adalékkoncentrációból közvetlenül meghatározható. Ennek következtében végül is valamennyi formula koncentrációfüggő diffúziós állandó szeretet.

e) Több adalék együtt diffúziójának modellezése a következő feltevésekben alapul: 1. Valamennyi adalék árama diffúziós és drift komponensekből áll; 2. lokális semlegesség áll fenn; 3. termikus egyensúly áll fenn, és a töltéshordozók eloszlása Boltzmann eloszlással közelihető; 4. az adalékok teljesen ionizáltak.

Ekkor az együtt diffúziós árama

$$J_{D} = -D_{A} h D_{A} \ \text{grad} \ C_{A} \left(h_{A} - 1 \right) \ \text{grad} \ C_{A},$$ \hspace{1cm} (18)

ahol D_{A}, D_{A}, h_{A} és h_{A} a koncentrációk (C_{A} és C_{A}) függvényei. Az egyes modellpek lényegében csak ezen függvények konkrét alakjában különböznek.

A diffúzió modellelésének bemutatását befolyás megemlíttjük még, hogy a kereszttestek formáis modellálására gyakran használják a (7) összefüggés módosított alakját.

$$J = -\ \text{grad} \ (D \ \varphi).$$ \hspace{1cm} (19)

Ennek a kifejezésnek a fizikai tartalma igen kétséges, ugyanakkor alkalmassá választott $D \ (D_{A}, \ D_{A}, \ D_{A}, D_{A}, D_{A}, D_{A}, D_{A}, D_{A})$ függvényekkel lényegében az eddig bemutatott kifejezésekhez jutunk.

Peremfeltételek

Az eddigi gombi közből belsejében lejátszódó jelen ségeket vizsgáltuk. A teljes kinetikai leírásához nem elegendő az adaléknak a térfogat belsejében történő mozgását leíró összefüggések, hanem szükség van a peremenként lejátszódó jelenségek ismeretére is. Ezek modellálására bizonyos fokig nehezebb, mint a térfogat jelenségek. Ezért a modellek viszonylag egy szerűek, heurisztikusak.

A modell konkrét numerikus egyszerűségi közül a bizonytalanság nagy, így valószínűleg a peremfeltételek okozzák a modell és a mért eredmények között a legnagyobb eltérést.

Alapvetően fontos az oxid-szilícium (illetve a nitríd-szilícium) határfelület közelében az adalékok viselkedése. Nyugvó határfelület és termikus egyensúly esetén nem a koncentrációk folytonosak, hanem a kémiai potenciál. Ennek megfelelően a koncentrációk értéke azon áránnyal meghatározott. Ez az ún. szegregációs együttható, amelyre

$$m = C_{i}/C_{m} = m_{i} \ \text{exp} \ (-\Delta E/kT).$$ \hspace{1cm} (20)

Nyugvó határfelület esetén is kell a felületre merőleges árammal számolnunk, ha bármilyen okból a felület két oldalán kialakult koncentráció hányadosa nem egyezik meg a szegregációs együtthatóval. Erről az áramról feltételezhető, hogy a koncentrációk lineáris függvénye az alábbi alakban:

$$J_{A} = -h \ (C_{A} - C_{A}/m_{A}),$$ \hspace{1cm} (21)

a szilíciumból kifelé mutató normális vektorral.

A közelülíben figyelemben arra, hogy közvetle-
nél a felület közelében a koncentráció igen nagyértétében megnövekszik a termikus folyamatok során. Ez utóbbi, a (21)-hez hasonló áramokkal vehető figyelembe, de ezt kétdimenziós modellének segítségére nem használják.

Bonyolítik a helyzet, ha a közeghatár, ahol a szegregációval számolunk kell, mozog. Ez a helyzet termikus rétegnövevészetén belül. Ilyenkor az egyensúlyi értékek különbsége által okozott fluxustól eltérővé is felépí egy áram. Oxidum

\[J_s = -V_{ov}(C_{ox} - C_{si})n, \]

ismét a szilliciumból kifelé mutató normális állapot. Itt \(V_{ov} \) az oxidréteg növekedési sebességéhez a hatarfelületre merőleges komponense, \(\alpha = 0,44 \) pedig az oxid és a kialakulásához szükséges szilliciummennyiséggel térzfogatának. Nyilvánvaló, hogy \(C_{ox} = C_{si} \) eseten zérus a járulékos fluxus, hiszen az oxid adalékkennysége azonos az eloxáltól szilliciumnál.

Általános esetben a két áramot együtt kellene figyelembe vennünk a közeghatár. Ha azonban a (21) és (22) kifejezésekben szereplő \(h \) és \(V_{ov}, \) sebességdimenzió mennyiségei közül az egyik jóval nagyobb a másiknál, ez az illető áramban szereplő mennyiségek gyakorlati egységületi jelentének.

A \(h \approx V_{ov} \) feltételezéssel a szegregáció gyakorlatilag egyensúly, azaz (21) alapján \(C_{ox} = C_{si} = m \) és ezt (22)-be helyettesítve

\[-V_{ov} \left(\frac{1}{m} - \alpha \right) C_{si}n = -D \text{ grad } C_{si}n, \]

ahol felhasználtuk, hogy a felületen átfolyó áramot diffúziós áram táplálja. A fenti kifejezésből a szokásos jellel

\[D \frac{\partial C}{\partial n} = V_{ov} \left(\frac{1}{m} - \alpha \right) C \]

(23) vegyes, lineáris, homogén peremfeltételt kapjuk. Valamennyi ma ismert kétdimenziós folyamatcsúmláció, amelyik oxidővökezedést is figyelembe vesz, a (23) peremfeltétellel számol oxid-szillicium közegfelületen.

A (23) összefüggés az oxidban nem tételez fel diffúziót. Ez a közelítés azért engedhető meg, mert az oxidban a diffúziós együttható nagyságrendekkel kisebb, mint a szilliciumban. Ennek eredményeképpen valamennyi olyan folyamatban, amelyben során az oxid nem növekszik, (23) alapján \(D \partial C/\partial n = 0 \) azaz az oxidfelület tökéletesen „visszaveri” az adalékmennyiségeket. Ez a peremfeltétel is általánosan elfogadott a szimulálási programokban.

Hogyvan szimuláljuk a folyamatokat?

„A kocsi egyes részei még nem kocsik.”

(Lao-ce)

Az egyes technológia lépések modeljei önmagukban még nem elegendőek a folyamatok szimulálója-hoz, csak annak alapját biztosítják. A szimuláció során az egyes modellt és az adott feltételek közötti mennyiségegleg ki kell értékelni, majd a végeredmény egy következő lépés szimulációjának kiindulása lehet. A teljes műveletsort a szimulációs algoritmus írja le.

A szimulációs algoritmusok két nagy csoportja: az analitikus és a numerikus eljárások. Mint valamennyi használó feladatnál, az analitikus eljárások használhatósága igen szükséges, csak erősen korlátozott feltételek mellett használhatók, és a megoldás alakja akkor is igen bonyolult. Mint minden felosztásnál, itt is van egy átmeneti sáv, a függetlenséges (híbrid) eljárások.

1. Zárt analitikus formulát szolgáltató eljárások

A teljesesség kedvénét ismertetjük azokat az analitikus algoritmust, amelyetek kétdimenziós technológiai lépésekre alkalmaznak. A \(D = \) áll. feltételezéssel a

\[\frac{\partial C}{\partial t} = D \frac{\partial C}{\partial x} \]

(24)

egy adály diffúzióját modellező egyenletnek a megoldását predelopciózásba és behajtásra is megadta a maszkák alakírás bevezetésével Kennedy és O'Brien. A második alap a két dimenzióban viszályilag egyszerű formulára vezet (végtelén vékony kezdő eloszlást feltételezve a maszkák szillicium felületén):

\[C = \frac{C_0}{2} \exp \left(-\frac{x^2}{4\Delta t} \right) \text{ erf} \left(-y/2\sqrt{\Delta t} \right), \]

(25)

ahol \(C_0 \) a koncentráció távol a maszkétól, \(z \) a mélységi, \(y \) pedig a laterális távolság a maszk éltétől.

A predelopciószimulációja azonban olyan bonyolult végéredményre vezetett, hogy Cherednichenko, Gröning és Sarkan megkísérletel más módszerrel megoldani a problémát. Munkájuk eredményeképpen a 6. ábrán bemutatott koordináta-rendszerekben a koncentrációra az alábbi kifejezést kapták:

\[C(x, y, t) = C_0 \left[1 - \frac{4}{\pi} \sum_{n=0}^{\infty} \left(\frac{1}{2n+1} \right) B_n (x) \cos \left(n + \frac{1}{2} \right) \right] \]

(26)

ahol

\[z = \frac{y}{2\Delta t} \]

és

\[B_n (x) = \frac{1}{2} \sqrt{\frac{x}{2\Delta t}} \exp \left(-\frac{x^2}{4\Delta t} \right) \left[I_{n+\frac{1}{2}} (x) + I_n (x) \right] \]

Itt \(I_n \) a \(\nu \)-edrendű elsőfajú módosított Bessel-függvény.

A (26) összefüggés eléggé meggyőző, hogy még ez a sok közelítéssel (konstans diffúziós együttható, egyszerűsített geometria) kapott eredmény is milyen nehézségeket támaszt az analitikus kiértékelés során.

6. ábra. Koordinátarendszer a (26) formulá levezetéséhez

Híradáséletrika XXXV. évfolyam 1984. 12. szám
Fokozottan áll ez a MADIPAM programra [8]. A program egyetlen, implantációval bevitt adalék széttájékoztatását szümlőja kettő, ill. három dimenzióban. A maszkablat hatását az (1) formulában szereplő $d_{c,f}$ alkalmas megválasztásával veszi figyelembe azzal a kikötéssel, hogy a maszk csak lépésezen, szeles vastaglathat. Ezzel az implantációs eloszlásának lépésektől utána exponenciális és erfc függvényekkel kifejezhető.

Ez az eloszlást a (24) egyenlet

\[C(0) = C_0, \]

ahol C_0 a bonyolult eloszlás, ebből C_1 az oxidnövevő, C_2 a korrekció, végül C_3 a laterális eloszlást reprezentálja. Az idejét publikácimax megadja ezen függvények analitikus kifejezését.

Változó maszkvastagság figyelembevevő alábban már átvette a félíg analitikus algoritmusok területére.

2. Félíg analitikus (hibrid) eljárásközül

Chin et al. [10] előzőekben ismertetett analitikus modellre támaszkodó numerikus eljárást dolgoztak ki, amelyik minden egyes pontban a ponthoz legközelebb eső oxidfelület növekedési sebességének ismertetésével korrigálja az adalékeloszlást. A program asztali kalkulátornál is kifejtelhető. (Jelen összefoglalás szerzői kipróbálták az eljárást, és tapasztalataik szerint az csak igen korlátozott feltételek között ad elfogadható végeredményeket.)

A kezdő eloszlást a (27) formulának megfelelően bontják fel, ahol a mélység $C(x, t)$ egydimenziós numerikus simulációt kapják kiindulási adalékként. Az algoritmus úgy működik, mintha a diffúzió egyszerre helyezett vékony maszkablatokon keresztül történik, és az és kapott eloszlásokat szuperpolinálja. A számítás eredménye a diffúziós együttható koncentrációfüggő következtében írt a valódi eloszlástól, de a hiba lineáris koncentrációfüggés esetén nem túl nagy. A program 50×50 részponcon tud kezelni, a rács mindkét irányban inhomogén is lehet. Laterálisan 5 különböző rácsosztás megengedett, a mélységi rácsosztást az alkalmazott egydimenziós simuláció állítja be.

3. Numerikus simulációs eljárásközül

A nemlineáris diffúziós egyenletek a már ismertetett módon a (6)–(7) egyenletből származnak. A

\[\frac{\partial C}{\partial t} = \text{div}(D(C) \text{ grad } C) \]

ahol $C=C_1, C_2, \ldots, C_n$ a reprezentatív koncentrációértékeket tartalmazó vektor. Az A mátrix sávstruktúrájú ritka mátrix (29) megoldása különböző módszerekkel történik:

a) közönséges differenciál–egyenletrendszerek egyszerű vagy prediktor–korrektor megoldásra elhelyezkedő felhasználását,

b) a (29) egy A_{t} hosszúságú diszkret időlepést történő megoldását adó $\text{exp}(A_{t} A)$ differenciál–egyenletrendszerek egyszerű vagy prediktor–korrektor megoldásra elhelyezkedő felhasználását.

Az irodalomból ismert numerikus simulációs eljárásközül az alábbiakban részletesebb a leggyakrabban használtak a.

1. előrelépő (implicit) száma

$$\text{exp}(A_{t} A) = I + A_{t} (A_{t} A)^{-1}$$

2. hátralépő (implicit) száma

$$\text{exp}(A_{t} A) = (I - A_{t} A)^{-1}$$

3. Crank–Nicholson száma

$$\text{exp}(A_{t} A) = \left[I - \frac{1}{2} A_{t} A + \frac{1}{2} A_{t} A\right]^{-1}$$

Tielert [14] programja a következő folyamatokat simulálja:

- ionimplantáció, lineárisan növekvő vastagsgát maszkzsal kereszttől
- diffúzió semeleges közegben, koncentrációfüggő diffúziós együtthatóval
- csomódsodás
- adalékok (max. 3.) kölcsönhatása.
<table>
<thead>
<tr>
<th>Oxidázás</th>
<th>Lokális oxidázás</th>
<th>Ablakok száma</th>
<th>Diffúzó tető függése</th>
<th>Diffúzó oxidációs függése</th>
<th>Clustering</th>
<th>Max. nincsmeret</th>
<th>Diszkretizálás</th>
<th>Időlépés</th>
<th>Megoldó rutin</th>
<th>Implementáció, futási adatok</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICECREM</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Véges differencia</td>
<td>Háttrálepő (implétt)</td>
<td>Iteratív</td>
</tr>
<tr>
<td>Vandorpe</td>
<td>-</td>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>Véges differencia</td>
<td>Crank—Nicholson</td>
<td>Iteratív (SOR)</td>
</tr>
<tr>
<td>Tielet</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>64 × 46</td>
<td></td>
<td>-</td>
<td>Véges differencia</td>
<td>Crank—Nicholson</td>
<td>Iteratív (blokk-iteráció)</td>
</tr>
<tr>
<td>Warner, Wilson</td>
<td>-</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>21 × 41</td>
<td></td>
<td>-</td>
<td>Galerkin Implétt</td>
<td>-</td>
<td>Gray 1 7,25 min</td>
</tr>
<tr>
<td>BICEPS (LORD)</td>
<td>+</td>
<td>2</td>
<td>+</td>
<td>-</td>
<td>60 × 40</td>
<td></td>
<td>-</td>
<td>Véges differencia</td>
<td>Háttrálepő (implétt)</td>
<td>Iteratív (blokk-iteráció)</td>
</tr>
<tr>
<td>Seidl</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>65 × 49 33 × 25</td>
<td>Véges differencia, kettős ráson</td>
<td>Crank—Nicholson</td>
<td>Gauss—Seidel</td>
<td>Cyber 175 60 sec 15 sec</td>
<td></td>
</tr>
<tr>
<td>ROMANS II.</td>
<td>+</td>
<td>1</td>
<td></td>
<td></td>
<td>31 × 51</td>
<td>Véges differencia</td>
<td>Prediktor-korrektor (GIERBI)</td>
<td>Iteratív (SOR)</td>
<td>Cyber 176 10—30 sec</td>
<td></td>
</tr>
<tr>
<td>TOPICS</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>60 × 50</td>
<td>Véges differencia</td>
<td>Háttrálepő (implétt)</td>
<td>Iteratív (SIP, Stone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEDSS</td>
<td>+</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Véges elemek</td>
<td>Implétt v. explicit</td>
<td>SPARSPAK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A diszkretizálás véges differenciámód szerrel. Crank—Nicholson sémával történik 64 × 64 rácspontot tartalmazó egyenlő közú (reguláris) ráson. A megoldás iteratív.

A megoldó rutin a relatív hiba minimalizálására az alábbi transzformációt vezeti be

\[C = n_i \exp(u(x, y, t)). \]

(Ezzel (28) alakja)

\[\frac{\partial u}{\partial t} = \text{div} [\tilde{D}(u) \text{grad} u] + \tilde{D}(u) (\text{grad} u)^2, \]

ahol

\[\tilde{D}(u) = D(n_i \exp(u)). \]

A hőkezelés simulációjánál egy további (ún. Boltzmann) transzformációval, amelynek összefüggései:

\[\xi = \frac{x}{V A D_0}; \quad \eta = \frac{y}{V A D_0}; \quad \tau = t. \]

(a 32) egyenlet az alábbi alakra transzformálódik:

\[\tau \frac{\partial u}{\partial \tau} = \text{div} \left[\tilde{D}(u) \text{grad} u \right] + \tilde{D}(u) (\text{grad} u)^2 + \frac{1}{2} \text{grad} u \]

A (33) egyenlet viszonylag bonyolult alakjáért kárépot, hogy a transzformált koordinátákban a transzponálja koncentráció változás sokkal kisebb, mint az eredeti koordinátában.

A diszkretizálás Galerkin módszerrel történik, ún. B-spline-okat választva bázisfüggvényeknek.

A LORD és továbbféleltetett változata: a BICEPS [16] az első olyan program, amely a lokális oxidációval kapott „madárcsőr alakú oxid növekedéskor kialakuló újravezetést is modellező. Több adalékokat is figyelembe vesz, együttes behajtásukkal elektromos kölcsönhatással számol. Modellezi a csomósodást, a vakanciák hatását. Az ionimplantációt Gauss mélységi és erfc laterális eloszlással modellezí.
Az oxid növekedését olyan transzformált koordinátarendszerrel veszi figyelembe, amelynél rácsos alapú párhuzamosak az oxid felületével. Ebben a transzformált, időben változó koordinátarendszerben a difúziós egyenletben vegyes másodrendű parciális deriváltak is megjelennek. Ennek végdifferenciája módszerrel történő diskretizálása kilencpontos differenciásmához vezet. Ezért az egyenletrendszer megoldása nehezebbé vállik és igen érzékeny a peremfeltételekre.

Murphy, Hall és Maldonado [18] programja (ROMANS II.) az elölő két program elemeit ötvözi, modellezzi a lokális oxidációit. A megoldást (29) alakú közönséges differenciálegyenletre vezeti vissza és azt prediktort-korrektor módszerrel oldja meg. A program továbbfejlesztését tervezik további adatok, ill. elős-ként háromdimenziós difúziós-szimulációt céljára. Tervezik a SUPREM-hez hasonló felhasználó orientált bemeneti nyelv kialakítását is.

A ma legjobban kidolgozottak tűnő program a TOPICS, Tunguchi, Kashwagi és Iwal [19] nevéhez fűződik. A szimulált effektsok
- kémiai depozíció-gőzfúzásból
- marás
diffúzió oxidációval vagy anélkül.

Az oxidációval történő diffúzió esetén figyelembe tudják venni a „madáreső” geometriát, továbbá mellékeffektszokat; a diffúzió függését térésségtől, az oxidációtól és a csomagolástól. Az irodalom közölt programok közül egyedül ez a program használ erősen implicit iterációs móddoruggedinti.

Végül meg kívánjuk említeni az egyetlen programot, amely diffúziós adalékolást véges-element módszerével szimulálja. Ez a program az IBM által fejlesztett FEDSS [20], amely egy adalék implantáció utáni behajtását szimulálja, oxidációval vagy anélkül. Képes depozíció lépéseket is modellezi. Futási adatok nem ismertek.

A programok összehasonlítását az alábbi táblázat mutatja.

<table>
<thead>
<tr>
<th>Program</th>
<th>Type Description</th>
</tr>
</thead>
</table>
1. Bevezetés

A tátolt programvezérlő kapcsolóberendezések üzemviteli (O & M) szolgáltatásai minden eddigi elhatékonnyabb lehetőségeket biztosítanak az üzemeltetést végző felhasználóknak. A korszerű elektronikus kapcsolóberendezések elismeredése ma még zömében tradicionális elektromechanikus kapcsolóberendezéseket tartalmazó bírókörző hálózatokhoz. Így még hosszú ideig számolni kell a tradicionális és a legkorszerűbb technológiát felhasználó berendezések koegzisztenciájával. Ez azzal jár, hogy egy adott vegyes hálózat összes üzemeltetési és karbantartási ráfordításai a tradicionális rendszerek karbantartásigénye dominálnál, sőt az új kapcsolóberendezések kihangsúlyozóak az üzemviteli és karbantartási lehetőségeinek elmarandottasságát. Ezt tekintetjük mindazon törekvések mozgatóerejének, melyek a hagyományos kapcsolóberendezésekhez korszerű üzemfelügyeleti és karbantartórendszerek alkalmazását igénylik. A mikroszámítógépek térhódítása lehetővé tette a különféle generációhoz tartozó kapcsolóberendezések gazdaságos, nagy hatékonysággal működő üzemfelügyelőt. A legsúrgőtőbb igény az alábbi fontosabb területeken jelentkezik:

a) Az egyéni áramkörök mindennapos rutinvizsgálatainak elhagyása.

b) A díjrögzítés és számítás korszerűsítése.

C) A CCITT E.500 ajánlásának megfelelő folyamatos forgalommérés lehetőségének biztosítása.

d) A hagyományos kapcsolóberendezések bizonyos generációinál meghatározott network management funkciók bevezetése.

A BHG Híradástechnikai Vállalat által kifejlesztett berendezését különös környezetben helyeztük a fentiekben vizzelt alapvető célkitűzésekre realizálására, azok alkalmazhatóságára a legkülönfélebb gyártmányú és generációjú távbeszelő kapcsolóberendezésekhez.
1. ábra. Vonalszakaszok mérhető paraméterek

nően a vizsgált áramkörök vonaljelzéseiből a hívott jelentkezik jel kiértékelésével leszámoljuk a beszélgetésben végzôdô hívások számát. A kettô hányadossából képzett hatékonysági arány „lefoglalásbeszélgetés” mátrix megfelelô eleméhez meghatarozott lefoglalási szám után - hasonlítjuk. Elnézés esetén az áramkört hibásnak minősítjük. Tekintettel arra, hogy a hatékonysági arány megfelelô értéke önmagában nem jelzi az áramkör hibátlan mûködését, bevezetésre került a tiszta beszélgetési idô mérése is. A vonalszakaszosok megfelelô mûködésére a további jellemző paraméternek a tiszt abeszélgetési idô és a teljes tartásidô hanyadosát tekintjük. A 2. ábra vázlatosan mutatja a mérési elv megvalósulását.

A C1 jelû számláló minden lefoglalás számot. A vonaljelzéseket továbbító jelzôvezetékre csatlakozó A/D átalakító a vonali jelzéseket a TM idômérô bememetére illeszti. A TM idômérô a vonalon futó jelzéseket méri és a kimenetre csatolt CO komparátor a mért jelet összehasonlítja a TX jelzés minimum és jelzés maximum tárolóban levô, a hívott jelentkezik jelentôs vonaljelzésre jellemzô értékekkel. A megfelelô jelzés vête esetén a CO komparátor kimeneti jele behúzó a TR tárolót. Az áramkör bontásakor a lefoglalást jelzô vezetéken a jel megszûnik, ami törli a TR tárolót.

2.2. Közös egységek felügyelete

Az alkalmazott mérési elvnek megfelelôen a b) és c) jelû kategóriákba sorolt egységeknél a tényleges lefoglalások mellett a hibákra utaló jelzéseket is számoljuk. A gázdaságosság és a hibahibátartalás mélységeinek optimuma alapján hibajelzésként értelmeztô egy adott mûködési sorrendtôl valô állapotterületek, illetve a hibára utaló tényleges jelzések. A bemutatott rendszer nagy előnye, hogy az egyes mérôpontokon külön mérôprogramok futtatathatók, amely alkalmassá teszi a rendszer arra, hogy különféle hagyományos kapcsolórendszekeknél az üzemfelügyelet rugalmasan kialakítható legyen. A hibajelzések és a tényleges lefoglalások számából képzett „sikertelenségi arány” képei alapját ezen áramköri egységek hibája kiértékelésének. A hibajelzés kiadása a Wald-féle sequential analízis alapján történik. Az 1. táblázat mutatja a hibás egységek behatárolására szolgáló formátumot.

1. táblázat. Alarmlista áramkörök behatárolására

<table>
<thead>
<tr>
<th>10</th>
<th>13</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H</td>
<td>A</td>
<td>L</td>
</tr>
<tr>
<td>2.4</td>
<td>4</td>
<td>987</td>
<td>987-51</td>
</tr>
<tr>
<td>3.4</td>
<td>955</td>
<td>955-51</td>
<td>1484</td>
</tr>
<tr>
<td>4.4</td>
<td>955</td>
<td>955-51</td>
<td>1484</td>
</tr>
<tr>
<td>5.4</td>
<td>955</td>
<td>955-51</td>
<td>1484</td>
</tr>
</tbody>
</table>

2.3. Az alkalmazott mérési módszer értékelése a gyakorlati tapasztalatok alapján

A gyakorlati tapasztalatok teljes körûen bizonyították az alkalmazott mérési elvek helyességét, olyan vonalszakaszok esetén, amelyek dekadikus jelzôrendszerrrel dolgoztak, s így a hívás felkészítéséhez szükséges idô az áramkör tartásidejében viszonylag
jelentős részt jelent. A mérési módszerek összehasonlítása érdekében kísérletképpen egy Ericsson típusú ARM 201/4 tranzítorközpontban egy 48 vonalból álló irányon 5 óráskiklusokban végeztünk méréseket:

a) átlagos tartásidő méres alapján történő kiértékeléssel,

b) hatékonysági arány mérése alapján történő kiértékeléssel,

c) hatékonysági arány és beszédidő/ldogifikációs idő arány mérése alapján.

Az átlagos tartásidők eltéréseinek alapuló mérési módszer alkalmazása esetén az adott vizsgálati idősakban bibajelzés nem történik. A mérést megismertelve az egyedi vonalszakaszok hatékonysági arányának eltéréseit értékelve 2 olyan vonalszakaszot találtunk, amelyen behatárolható jelzéstechnikai hibák voltak. Amikor a méret ismét elvégeztük, de a hatékonysági arány mellett a beszédértéktársítód-tartás
idő arány is értékelődött, továbbá 4 áramkörön számítésnél is kiholdt lehetett mutatni.

A méréseket ezután MFC jelzérszélessől vonalszakaszokon végeztük el. A mérési eredmények azt mutatták, hogy ez esetben az átlagos tartásidők kiértékelésével is behatárolhatók voltak hibás áramkörök. Összefoglalva levonhatók azt a következtét, hogy einnáramú jelzésrendszer esetén, ahol a jelzésátvétel lassú, s amellett jelzésekre is lehet számítani, hatékonysági mérési eljárásnak csak a 2.1. pontban ismertetett módszer bizonyult. Jelzéstechnikai problémák esetén az adott áramkörök hatékonysági aránya szignifikánsan lecsökken, míg számítékesítés esetén a hibák rövid idő alatt csak a beszédértéktársítod lényeges lecsökkenésének felismerésével vehetők észre. További tapasztalati tényt a következő hetihez hibák átlagosan 85%-a bizonyult igaznak. Ez azonban annak tudható be, hogy az alkalmazott 5 órás mérési ciklus alatt nem minden esetben volt meg a szükséges statisztikai mennyiség.

A közös egységek felügyeleténél nagy jelentőséggel bír a berendezés azon szolgáltatása, hogy a sikertelenségi aránya vonatkozó küszöbértékek egyénenként megadhatók. A tapasztalatok alapján az egyes áramkörök működési paramétereihez számításiánál adódóan nem csendes bizonyos közös égéscsoporoknak (pl. regiszterek) egyetlen küszöbértéket megadni.

A helyes mérési elvneke az bizonyult, amikor az egyes közös egységek sikertelenségi aránya módosítást mindig az egyedi áramkörök rendelhető küszöbértékhöz viszonyítottak.

3. Az üzemfelügyeleti terminálok felépítése

A vezérlő processzor feladata, hogy kövesse a méret áramkörök működését a scanner processzor által küldött információ alapján és működtesse az áramkörökhoz rendelt statisztikai számlálókat, míg egy állapot fennmaradásának idejét és érzékelje a különböző alam jelzéseket. Minden bemeneti ponthoz (áramkörhöz) tartozik egy adatmező, ahol az áramkör statisztikai számlálójának, a karakterizálókon, az áramkör típusának és működési állapotán kívül a futtatandó programok sorát is regisztrálják. A periféria vezérlő processzor — amely a terminál központi kompatereként fogható fel — feladata az operatív processzorhoz irányuló adatok fogalmát lebonyolító rendszerbusz ellenőrzése. Feladata még a vezérlő processzor egységből érkező adatok tárolását flexibilis mágnes diszeken, a különböző üzenetek összeállítása, vétele és továbbítása. Az operátor processzor feladata az operátor utasításainak végrehajtása. Ezek az operátori utasítások a rendszer működésével lehetnek kapcsolatban.

Az operátor processzor által adott utasítások részben az egységen belül, részben az egységen kívül kerülnek végrehajtásra. Az utasítások eredményei az operátor terminálón és sonyortumaton jelennek meg.

4. A szolgáltatások megvalósító főbb software modulok

4.1. TMM forgalomérő modul

Ez a modul a távbeszélőközpont forgalma adatainak gyűjtését szolgálja, a hálózat folyamatos felügyelet
és a hosszútávú tervezés megkönnyítése céljából. A mérőpontokon megjelenő jelzések kiértékelése scanning eljárással történik. Alapelve az áramkörök és a közös egységek egyedi mérése. Az egyedi mérőpontok software módszerekkel mérőcsoporthok rendezhetők, és a feldolgozott adatok mérőcsoporthokra vonatkozhatóan kiszámíthatók. A rendszer a 12 msec-nél nagyobb jelenek ismeri fel, a forgalmi számításokat 1 sec-onként végzi. Lehetőség van:

- a lebonyolított forgalom (A),
- a lefoglalásszám (N),
- az effektív hívásszám (M),
- a tiszta beszédforgalom (B),
- a forgalomkoncentráció (K),
- a hatékonysági arány (S),
- az átlagos beszéd tartási idő (TB)

mérésére és megjelenítésére óras bontásban, órás, vagy negyedórás eltolással.

A modul alkalmas a

- forgalmazásra,
- lebonyolított forgalom maximuma (Amax), illetve minimuma (Amin),
- beszédforgalom maximuma (Bmax), illetve minimuma (Bmin),
- mindezek tényleges időpontja

idejénél, illetve értékenként automatikus meghatározására. A vizsgált időszak vonatkozásában összesítve megjeleníthetők az alábbi értékek:

2. táblázat. Forgalmi report (TMM)

<table>
<thead>
<tr>
<th>R</th>
<th>H</th>
<th>K</th>
<th>A</th>
<th>M</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>E</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

- az összes lefoglalások száma (SN),
- összes effektív hívások száma (SM),
- összes lebonyolított forgalom (SA),
- összes beszédforgalom (SB),
- fajlágos lebonyolított forgalom (FF),
- fajlágos beszédforgalom (FB).

A forgalmi reportot a 2. táblázat mutatja. A forgalommérés folyamatossá történik, így lehetőség van a CCITT által ajánlott A_{29} mérés lebonyolítására mérőcsoporthorként.

Az mérések tetszőleges kezdési időponttól tetszőleges befejezési időpontig végezhetők manuális, vagy előre programozott indítással és befejezéssel.

4.2. SSM lefoglalásszám ellenőrző modul

A modul alapvető feladata a közös egységek és meghatározott áramkörök lefoglalásainak ellenőrzése. A kezelő utasításaitól függően a vizsgált időtartam végén lehetőség van az
4.5. CITOM pénzbeli készülékek felügyelő modulja

A 2.1. pontban bemutatott mérési eljárás különösen nagy szerepet kap egy adott karbantartóközösséghez tartozó pénzbeli készülék működésének folyamatos, egyedi ellenőrzésében. Ezen funkcióval alapvetően fontos, hogy a megbízhatóbbá váljon a tervlőgő időn belül fel lehessen fedni. A berendezés a távvezérlőközpont pénzbeli áramkörein kifoglaló és számláló ágaira csatolható. A berendezés lehetővé teszi az érmeirtés szükségességének kijelzését is.

4.6. NMM network management modul

A modul feladata az üzemfelügyeleti és forgalomérő modulok mérési adatai és az 5. pontban bemutatott centrálizált rendszer analízise és adatfelelőzési tevékenysége során nyert információk alapján túlértékelés esetén beavatkozás kezdeményezése, az optimális forgalombevonóit biztosítása érdekében. Amennyiben a berendezés olyan hagyományos kapcsolóberendezés üzemfelügyeletét látja el, amely-nél lehetőség van beavatkozások végrehajtására, úgy a következő feladatok láthatók el:

- előfizetői forgalom korlátozása, túlhéterelés esetén bemondtára történő irányítás,
- a közös egységek időzítéseinek megváltoztatása a terhelés függvényében,
- a vezérlőberendezések ismételt kapcsolásfelépítés kisérelteinek korlátozása, illetve megakadályozása,
- az alternatív irányítás lehetőségének korlátozása, illetve stratégiának megváltoztatása.

5. Centralizált üzemfelügyeleti és karbantartó rendszer megvalósításának lehetősége

Az üzemfelügyeleti és karbantartórendszer fejlesztéseinek alapvető célkitűzése volt, hogy a hagyományos kapcsolóberendezéseken kihelyezett mérőtermékek összefajtásának hatására a költséghatározó és az automatizált rendszerellátási feltételek javításával felügyeleti pontosabbá és szükségességének szélesíthetetlen iskolai kockázatokkal rendelkező modernítás lehetőségének növelésére.

Constronic '84

Hogy váltott legaján az elektronikus készülékek felügyelete a mikroelektronikai alkatrészek és programozható egységek megjelenésével;

- hogyan lehet új konstrukciós elveket kifejezni;
- milyen előnyös a digitális alakulás a számítógépes tervezésben;
- hogyan használható a számítógép egy műszaki konstrukcionáló rendszerekhez való összefüggésére;
- milyen a konzerválva nyomott áramkör technológia és a számítógéppel szemben hasonló hozzáfűzés tervezése kapcsolatban Magyarországon;
- milyen az elektronikai készülékek és berendezések szabványozott elosztását hozzáfűzik, és hogy milyen csomagolásokban, és igazított módszerekkel alakítsák az elektronikai szövegesleces készülékek illetve biztosított,
- milyen konkrét fejlesztést hozott az elektronika széles körű alkalmazása részére;
- milyen megvalósítható az elektronikai szabványozott elosztás;
- hogyan hatással lehet a digitális áramköreken kialakított kapcsolatok az elektronikai berendezések szabványozása;
- hogyan a digitális alapú szabványozott, vagy az elektronikai szabványozott;
- hogyan hatással lehet a digitális áramköreken kialakított kapcsolatok az elektronikai berendezések szabványozása;
- hogyan hatással lehet a digitális áramköreken kialakított kapcsolatok az elektronikai berendezések szabványozása;
- hogyan hatással lehet a digitális áramköreken kialakított kapcsolatok az elektronikai berendezések szabványozása;
- hogyan hatással lehet a digitális áramköreken kialakított kapcsolatok az elektronikai berendezések szabványozása;
- hogyan hatással lehet a digitális áramköreken kialakított kapcsolatok az elektronikai berendezések szabványozása;
<table>
<thead>
<tr>
<th>Tipus</th>
<th>Dielektrikum</th>
<th>Fegyverzet</th>
<th>Névleges feszültség [Un]</th>
<th>Kapacitás tartomány</th>
<th>Sor Tűrés [%]</th>
<th>Kategória feszültség -85°C-on</th>
<th>Feszültség vizsgálat kivezetők között</th>
<th>kivezetők és a burkolat között</th>
</tr>
</thead>
<tbody>
<tr>
<td>C243</td>
<td>polipropilén (PP)</td>
<td>fém vékonyréteg</td>
<td>250V…</td>
<td>33 nF … 4,7 μF</td>
<td>E6</td>
<td>250V…</td>
<td>2 Un</td>
<td>1,5 Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400V…</td>
<td>15 nF … 2,2 μF</td>
<td>±10</td>
<td>400V…</td>
<td>1,5 Un</td>
<td>2 Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>630V…</td>
<td>6,8 nF … 1 μF</td>
<td>±5</td>
<td>630V…</td>
<td>1,5 Un</td>
<td>2 Un</td>
</tr>
<tr>
<td>C248</td>
<td>polipropilén (PP)</td>
<td>fém vékonyréteg + alufólia</td>
<td>630V…</td>
<td>10 nF … 220 nF</td>
<td>E6</td>
<td>900V…</td>
<td>2 Un</td>
<td>1,5 Un</td>
</tr>
<tr>
<td></td>
<td>impulzus kondenzátor</td>
<td></td>
<td>1000V…</td>
<td>33 nF … 100 nF</td>
<td>±10</td>
<td>800V…</td>
<td>2 Un</td>
<td>1,5 Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1500V…</td>
<td>10 nF … 47 nF</td>
<td>±5</td>
<td>1200V…</td>
<td>2 Un</td>
<td>1,5 Un</td>
</tr>
<tr>
<td>C250</td>
<td>polipropilén (PP)</td>
<td>fém vékonyréteg</td>
<td>250V…</td>
<td>22 nF … 1 μF</td>
<td>E6</td>
<td>250V…</td>
<td>1,6 Un</td>
<td>2 Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400V…</td>
<td>10 nF … 680 nF</td>
<td>±10</td>
<td>400V…</td>
<td>1,6 Un</td>
<td>2 Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Híradástechnika XXXV. évfolyam 1984. 12. szám
FÉMEZETT POLIPROPILÉN

KONDENZÁTOROK

AJÁNLOTT TERMÉKVÁLASZTÉKA '84

<table>
<thead>
<tr>
<th>Veszteségi tényező $[\text{1g}^2]$</th>
<th>Tiszta változközö feszültség terhelhetőség</th>
<th>Impulzus üzem max. impulzus merevedés</th>
<th>Szigetelési ellenállás kivezetők között</th>
<th>Kulcsszám</th>
<th>Szabvány</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10\text{kHz } \max 3 \cdot 10^{-3}$ $C \leq 1\mu F$</td>
<td>U_0 U_{V-} $[V_{V-}]$ 250 220</td>
<td>$U_n [V_{V-}]$ 250 $15\text{V}/\mu\text{s}$</td>
<td>min 30Ω vagy $\min 100\Omega$</td>
<td>$40/085/21$</td>
<td>$\text{Rx}-74,123/1$</td>
</tr>
<tr>
<td>$1\text{kHz } \max 2 \cdot 10^{-3}$ $C > 1\mu F$</td>
<td>630 300</td>
<td>630 $25\text{V}/\mu\text{s}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$10\text{kHz } \max 3 \cdot 10^{-3}$</td>
<td>U_0 U_{V-} $[V_{V-}]$ 630 300</td>
<td>$U_n [V_{V-}]$ 630 $500\text{V}/\mu\text{s}$</td>
<td>min 30Ω vagy $\min 100\Omega$</td>
<td>$40/085/21$</td>
<td>$\text{Rx}-74,123/2$</td>
</tr>
<tr>
<td>$1\text{kHz } \max 2 \cdot 10^{-3}$</td>
<td>1000 350</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500 450</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10kHz $C \leq 100\text{nF } \max 0,6 \cdot 10^{-3}$</td>
<td>U_0 U_{V-} $[V_{V-}]$ 250 160</td>
<td>$t [\mu\text{s}]$ $250\text{V}{V-}$ $400\text{V}{V-}$</td>
<td>min 100Ω vagy $\min 100\Omega$</td>
<td>$40/085/21$</td>
<td>$\text{Rx}-74,123/3$</td>
</tr>
<tr>
<td>$C > 100\text{nF } \max 1 \cdot 10^{-3}$</td>
<td>400 200</td>
<td>10 200 266 30ks (amelyik kisebb)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 100 133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$22,5$ 57 76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$27,5$ 44 59</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C243

<table>
<thead>
<tr>
<th>Névleges kapacitás</th>
<th>250V~</th>
<th>400V~</th>
<th>630V~</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>6,8 nF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4,0</td>
<td>9,5</td>
<td>13,0</td>
</tr>
<tr>
<td>47</td>
<td>5,0</td>
<td>10,5</td>
<td>13,0</td>
</tr>
<tr>
<td>68</td>
<td>6,0</td>
<td>11,5</td>
<td>13,0</td>
</tr>
<tr>
<td>100</td>
<td>5,5</td>
<td>11,0</td>
<td>18,0</td>
</tr>
<tr>
<td>150</td>
<td>7,0</td>
<td>13,0</td>
<td>18,0</td>
</tr>
<tr>
<td>220</td>
<td>9,0</td>
<td>14,5</td>
<td>18,0</td>
</tr>
<tr>
<td>330</td>
<td>6,5</td>
<td>15,0</td>
<td>27,0</td>
</tr>
<tr>
<td>470</td>
<td>7,0</td>
<td>16,5</td>
<td>27,0</td>
</tr>
<tr>
<td>680</td>
<td>10,5</td>
<td>19,0</td>
<td>32,0</td>
</tr>
<tr>
<td>1 μF</td>
<td>11,0</td>
<td>20,0</td>
<td>32,0</td>
</tr>
<tr>
<td>1,5</td>
<td>130</td>
<td>225</td>
<td>320</td>
</tr>
<tr>
<td>2,2</td>
<td>150</td>
<td>300</td>
<td>320</td>
</tr>
<tr>
<td>3,3</td>
<td>180</td>
<td>330</td>
<td>320</td>
</tr>
<tr>
<td>4,7</td>
<td>220</td>
<td>370</td>
<td>320</td>
</tr>
</tbody>
</table>

t ± 0,2	4,0	9,5	13,0	10,0
max.	4,0	9,5	13,0	10,0
	5,0	10,5	13,0	10,0
	10,5	10,5	13,0	10,0
	5,5	11,0	15,0	12,5
	11,0	15,0	27,0	22,5
	8,5	18,5	27,0	22,5
	11,0	20,0	32,0	27,5
	15,0	30,0	32,0	27,5
	18,0	38,0		

C250

<table>
<thead>
<tr>
<th>Névleges kapacitás</th>
<th>250V~</th>
<th>400V~</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>10 nF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5,0</td>
<td>10,5</td>
</tr>
<tr>
<td>33</td>
<td>6,0</td>
<td>11,5</td>
</tr>
<tr>
<td>47</td>
<td>6,5</td>
<td>11,0</td>
</tr>
<tr>
<td>68</td>
<td>7,0</td>
<td>13,0</td>
</tr>
<tr>
<td>100</td>
<td>9,0</td>
<td>14,5</td>
</tr>
<tr>
<td>150</td>
<td>9,0</td>
<td>14,5</td>
</tr>
<tr>
<td>220</td>
<td>7,0</td>
<td>16,5</td>
</tr>
<tr>
<td>330</td>
<td>8,5</td>
<td>18,5</td>
</tr>
<tr>
<td>470</td>
<td>10,5</td>
<td>19,0</td>
</tr>
<tr>
<td>680</td>
<td>11,0</td>
<td>20,0</td>
</tr>
<tr>
<td>1 μF</td>
<td>13,0</td>
<td>22,5</td>
</tr>
</tbody>
</table>

t ± 0,4	5,0	10,5
max.	5,0	10,5
	13,0	10,0
	18,0	15,0
	27,0	22,5
	32,0	27,5

t ± 0,4	13	10
	18	15
	27	22,5
	32	27,5

Notes

- A x B ≤ 13 x 22,5 mm
- A x B ≥ 15 x 30 mm
Névleges kapacitás

<table>
<thead>
<tr>
<th>Névleges kapacitás</th>
<th>630V</th>
<th>1000V</th>
<th>1500V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max.</td>
<td>max.</td>
<td>max.</td>
</tr>
<tr>
<td>1,0 nF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5,5</td>
<td>11,0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7,0</td>
<td>13,0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9,0</td>
<td>14,5</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6,5</td>
<td>15,0</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>7,0</td>
<td>16,5</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>8,5</td>
<td>18,5</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>9,5</td>
<td>19,5</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10,5</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>11,0</td>
<td>22,5</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>13,0</td>
<td>22,5</td>
<td></td>
</tr>
</tbody>
</table>

A fémezett polipropilén (PP) kondenzátorok az egyéb dielektrikumú típusokkal szemben lényegesen jobb impulzusállósággal tűnnek ki. A PP fólia kiváló tulajdonságai — a fegyverzet elrendezése révén — különböző mértékben hasznosíthatók.

A legegyszerűbb és legkisebb méretű a C243-as típus. Közepes terhelésre a kissé nagyobb méretű C250 fokozott igénybevételere pedig a C248 típus ajánlható.

Fémmezett PP kondenzátorok impulzus terhelhetősége

<table>
<thead>
<tr>
<th>Tipusszám</th>
<th>C243</th>
<th>C250</th>
<th>C248</th>
</tr>
</thead>
<tbody>
<tr>
<td>Névil. teszsültség [V-]</td>
<td>250</td>
<td>400</td>
<td>630</td>
</tr>
<tr>
<td>Roszter [mm]</td>
<td>Megengedett max. impulzus meredeksség [V/μs]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>22,5</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>27,5</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

Megkeresésükre káldunk katalógust. Kereskedelmi főosztályunk várja érdeklődésüket és készséggel áll rendelkezésükre.

Plavecz Istvánné

RÁDIÓTECHNIKAI VÁLLALAT Bp. X., Pataky tér 20.
H—1475 Bp. 10. Pf. 64. Tel.: 573-033. Telex: 22-4565

Híradástechnika XXXV. évfolyam 1984. 12. szám
MINIATÚR BILLENŐKAPCSOLÓ CSALÁD KB 2M...

SZUBMINIATÚR BILLÉNŐKAPCSOLÓ KB 3M...

(Előzetes műszaki tájékozat)

A KONTAKTA nagy sorozatban gyártja a különböző méretű, teljesítményű és rendeltetésű készülékkapcsolókat, és a választék folyamatos korszerűsítésére és bővítésére törekzik a piaci igények minél teljesebb kielégítése érdekében.

A témakörrel kapcsolatos fejlesztési munka legújabb eredménye a KB 2M típusú miniatúr billenőkapcsoló család, illetve a KB 3M típusú szubminiatúr billenőkapcsoló.

E két típus kifejlesztésével a miniatúr és a szubminiatúr méretű kategóriába sorolható kapcsolók hazai gyártásának bevezetését, és ezzel a felhasználók e kapcsolómeretekre vonatkozó egyre növekvő igényeinek kielégítését kívánja megvalósítani a KONTAKTA.

A következőkben részletesen ismertetésre kerül a két-féle kapcsoló típus.

KB 2M...

Miniatúr billenőkapcsoló család

A kapcsoló szigetelőttse műanyag, a menetes nyak és a billenőkar fémől készül. A billenőkarra több színváltozatban készülő műanyag sapka húzható.

A kapcsoló M 6×0,75 mm-es menettel központosan erősíthető fel a szerelőlapra.

Az ezüst érintkezőkkel szerelt változat mellett gyártásra kerül a kisjelzők kapcsolására alkalmas aranyozott érintkezőkkel készülő változat is.

A beköthető vezeték-keresztmetszet: max. 0,5 mm². A vezeték bekötése forrasztással történik.

KB 2M...

Szubminiatúr billenőkapcsoló

A kapcsoló egy- és kétáramkörös átkapcsoló változatban kerül gyártásra.

A kapcsoló szigetelőttse műanyag, a menetes nyak és a billenőkar fémől készül.

A kapcsoló M 5×0,75 mm-es menettel központosan erősíthető fel a szerelőlapra.

A kapcsoló szekunder áramkörök kapcsolására szolgál, a nyitott érintkezők közötti légköz szempontjából a kapcsolók a parányizó és szubminiatúr billenőkapcsoló kategóriájába tartoznak.

A KB 2M... családba tartozó típusváltozatok ismertetését az 1. táblázat, méretadatait pedig az 1. ábra tartalmazza.

Rendelési példa

Műszaki igény: 2 pálosú váltókapcsoló, ezüst érintkezővel, píros sapkával.

KB 3M...

Szubminiatúr billenőkapcsoló

A kapcsoló egy- és kétáramkörös átkapcsoló változatban kerül gyártásra.

A kapcsoló szigetelőttse műanyag, a menetes nyak és a billenőkar fémől készül.

A kapcsoló M 5×0,75 mm-es menettel központosan erősíthető fel a szerelőlapra.

A kapcsoló szekunder áramkörök kapcsolására szolgál, a nyitott érintkezők közötti légköz szempontjából a parányizó és szubminiatúr billenőkapcsoló kategóriájába tartozik.

A KB 3M... kapcsoló típusváltozatait a 2. táblázat, méretadatait pedig a 2. ábra tartalmazza.

Rendelési példa

Műszaki igény: Egy áramkörű kapcsoló, aranyozott érintkezővel.

Rendelési adat: KB 3M1A2, 1.619.0001.

Híradástechnika XXXV. évfolyam 1984. 12. szám
<table>
<thead>
<tr>
<th>MŰSZAKI ADATOK</th>
<th>Érintkezői</th>
<th>Ezüst</th>
<th>Aranyozott</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>125 V</td>
<td>30 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 A</td>
<td>max. 0,5 VA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kijelzési adások</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visszajátszó feszültség</th>
<th>500 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stegteszlei ellenállás</td>
<td>min. 100 Mohm</td>
</tr>
<tr>
<td>Áramtesti ellenállás</td>
<td>max. 20 Mohm</td>
</tr>
<tr>
<td>Elektromos élettartam</td>
<td>50 000 kapcs. ókkt.</td>
</tr>
<tr>
<td>Környezetállósgazdasági kohózás</td>
<td>25/07/21</td>
</tr>
<tr>
<td>Vonatszintű érzékenység</td>
<td>KUBZ 143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EZÜST ÉRINTKEZŐK</th>
<th>ARANYOZOTT ÉRINTKEZŐK</th>
<th>KIVITEL</th>
<th>KAPCSOLÓ KAR ÁLLÁS</th>
<th>KAPCSOLÁSI VÁZLAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Típusjel</td>
<td>Gy. szám</td>
<td>Típusjel</td>
<td>Gy. szám</td>
<td>Kivitel</td>
</tr>
<tr>
<td>KB 2M1A1</td>
<td>1.618.0001</td>
<td>KB 2M1A2</td>
<td>1.618.0006</td>
<td>Váltókapcsoló</td>
</tr>
<tr>
<td>KB 2M1B1</td>
<td>1.618.0002</td>
<td>KB 2M1B2</td>
<td>1.618.0007</td>
<td>Kettő be kapcsolt állás</td>
</tr>
<tr>
<td>KB 2M1E1</td>
<td>1.618.0003</td>
<td>KB 2M1E2</td>
<td>1.618.0008</td>
<td>Visszaálló váltókapcsoló</td>
</tr>
<tr>
<td>KB 2M1C1</td>
<td>1.618.0004</td>
<td>KB 2M1C2</td>
<td>1.618.0009</td>
<td>Kettő pillanat be kapcsolt állás</td>
</tr>
<tr>
<td>KB 2M1D1</td>
<td>1.618.0005</td>
<td>KB 2M1D2</td>
<td>1.618.0010</td>
<td>Egy be egy pillanat be kapcsolt állás</td>
</tr>
<tr>
<td>KB 2M2A1</td>
<td>1.618.0011</td>
<td>KB 2M2A2</td>
<td>1.618.0016</td>
<td>Váltókapcsoló</td>
</tr>
<tr>
<td>KB 2M2B1</td>
<td>1.618.0012</td>
<td>KB 2M2B2</td>
<td>1.618.0017</td>
<td>Kettő be kapcsolt állás</td>
</tr>
<tr>
<td>KB 2M2E1</td>
<td>1.618.0013</td>
<td>KB 2M2E2</td>
<td>1.618.0018</td>
<td>Visszaálló váltókapcsoló</td>
</tr>
<tr>
<td>KB 2M2C1</td>
<td>1.618.0014</td>
<td>KB 2M2C2</td>
<td>1.618.0019</td>
<td>Kettő pillanat be kapcsolt állás</td>
</tr>
<tr>
<td>KB 2M2D1</td>
<td>1.618.0015</td>
<td>KB 2M2D2</td>
<td>1.618.0020</td>
<td>Egy be egy pillanat be kapcsolt állás</td>
</tr>
</tbody>
</table>

1. táblázat

<table>
<thead>
<tr>
<th>Gy. szám</th>
<th>Típuszám</th>
<th>Érintkező bevonat</th>
<th>Kapcsolható áramkör</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.619.0001</td>
<td>KB 3M1A2</td>
<td>arany</td>
<td>egy</td>
</tr>
<tr>
<td>1.619.0002</td>
<td>KB 3M2A2</td>
<td></td>
<td>kettő</td>
</tr>
<tr>
<td>1.619.0003</td>
<td>KB 3M1A1</td>
<td></td>
<td>egy</td>
</tr>
<tr>
<td>1.619.0004</td>
<td>KB 3M2A2</td>
<td></td>
<td>kettő</td>
</tr>
</tbody>
</table>

2. táblázat

Híradás-technika XXXV. évfolyam 1984. 12. szám
EGYÁRAMKÖRÖS (KB 2M1...)

TARTOZÉK:
Sapka (kapcsolóhoz külön rendelendő)

RENDELESNÉL a kívánt sapkaszinnek megfelelő gyártási számot kell megadni.

KETÁRAMKÖRÖS (KB 2M2...)

<table>
<thead>
<tr>
<th>Szín</th>
<th>Gyártási szám</th>
</tr>
</thead>
<tbody>
<tr>
<td>fekete</td>
<td>6.618.0036</td>
</tr>
<tr>
<td>sárga</td>
<td>6.618.0035</td>
</tr>
<tr>
<td>zöld</td>
<td>6.618.0034</td>
</tr>
<tr>
<td>kék</td>
<td>6.618.0033</td>
</tr>
<tr>
<td>piros</td>
<td>6.618.0032</td>
</tr>
<tr>
<td>fehér</td>
<td>6.618.0031</td>
</tr>
</tbody>
</table>

Szerelőlap kivágás

A szerelőlap max. vastagsága: 4 mm

1. ábra
Az ismertetett termékek gyártásának beindulása 1985. második felében várható.
Bármely alkalmazástechnikai kérdésben a KONTAKTA műszaki fejlesztési főosztálya (279-200/227), katalógusigény esetén pedig a kereskedelmi főosztály készsegéggel áll felhasználóink rendelkezésére.

Lautner Pál

Budapest XX. Helsinki út 51-53. H-1201
Telefon: 279-200 * Telex: 22-4399
Beszámoló a IV. Energiaipari Távközlési Szemináriumról

IV. Energiaipari Távközlési Szemináriumot.

A rendezvény megszervezését az Energiagazdálkodási Tudományos,
Közlekedés Tudományi,
Magyar Elektrotechnikai,
Mérésombolyai és Automatizálási Tudományos,
Országos Magyar Bánya és Kohászati
Egyesületek is támogatták.

A szeminárium fővédnökségét dr. Kapolny László
ipari miniszter, a védnökséget Schiller János, az
MVMT és Zsengeller István, az ÖKGT vezérigazgatói
vállalták.

Az energiaipari zárt célú technológiai távközlő
rendszerek, a zavartalan villamos- és szénhidrogén
energia szolgáltatás érdekében, annak alrendelvé
létessültek és üzemelték. Így kiemelt jelentősége van
más távközlő rendszerek üzemeltetőivel — elsősorban
a postával —, valamint a híradástechnikai ipar és
kutató intézetek szakembereivel a rendszeres kapcsolattartásnak és tapasztalatcserének.

A rendezvény iránti nagyságú érdeklődést mutatja,
 hogy 65 vállalat, illetve szervezet által képviselt mintegy
200 hivatalos és meghívott résztvevő közreműködéssel
vel folytak az előadások és szakmai meghibásodások.

A megnyitó előadást dr. Budászy József, az
OMFIP főosztályvezetője tartotta a műszaki fejlesztés
fő irányaiáról, az anyag, az energia és az információ
kapcsolatáról.

A hámor nap alatt 11 hazai és 7 külföldi előadás
hangzott el, melyek a következő fő témaköröket öleltek fel:
— optikai (fenyegetető) távközlés,
— rádiótelefonia új szolgáltatásai és digitális technika,
— rendszer mérés technika,
— erősáramú hálózatok távközlési célú igénybevételére és a zavaró hatás elleni védelme.

A hazai előadásokat a gyártó ipar (TERTA, BRG,
BHG, MKM), a posta (PKI, MPK, Soproni Pig.), az
egyetem (BME — E1), és a kutató intézetek (TKI,
PKI) e témákkal foglalkozó kiemelt szakemberei
adták elő. A 7 külföldi előadást négy ismert világégy
(Siemens, Hawlett Packard, Autophon, Wandel &
Goltermann) tartotta ugyancsak a fenti témakörök
ben. Az előadások logikus és műszaki újdonságokat
kevésbé ismert megoldásokat mutatott be.

Az előadásokat rövid vita követte, sajnos az idő
rövidsége miatt nyilvánvalóan nem volt mód hosszabb
eszmecsére. Az érdekesebb témákat és felvetéseket
a szakosztály külön klubnapok keretében fogjá ismét
letten tárgyalni.

A programhoz tartozott, illetve a résztvevők folya
matosan megismertekedtek a kiállításon bemutatott
eszközökkel, így a Siemens PC 16-os személyi számítógépes
konfigurációval, a Magyar Posta személyhívó és
szelektív rádiós kapcsoló rendszerével, az
Autophon rádiótelefon készülék családdal. Fakultatí
módon lehetőség volt a Gáz és Olajszállító Vállalat
gázföldiszpécseré központjának megtekintésére is,
ami számos szakembert érdekelt.

Ugyancsak színesebb az előadás a kölajlel
és gázipari távközlő rendszer üzemviteléről és az első
hazai (posta) fenyegető kábel építésről készített
film bemutatása.

Igen értékes és hasznos megbízhatósága, tapasztalat
cseréje voltak a hivatalos programokon kívül. A
személyes kapcsolatok, egység gondjainak közelebb
ról való megismerése nagy jelentőséggel bír a minden
napi munkában. Ezért az oktató és továbbképző
jelleg mellett, a távközlési szakma különböző területein
dolgozó szakemberek rendszerező találkozóját a
személyes kapcsolatot, a távközlési fórumot és a
közösséget megteremteni.

A kétvévenként megrendezésre kerülő szemináriumok
szinonoma egyre magasabb és az érdeklődés is
egyre növekszik. Az energia-iparágakon kívül mind
több gyártó vállalat, kutató intézet, postai szervez,
külkereskedelem és külföldi cégek jelentkeznek a
szemináriumra előadással és résztvevőként, amik
mutatja a technológiai távközlés fontosságát és elme
részet.

A most végét ért IV. Energiaipari Távközlési Szemen
árium rendezőinek munkája sikeres volt és köz
megelégedést változt ki, az igazi eredményt majd
azon lehet legjobban leírni, hogy a résztvevők
mennyit hasznosítanak a hallottakból és a látottakból
a napi feladatuk elvégzésében.

Halász Miklós
szakosztály elnök h.
Alkatrész-szeminárium ’84

Megnyitó előadásában dr. Pál Lénárd akadémikus, az OMFB elnöke foglalkozott a mászó fejlesztés fő irányainak értékeivel és azok közötti kölcsönhatásokkal. A távlati fejlesztési feladatok ismertetésével részesített elemezen emelte az elektronizálás szeles körű elterjedésének és a mikroelektronikai technológiák fejlesztésének jelentőségét. Megállapításai között hangsúlyozta, hogy a hazai elektronizálási folyamat nem képzethető el az elektronikai alkatrészek késelerős és szélesebb fejlesztése célú. A mikroelektronikai alkatrészgyártás fejlesztéseinek helyzetét értékelve az eddig végzett tevékenységet a szocialista országokhoz viszonyítva is szerevből építették ki. Tartalmi változások szükséges a VII. ötéves tervteljesítéshez. Ha ezt nem tesszük, az egész elektronizálási folyamatot alálassuk.

Dr. Kápolny László akadémikus, ipari miniszter „A magyar népgazdaság elektronizálódása gazdasági szerepvédelmi és kulturális területi megvalósítását természetesen elmaradhatja a korábbiakban különböző iparról és személyi kapcsolatról feladott a gyártás és a készülék gyártása területén. Az elektronikai alkatrészlevelező és a szakmai kutatás hozzájárulása az ebben a területen zajló munkában kialakult kulturális válságban is befolyásolhatja.

Közétes Zoltán ipari miniszterhelyettes „A magyar elektronikai ipar helyzete és feladatai. Az EKFP hatása az elektronikai iparra. A VII. ötéves tervezése, című előadásában az elnyelt tíz évre visszatérítve értékelte az ágazat fejlődési dinamikáját, amely a nehézségek ellenére is jobb volt az 1983-as évben, mint az utóbbi két évtizedben előtt, elismert, jó állaga. Hangsúlyozta, hogy ez az első szeminárium, amikor nem belső terveinkből kiindulva tárgyalunk, hanem az ágazat felé jelzett igények ismeretében. Az igények jelentkezését és ágazat fejlődését, és értékelte a MTESZ tárgygyűjtésének felmérése, a másik a több irányból összehangolt VII. ötéves tervezés előkészítése. Az eredmények mellett foglalkozott a célkitűzések megvalósítása területén jelentkező nehézségekkel is, melyek leküzdésére a továbbiakban is és folyamatosan koncentrálni kell az erőket, és kilon őrányította a figyelmet a népgazdaság általános célkitűzéseivel nem egyező jelenségek megsemmisítésére.

A további plenáris előadásokban dr. Sándory Mihály kormánybiztos, a MVF vezérigazgatója „A mikroelektronikai alkatrészek fejlesztéséi helyzete. Az aktív alkatrész kibocsátás alakulása, terveképzelések” címmel, dr. Molnár Rudolf, a REMIX igazgatója „A passzív alkatrészek és a hibrid áramkörök fejlesztési elképzelése és az igények kielégítésének helyzete” címmel és Kauser Dénes, a KONTAKTA fejlesztési főmérnöke „Az elektromechanikus alkatrészfejlesztési eredményei és céljai az EKF P I. és II. tervteljesítésében” címmel tartott beszámolót.

A felhasználói igények oldaláról Berecz Frigyes, a BHG vezérigazgatója adott információt: „Az alkatrészpar helyzete a berendezésgyártó szemzôgörből” címmel, majd Köveskuti Lajos, a HT elnöke tartott előadást „A BOAK alkalmazásának tapasztalatai és gazdasági hatásai” címmel.

Ismételten napirendre kellett tûzni a kereskedéssel kapcsolatos kérdéseket, melyekkel Klidóy Gábor, az EMO vezérigazgatója, az elektronikai alkatrészellátás gondjai, perspektíváival című előadásában foglalkozott.

Ezek az előadások összintén tarták fel az egyes részterületek eredményeit, a közismert nehézségek okozta lemaradásokat és az ezen felszámolására tett erõfeszítéseket, nem elhallgatva belsô, saját magunk okozta akadályozó tényezôket sem, mint pl. az együttmûködési késôség hiánya, a hazai embargó stb.

Külön elismerést érdemlô színvonalon készültek szakemberek az elképzelésben tartott előadásokra és poszterekre. Az irántuk megnyilvánult érdeklôdés és az igen korlátolt idô ellenére megnyilvánuló vitaképesség is igazolta, hogy az így kapott információk igen lényeges tartalmi részek hordozói és így a kapcsolódás kérdések megválaszolására és a kialakuló világ felügyeletét a rendelkezésre álló idô kevésbé bizonyult.

Meg kellett állapítani, hogy a szeminárium részleteinek régi vágya teljesült, amikor a felsô szintû vezetôk részérõl is hallhattuk az elektronika jelentőségét. Változatlanul hiányolhat azonban még mindig a konkrét koordináció. Érthetô, ha a szemináriumon hasznosított feladatok miatt a fejlesztési források bátran adhatódiségét szorgalmasan kell és természetesen egyidejûleg tudomásul kell venni, hogy történelmi a felelôssége annak a generációknak, amelyik vállalkozók egy mindig változó lépés megítélésére és vállalja az ezt a felelôsséget, hogy ilyen nehéz helyzetben levô gazdaság erőforrásból az átlagosnál többet kér. Ki kell mondani azonban azt is, hogy a vállalkozás hatékonysága csak akkor váltható, ha ez a felelôsség az alkotó embertõl, a vállalati kollektívakon keresztül, az ipar összefüggô rendszerén át a népgazdaság egészével átszövi.

Ki kell hangsúlyozni, hogy a szeminárium sikerehez nagyon hozzájárult a Hirdástechnika címû
folyóiratunk különös részének a szeminárium előtt való megjelenése. Így ugyanis a résztvevők — többek között — iszófoglalást kaptak az eltelt tíz év alatt rendezett társadalmi fórumok határozataiból és az EMO alkatrész-forgalmazási feladatairól is.

A hagyományoknak megfelelően a szeminárium munkáját összefoglalóval fejezte be, melynek eredményeként a szeminárium résztvevői az alábbi határozatot fogadtak el:

1. Már most látható, hogy elektronikai alkatrész-irapunk fejlődése a VI. ötéves tervidőszakban elmarad azoktól a céloktól, amelyet az Elektronikai Központi Fejlesztési Program indulásakor megfogalmaztunk. Elismerésre méltó a MOS gyártás beindítása, a fémréteg-ellenállás, a félia-, a réteg-, az elektrolitikus kondenzátorok, a hibrid áramkörök, valamint a stronciium-ferrit területén elérő eredmények, ugyanakkor lemaradás váratko a VI. ötéves terv végére a passzív-, az elektromechanikus-, a vákuumtechnika- és a szerkezeti alkatrészek programjában.

2. A VII. ötéves tervidőszakra elkészült az elektronikai és önálló részeként az alkatrészipari koncepció. Az alkatrész szeminárium egyetért az elektronikai irap dinamikus fejlesztési változtatával és kéri az irap vezetését, hogy az alkatrész-irap fejlesztésében olyan támogatást biztosítson, amely a berendezésgyártás fejlesztésének ütemével összhangban van. Ennek elnyilvánulása a VII. ötéves tervidőszakban még dinamikusabb jelentkező irapon kívüli alkatrészéleszessenők igényével, valamint a VII. ötéves terv kezdetétől induló hazai nép gazdaságéből elektronizáció által létrejövő alkatrészágynak.

3. A VII. ötéves tervre szóló alkatrészipari koncepció kidolgozása során újra beszámolodott, hogy az országos alkatrészágynak által indokolt-

nak látszó alkatrészipari fejlődési meredekésséget a csak a vállalatok lehetőségeit figyelembe vevő elképzelések nem tudják elérni, és újra megerősödött az a megállapítás, hogy az elektronikai hattériparr megteremtésében nélkülözhetetlen a jelentős állami beavatkozás és a megoldást is garantálni tudó állami segítség.

4. Az alkatrész-szeminárium egyetért ségül tudománnyal vette, hogy a VII. ötéves tervidőszak kezdetétől induló hazai — a nép gazdaság elektronizálását is magába foglaló — Központi Gazdaságfejlesztési Program készen, Javasolja, hogy a programon belül a berendezések alkatrészágynak kidolgozása legalább akkora priorizást kapjon, mint amilyen a tőkézképesség.

5. A VI. ötéves tervidőszak tapasztalatai alapján újra megállapítható, hogy a szocialista alkatrészhez való hozzáférést nem tudjuk az általunk kívánt — műszakilag és gazdaságilag szükségesnek látszó — mértékben és ütemben megoldani, mivel az csak kölcsönös előnyöket biztosító áruvesarelappral érhető el.

6. A Szeminárium megállapította, hogy mind a plenáris, mind a részletes szakmai előadások és ez utóbbiakat követő viták tárgyalásosan foglalkoztak az elektronikai alkatrészek területén elért újabb eredmények ismertetésével, valamint a felhasználók és gyártók kapcsolatának jelentősége, hogy az előadásokat felhasználók és gyártók kapcsolatának jelentős és szerepet tölt össze az elektronikai alkatrészek területén.

7. A Szeminárium a továbbiakban is szükségesnek tartja évenként megrendezni az elektronikai alkatrészökre foglalkozó hagyományos szakmai és társadalmi fórumot.

Bráda Ferenc,
a HTE
Alkatrész Szakosztály
vezetője

Híradástechnika XXXV. évfolyam 1984. 12. szám
СОДЕРЖАНИЕ

Кешчяк, П.— Вага, Г.: Опыты по изучению отношений к элементной базе АТС типа АР

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Казалось бы цифровые показатели по изучению элементов работающих в эксплуатационных АТС, имеются и в распоряжении относительно мало национальных опытов, замета на то, что значение этих показателей является относительно значительным в продукции выпускаемой, а также для производственного и экономического проектирования резервирования. Статья излагает самые важные цифровые данные которых нет в опубликованной литературе, в частности показателя базы — телефонных станций типа АР, выпускавшихся по лицензии ЛМЗ, а также дает краткую информацию о системе сбора и обработке данных.

Гефферт, Л.: Чувствительность спецификации и производственная спецификация

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Чувствительность спецификации является чувствительностью небрежного производства по спецификации, с помощью которой можно расчитать изменение небрежного производства в зависимости от различий изменений по спецификации без проведения дополнительных статистических анализов. Характеристики продукции изменяются под воздействием окружающей среды, поэтому необходимо проконтролировать их в процессе эксплуатации. Изменение спецификации спецификация определяется с помощью чувствительности спецификации алгоритмически ведутся календарные методы.

Др Кочи, Ф.: Быстрые процедуры расчета дискретного преобразования Фурье (ДПФ)

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Характеризуем сложность вычислений ДПФ необходимым кратным количестве умножений, вычисляется выражение, определяющее максимальную частоту сигналов в реальном масштабе времени. Одной из возможных путей уменьшения числа умножений алгоритмических сеток является уменьшение числа умножений алгоритмическим сетом. Количество умножений, которое равно О(В) при непосредственном расчете уменьшается до О(В/2) при использовании алгоритма Дуффинга. При некотором условии, наложенных на количество умножений ДПФ может быть уменьшено до определения периодической по индивидуально-монотонной свертке, количество операций у которых равно О(2), получается минимальным для вектора более небольшого числа точек. Для большого числа точек применяется алгоритм простого коэффициента основного и алгоритм Винограда, затем отбираются отдельные алгоритмы на основе потока чисел умножений, сложений, передач (данных) в точке временного контроля оснащения.

Др Вересо, Д.—Др Зомбори, Л.: Двухмерная симуляция оконечных и диффузных технологических процессов для монолитных пленочных схем

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Статья излагает эффекты жеалюзного двухмерного распределение примесей. Излагаются технологические структуры которых двухмерной симуляции является основной, и излагаются методы и алгоритмы симуляции.

Др Эйзер П.—Гатмез, Я.: Новые методы для обработки и технического ухода традиционных коммутационных устройств

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Материал экспонент с принципом измерений примененных в системах эффективного обслуживания традиционных коммутационных устройств. Может быть использовано в системах регистрации и обработки экспонент. Статья является одной из основных темой и алгоритмов на продукт и технического ухода, а также предоставляемых их основных услуг.

**

Keesleyka, P.—Varga, G.: Erfahrungen über die Zuwässerung der Bestandteilhändler von Fernsprechhandys fur AR

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Es stehen verhältnismässig wenige Erfahrungen zur Verfügung, hinsichtlich der numerischen Kennziffern der Zuwässerung der Bestandteilhändler, welche in den ungarischen Fernsprechnätzen funktionieren. Der Artikel steht daher unter anderem in der Produzentenentwicklung, sowie für die wirtschaftliche Planung der Inbetriebnahme und der Versorgung von Ersatzteilen.

Hirárdastéchnika, XXXv. évfolyam 1984. 12. szám

Contents

Der Artikel veröffentlicht die wichtigsten, auf die Bestandteilhändler bezogenen Zuwässerungskriterien — werte, die sich während der 2-jährigen Beobachtungszeit der Fernsprechenhändler Typ AR bei Postverwaltung gaben ergeben. Endlich das Datenmanagement — und Verarbeitungsstein ist kurz beschrieben.

Geffert, L.: Die Spezifikationsempfindlichkeit und die Produktionsspezifikation

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Die Spezifikationsempfindlichkeit ist die Empfindlichkeit der Ausgangsvariable der Spezifikation. Die Produktionsfahigkeit ist die Kalkulation der Ausbeute von spezifischen, unabhängigen Produktionsfahigkeiten. Die Spezifikationsempfindlichkeit ist die Anteil der bisherigen funktionalen Schätzungen, der durch die spezifische Spezifikationsempfindlichkeit anstelle der bisherigen funktionalen Schätzungen kalkuliert werden.

Dr. Koessl, F.: Schnelle Verfahren zur Berechnung der diskreten Fouriertransformation

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Dr. Vesely, G.—Dr. Zombory, L.: Zweidimensionale Simulation des Dotierungsvorgangs und des Oxidationsprozess der monolithische integrierte Schaltung

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Der Artikel darlegt die Effekte, welche erfordern die Konstruktion der zweidimensionalen Dotierungskonzentration. Es faz zusammen technologische Stufen, bei welchen zweidimensionale Simulation begrenzt ist und darlegt Modellen und Algorithmus der Simulation.

Dr. Eibler, P.—Gömez, J.: Neue Methoden für die Betriebserhebung und Instandhaltung der traditionellen Schaltungsanlagen

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Der Artikel erörtert die Messmethode, welche im System für die Sicherung der effektiven Betriebserhebung und Instandhaltung der traditionellen Schaltungsanlagen verwendet wird. Diese Messmethode beruht auf dem Messen des Effektivitätsverhältnisses der Stromkreise. Es werden auch die während der praktischen Anwendung gewonnenen wichtigen Erfahrungen veröffentlicht. Im Artikel wird auch der Aufbau dieses Überwachungssystems, sowie dessen wichtigsten Dienstleistungen vorgestellt.

Kessleyka, P.—Varga, G.: Related to their Component Basis Reliability Observations of AR Telephone Exchanges

Hilačdastechnika (Hilačdastechnika, Будапешт) 1984. № 12.

Relativ a few observations are available in this country relating to the numeric reliability characteristics of components working in operating equipment; the knowledge of them, however, is indispensable in product development, and in economy planning of maintenance and spare parts support. The paper introduces the numeric data of the five years long reference reliability monitoring of LME licensed AR telephone exchanges carried out by the BHG in co-operation with the BSH. A short review of the data collecting and processing system itself is given, too.
Winograd-type DFT modules have been derived. Computation of greater length DFT is done by the application of the Good-type prime factor (PPA) procedure and the Winograd algorithm (WPTA). The different algorithms are compared and evaluated on the basis of the number of necessary operations (arithmetic operations, data transfers, etc.) and the requirements of practical implementation.

Dr. Veszely, Gy.—Dr. Zombory, I.: Two-dimensional simulation of doping and oxidation technology steps of monolithic ICs

HÍRADÁSTECHNIKA (Budapest) 1984. No 12.

The paper introduces the effects demanding the knowledge about the two-dimensional dopant distribution. Those technological steps are considered in which the two-dimensional simulation is reasonable and the models and algorithms of simulation are surveyed.

Dr. Fülöp, P.—Gátméz, J.: New Supervision and Maintenance Methods for Traditional Switching Equipment

HÍRADÁSTECHNIKA (Budapest) 1984. No 12.

The paper introduces a measuring method used in the supervisory system of a traditional switching equipment, which is based on the measurement of circuit efficiency rate. The essential practical experiences are reviewed. The structure of the system and its main facilities are introduced.