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EDITORIAL

Two special issues of the JOURNAL ON COMMU-
NICATIONS are devoted to the International Work-
shop on Image Processing: Theory, Methodology, 

Systems, and Applications, which was held on June 20-22, 
1994, at the International Trade Center, Budapest, Hun-
gary. It was sponsored by the European Association for 
Signal Processing EURASIP, the IEEE Hungary Section 
and Hungarian Radiocommunication Corporation AN-
TENNA HUNGÁRIA. 

The objective of this Workshop was to provide a forum 
for discussion of new theoretical developments in image 
coding/processing and current as well as future applica-
tions to real-world problems. The progress of digitaliza-
tion of visual media and telecommunication networks, sup-
ported by the advance of VLSI signal processing tech-
nologies, has given birth to the widespreading fields of 
new image and video services, which are connected one 
and all with broadband communications. The technical 
and economical effectiveness of the most new application 
strongly depends on both the image/video processing meth-
ods, equipments and their accessibility through broadband 
communication services. 

The experts of 18 countries presented their new results. 
In addition, 2 tutorials were given by well known scientists 

Kálmán Fazekas received the M. Sc. de-
gree in electrical engineering in 1962 and 
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Technical University of Budapest. He is as-
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crowave Telecommunications at the Tech-
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sors of his research works were the Hungarian Academy of Sci-
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in the field, and also a round table was organized about 
the state-of-the-art of Multiresolution Image Processing. 

The most important topics included 
• Image compression, coding 
• Transforms, transform coding 
• Filtering 
• Restoration, recognition 
• Image analysis 
• Texture analysis 
• Multidimensional processing 
• Remote sensing. 

A small technical exhibition was organized concurrently 
with the workshop presenting new results in processing 
methods and in their simulation. 

The Workshop and this special issue could not be real-
ized without the substantial help and activity of the Scien-
tific Society for Telecommunication and of the Sponsors. 
Thanks are due to the members of Local Program Com-
mittee who helped the organization, and last but not least 
to the editor in chief, A. Baranyi, for giving me the op-
portunity and all support necessary to compile this special 
issue. 
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best paper in 1988 and in 1993 the Pollák-Virág award from 
HTE. He is the coordinator of several scientific cooperation 
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DIGITAL HDTV SYSTEM COMPRESSION 
Z. S. BOJKOVIC 
UNIVERSITY OF BELGRADE 

VOJVODE STEPE 305, BELGRADE, YUGOSLAVIA 

The purpose of this paper is to present digital high definition televison 
DHDTV system compression which is one of the most important 
current problem in modern television. First, various standards, from 
the DHDTV system compression point of view, will be presented and 
discussed. The second part of the paper addresses the problem of the 
MPEG image data compression algorithm. A technical overview of 
MPEG algorithm, a robust video compression and transport system 
will be presented. Spatial redundancy reduction, temporal redundancy 
reduction as well as error concealment strategy are provided, too. 
Next, the attention is focussed on DHDTV coding approach including 
bit allocation for subband compression. Finally, advanced DHDTV as 
a layered digital system will be considered. 

1. INTRODUCTION 
High Definition Television HDTV is one of the most im-

portant current development today when society is rapidly 
moving into the information age. It has a strong impact 
on various technologies like microelectronics, image pro-
cessing, display techniques, optical transmission, magnetic 
recording and others. This is of great significance not only 
for TV customer electronics but also for medical data pro-
cessing communication techniques and so on. HDTV is 
gaining increasing attention not only for broadcasting but 
also for a wide range of other applications. Therefore a 
nation-wide HDTV transmission and distribution network 
must be developed in order to offer economical HDTV 
services to the customer. 

Digital transmission is a promising method for the 
delivery of high definition television signals, especially 
when a high quality signal is desired at the receiver. This 
is particularly attractive for the future broadband network 
where different services such as a voice, data and video 
will share resources in a common network. Of course, it 
is assumed that the network will be fiberglass-based and 
will offer wide bandwidth capability. Such a network will 
represent a culmination of the current evolution in which 
different services will be offered with integrated access, 
transport switching and network management. In view 
of this, it is desirable and it turns out to be feasible, to 
significantly compress the bandwidth of the row HDTV 
signal while maintaining high quality. 

HDTV will display images with about 1000 scan lines 
on screen that have aspect ratios of 16:9 instead of 
the current 4:3. Luminance and chrominance will be 
properly separated for excellent colour rendition, while 
sound will be in stereo at compact-disc quality. As for 
viewers, they will have dramatically enhanced viewing. To 
secure it, broadcasters will need to transmit far more 
information per second to the receiver than they do today 
(1). To facilitate this goal, engineers are concentrating on 
developing systems that deliver programming directly to 
homes from high-power satellites, using direct-broadcast-

satellite delivery requiring reception with very small dish 
aerials. 

Improving the quality of television poses a series of 
novel technological challenges. Since exceptionally large 
bandwidth is needed for transmission of HDTV signals 
in either analog or digital form, products using this 
technology will require sophisticated, real time signal 
processing and compression techniques. They will also 
require large amounts of memory and specialized logic 
circuitry, all in VLSI. Furthermore, HDTV will help bring 
about a new generation of computers in the form of 
multimedia workstations. For these reasons, the market 
for HDTV is likely to be a driving force for technologies 
like semiconductors, computers and telecommunications. 

At a meeting in Luxembourg in June 1993. the 
Ministers for Telecommunications adopted the Community 
plan of action for introducing HDTV in Europe, thereby 
opening a financial package of 228 million ECU over 
4 years. This sum will be increased to 405 million 
ECU by finance from other sources, preferably from the 
private sector, though without routing out the use of 
public funds. The agreement reached concerns a Council 
resolution the development of technology and standards in 
the field of HDTV services, with a framework agreement 
attached for the plan of action. Any extra costs incurred 
by manufactures and broadcasters as a result of the 
introduction of such sources will be financed by the plan, 
which is envisaged for a period of 4 years, ending on 30 
June 1997 [2]. 

Many compression techniques have been developed to 
reduce the bit rate for digital image transmission, main-
taining, at the same time, a good fidelity between the orig-
inal and the compressed image. Some of the most pow-
erful compression algorithms are based on the Discrete 
Cosine Transform (DCT). In this technique compression is 
attained exploiting the spatial and temporal relation of the 
original image pixels [3]. Data compression techniques will 
be extremely important in the development of HDTV. In 
this case, the information needs a very high compression 
rate. Further, good quality is a fundamental request for 
HDTV images. Hence, sophisticated compression algo-
rithms are required to avoid a significant distortion in the 
compressed images. Further degradation is more evident 
in compressed images, since compressed data are gener-
ally much more sensitive to noise than correlated source 
data. The correlation of original data, made during the 
compression step, introduces a high correlation between 
noise samples and pixels of the received and decompressed 
image. Hence, errors in few compressed data spread over 
many pixels of the reconstructed image. Degradation will 
be as more evident as more complex is the compression 
technique. 
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First part of this paper deals with standard activities. 
Various standards for digital HDTV system compression 
will be taken into consideration. The second part (Sections 
3 and 4) deals with image data compression from the point 
of view of MPEG algorithm, a robust video compression 
and transport system for digital HDTV will be presented, 
too. Digital HDTV approach including bit allocation 
for subband compression for HDTV will be addressed in 
Sections 5 and 6. Section 7 seeks to provide advanced 
digital HDTV as a layered digital system, while Section 8 
summarizes the paper. 

2. STANDARDIZATION 
At the moment, various standards are under discussion 

for studio equipment, transmission and for display of 
the TV signal. Japan, Europe and United States are 
competing to establish a world standard for the next 
generation of TV system. Standard is necessary whenever 
there are more than one solution competing for the same 
problem. 

Japan's MUSE and Europe's HDMAC are still based 
on analog transmission whereas in the US the discussion 
on all digital systems comes up. The development of 
Broadband Integrated Services Digital Network (BISDN) 
also tends towards the consistent expansion for digital 
techniques in the studio transmission. 

The Japanese HDTV system is the result of long 
range efforts started in late seventies within a programme 
called "high vision", especially under the leadership of 
the state owned broadcast company and NHK (Nippon 
Hoso Kyokai) [4]. The first prototype demonstration 
was available around 1986. Simpleminded compression 
scheme gives the name of the system MUSE standing 
for multiple subnyqist sampling in coding. This system 
has been designed for satellite broadcasting in the bands 
of 12 GHz. The transmission system adopted is analog 
frequency modulation requiring a transmission bandwidths 
of 27 MHz for a base band within 8 MHz. The video 
signal of the MUSE system has 1125 lines, 30 frames 
and 60 fields per second. It is an interlaced scan. 
The video signal is processed component by component, 
chrominance signal being compressed through so-called 
time compressed integration. Compression by a factor of 
4 is used to fit chrominance signal in the line blanking 
interval. The digital sound is inserted in the field blanking 
interval. Probably, the greatest merit of the new MUSE 
system is its existence. In 1991, they already had daily 
broadcast for about one or two hours a day, which has 
been increased to 8 hours since January 1992. Its second 
merit is that it triggered an international competition 
between Europe, Japan and the US for the development 
of new television system. 

The European answer to the MUSE system was the 
establishment of a European project called EUREKA '95 
which came up with an equivalent system called HDMAC 
[1]. In contrast with the MUSE system which is not 
compatible with the existing TV systems, like NTSC, PAL 
or SECAM, HDMAC has been introduced in 1988 with 
the argument of compatibility. It refers to compatibility 
with a D2-MAC system, which is even today not yet fully 
operational. The D2-MAC is a component system in which 

luminance and chrominance signals are sampled and time 
compressed to fit within 64 ms of one video scan line, 
including audio and data. Because of time compression, 
the initial bandwidths of 5,6 MHz and 1,6 MHz for 
luminance and chrominance, respectively, increase to 8,4 
and 4,8 requiring a global sampling frequency of 20,25 
MHz. The D2-MAC system is the result of an evolution 
which lasted for about 10 years, starting with A-MAC, 
B-MAC and so on. On the other hand the HDMAC 
system is an upscaled version of D2-MAC. Accordingly by 
undersampling a high resolution video signal one can bring 
it down to D2-MAC format. The input to HDMAC system 
is a video signal with 1250 pictures lines interlaced, scanned 
with 50 fields and 25 frames. This signal is sampled. The 
resulting picture is than decimated into 4 subsets using odd 
and even numbered lines and columns. After some spatial 
arrangement, this subset became the fields of the D2-MAC 
system, which could be recombined to make the interlaced 
HDMAC frames. This scheme is for the still picture case. 
The initial signal is processed to determine three categories 
of areas in each picture: fix areas, slowly moving areas and 
moving areas. Each area is analyzed according to these 
three hypothesis and processed for compression using a 
trade-off between time resolution and space resolution. 
The results are then compared to the original area and 
a decision is made to put the appropriate level where 
the similarity is the highest. Both MUSE and HDMAC 
systems have very simple data compression scheme. 

It is required that American HDTV should be based 
on terrestrial transmission and should fit within the 6 
MHz bandwidths as presently used for regular NTSC, with 
no interference to the existing NTSC system. In early 
1989, there were many systems being developed in the 
US (Advanced Compatible Television developed by David 
Sarnofl Center and Thomson Consumer Electronics, the 
North American Philips developed another system based 
on NTSC, as well as the GLEN system, the Zenith system, 
two versions of the MUSE system, one being incompatible 
and the other one compatible with NTSC receivers). 
These systems were mainly hybrid combining some analog 
and some digital signal processing and modulation. The 
most up-to-date system was the early MITCC system based 
on subband coding and proposed by Schreiber. The FCC 
opened a competition to find the best HDTV system for 
American needs. Namely, engineers from the General 
Instrument Corporation came up with the first all digital 
HDTV system. Out of 6 systems competing today for 
FCC, 4 of them are all digital. These 4 systems share many 
common principles. Important point of these systems are 
data compression and channel coding. Data compression 
is important to reduce the number of bits necessary to 
transmit and to represent the original data. Because 
compressed data is much more sensitive to noise existing 
in the transmission channel, compressed data must be 
protected. This is done with the channel coding. The 
data compression can be subdivided into spatial data 
compression and time data transmission. The first refers 
to the removal or the attenuation of the spatial correlation 
existing between picture points of the same frame, whereas 
the second one refers to the redundancy existing from one 
frame to the next. 

3 VOLUME XLV MAY-JUNE 1994. 



The linear transform coding techniques introduced 25 
years ago allow to compact the energy of the image 
signal in two specific areas of a transform domain and 
then assigning bits to each transform coefficient in a 
very specific manner compressions around 10 to 1 or 15 
to 1. This technique has been improved so that today 
recommendation from international standardization bodies 
exist on the label of JPEG (Joint Photographic Experts 
Group). Basically, the input image is subdivided into 
blocks of 8x8 pixels. Each block is transformed by DCT. 
The transform coefficients are quantized according to 
some specifications and then coded for transmission. The 
decoder implements the inverse operations to reconstruct 
the picture. The JPEG scheme is information lossy 
because of the quantization of transformed coefficients. 

To reduce temporal redundancy, it is easy to realize 
that from one frame to the next. There is no need 
to code each frame independently from the preceding 
one. The common principle used is to fully encode the 
first frame and then code only the changes appearing 
in the forthcoming frames with respect to the first one. 
These changes are best described if the objects moving in 
the scenes are identified. A good approximation of this 
problem is to trace the motion of small image blocks (for 
example 8x8 from one frame to the next). The previous 
frame is showing the corresponding position of each block. 
One step further is to take into account the previous 
situation, to predict where the given block will be in a third 
frame. If a prediction is good, there is no need to transmit 
additional information. If there is a slight prediction error, 
then it is sufficient to transmit this small error with a very 
reduced number of bits, to recover fully the position of 
this block in the third frame. This technique is known 
as motion compensation. A better description would be 
the coding of the prediction error. Namely, using the 
previous techniques, one can produce a sequence of error 
images containing the prediction error of block motions 
from one frame to the next. This is called the displaced 
frame difference sequence. A common procedure is to 
view each frame of this new error sequence as an image 
and apply the spatial decorrelation technique using for 
example a DCT. Recommendation called MPEG (Moving 
Picture Experts Group) is issued by the ISO (International 
Standardization Organization ) for video coding of about 
1,5 Mb/s. 

Among the American systems the Zenith-consortium 
designed a system which uses the previous principles. It 
has a very elaborate motion detection scheme, which uses 
hierarchy so that a coarse motion analysis is made in all 
cases and then depending on the bit available for transmis-
sion, more refined motion analysis is implemented. The 
spatial redundancy is attenuated using the DCT. The so-
called Digicypher system proposed by General Instruments 
Corporation uses also similar principles. One level motion 
compensation reduces the time redundancy followed by a 
DCT for spatial redundancy reduction. Quantized coef-
ficients are then encoded prior to quadrature amplitude 
modulation QAM. The Advanced Digital HDTV (AD-
HDTV) uses the MPEG recommendation adapted to the 
high definition format. They called it MPEG ++. The 
originality of this system is the introduction of priorities to 

the data to be transmitted. Very important data receives 
high priority and is coded with high security as opposed to 
low priority data which is less protected for transmission. 
The modulation used is again the QAM. Finally, among 
digital HDTV systems, the new system proposed by MIT 
has to be mentioned. Here, a subband analysis is intro-
duced to reduce the spatial correlation of the data. 

3. IMAGE DATA COMPRESSION 
The key to reducing the bit rates is image compression. 

it depends on sending nothing that is not visible to the hu-
man eye and on exploiting the inherent redundancy of the 
video signal. Image compression techniques are concerned 
with reduction of the number of bits required to store or 
transmit images without any appreciable loss of informa-
tion. The degree to which images may be compressed 
while still allowing satisfactory reproduction after storage 
or transmission in compressed form is therefore, crucially 
dependent upon there correlation properties. 

Two widely used digital video compression techniques 
are predictive coding and transform coding. Predictive 
schemes compress each pixel by quantizing the difference 
between a predicted value from its actual value. 'lhnsform 
coding, particularly using the DCT has been established 
as one of the most powerful approaches. images are first 
separated into square blocks of typical size 8x8. Each of 
the blocks is DCT transformed, resulting in another 8x8 
blocks, whose coefficients are then quantized and coded. 
Most of the quantized DCT coefficients and up having 
zero value resulting in high compression. Applying the 
inverse DCT on the quantized DCT coefficients recovers 
an approximate version of the original block. 

4. MPEG COMPRESSION ALGORITHM 
The MPEG compression algorithm achieves compres-

sion in three stages: bandwidth reduction, subjectively 
adapted lossy compression and a final stage of lossless 
compression. The first stage consists primarily in matching 
the source resolution to the target bit rate and reducing 
the chrominance resolution to a subjectively satisfying ra-
tio. The second stage, the compression algorithm itself, 
removes the spatial and temporal redundancy by means of 
waveform analysis and subjectively adapted quantization. 
The third stage losslessly maps the resulting information 
into a bitstream by way of a syntax combining fixed length 
and variable length codes. 

The elementary concept in MPEG is a picture. A 
picture corresponds to a non-interlaced video signal and 
covers one instant in time. The picture rate in MPEG 
is flexible. The rates of 24,25 and 30 Hz are central to 
MPEG. Converting video to the MPEG source format is 
the first phase of the compression algorithm. It involves 
temporal decimation, horizontal filtering and decimation as 
well as chrominance decimation. 

The MPEG source format uses the same colour space 
(Y, Cr, Cb) as the CCIR Recommendation 601. Both 
the luminance and the colour difference signals are repre-
sented with 8 bits. Unlike the signals, in CCIR 601, vertical 
decimation of the chrominance becomes as natural as hor-
izontal decimation. MPEG limits itself to 2:1 decimation 
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of the chrominance in both the horizontal and the vertical 
dimensions. 

4.1. Spatial redundancy reduction 
Both still image and prediction error signals have a very 

high spatial redundancy. There are many the redundancy 
reduction techniques usable to this effect. Block based 
techniques are preferred because of the block based na-
ture of the motion compensation process. Transform cod-
ing techniques with a combination of visually weighted 
scalar quantization and run length coding have been pre-
ferred. The technique to perform intraframe compression 
with the DCT has basic similarities in MPEG, JPEG and 
nx64 kbps and consists of three stages: 
• computation and transform coefficients, 
• quantization of the transform coefficients, and 
• conversion of the transform coefficients into run-ampli-

tude pairs after reorganization of the data in a zig-zag 
scanning order. The transform coding, quantization as 
well as run length coding are shown in Fig. 1. 

Image samples Transform Coefficients 

OCT 

~ 

Quantization, 
Zig-Zag Scan, 
Run-length coding 

(Run: Amplitude) symbols 

Fig. 1. Transform coding quantization as well as run-length coding 

The DCT has inputs in the range (-255, 255). On the 
other hand, output signals are in the range (-2048, 2047) 
providing enough accuracy even for the finest quantizer. 
The accuracy of the inverse transform is determined 
according to the CCITT H.261 standard specification [5], 
[6]. 

Quantization of the DCT coefficients represents the 
combination of quantization and run length coding which 
is responsible for most of the compression. Through 
quantization, the encoder can match its output to a given 
bit rate. Finally, adaptive quantization is one of the key 
tools to achieve visual quality. 

Subjective perception of quantization error varies with 
the frequency. Thus, it is advantageous to use coarser 
quantizers for the higher frequencies. It is possible to 
design a particular quantization matrix for an application 
or even for an individual sequence. A customized matrix 
can be stored as context together with compressed video. 

A masking model can be derived on the basis of smooth 

area detection, edge detection and texture analysis. The 
regions of complex textures exhibit the highest degree of 
masking. A large quantization error might be allowed with-
out perceptible degradations. Psychovisual quantization 
consists in concentrating the quantization errors where 
they are less visible and quantizing more accurately in the 
regions of the picture where the visibility of errors is high. 

The signal from intra-coded blocks should be quantized 
differently from the signal resulting from prediction or in-
terpolation. Intra-coded blocks contain energy in all fre-
quencies and are very likely to produce blocking effects. 
Prediction error type blocks contain predominantly high 
frequencies and can be subjected to much coarser quan-
tization. The difference between intra blocks and differen-
tially coded blocks results in the use of two different quan-
tizer structures. Namely, while both quantizers are near 
uniform, their behavior around zero is different. Quan-
tizers for intra-coded blocks have no dead zone, i.e., the 
region that gets quantized to the level zero is smaller than 
a stepsize, while quantizers for non intra blocks have a 
large dead zone. 

Quantized coefficients are ordered along a zig-zag path 
and runs of zeros are identified. In order to further 
increase the compression inherent in the DCT, variable 
length coding is used. A Huffman table for the DCT 
coefficients is used to code events corresponding to a 
pair (run, amplitude). Only those codes with a relatively 
high probability of occurrence are coded with a variable 
length code. The less likely events are coded with an 
escape symbol followed by fixed length codes in order to 
avoid extremely long code words and reduce the cost of 
implementation. 

4.2. Temporal redundancy reduction 
Temporal redundancy is typically exploited by using 

motion compensation to predict each image frame and 
then compressing the difference between the predicted and 
actual frame using DCT coding. Motion compensation 
is an important element of high compression. Video 
scenes typically contain repeated frames of objects that 
are essentially unchanged from frame to frame, except for 
some displacement due to their motion. Motion related 
coding operations can improve the performance of video 
compression. Motion estimation is beneficial only as long 
as it is accurate. Otherwise, it make create severe quality 
problems. To minimize receiver complexity, motion vectors 
are typically evaluated at the encoder site from the original 
signal and then sent as side information to the decoder. 

Three types of pictures are considered in MPEG: intra 
pictures (I), predictec_ pictures (P) and interpolated pic-
tures for bidirectional prediction (B). In all cases when a 
picture is coded with respect to a reference model, mo-
tion compensation is used to improve the coding efficiency. 
The relationship between the three picture types is pre-
sented in Fig. 2. Intra pictures provide access points for 
random access, but only with moderate compression. Pre-
dicted pictures are coded with reference to a past picture 
(intra or predicted) and will in general be used as a refer-
ence for future predicted pictures. Bidirectional pictures 
provide the highest amount of compression but require 
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both a past and a future reference for prediction. In ad-
dition, bidirectional pictures are never used as reference. 
As an example, an intra-coded picture is inserted every 
8 frames. The ratio of interpolated pictures to intra or 
predicted pictures is 3 out of 4. 

A motion compensated prediction is in particular the 
basis of most compression algorithms for visual telephony 
such as CCITT standard H.261. This algorithm assumes 
that "locally" the current picture can be modeled as a trans-
lation of the picture at some previous time. This means 
that the amplitude and the direction of the displacement 
need not be the same everywhere in the picture. As for 
the motion information, it is a part of the necessary infor-
mation to recover the picture and has to be coded appro-
priately. 

Forward Prediction 

Bidirectional Prediction 

Fig. 2. Relationship between infra predicted and interpolated 
pictures 

Motion compensated interpolation is a technique that 
helps satisfy some of the application dependent require-
ments. It improves random access and reduces the effect 
of errors, while at the same time it contributes significantly 
to the image quality. Motion compensated interpolation 
i.e. bidirectional prediction in MPEG terminology presents 
a series of advantages. For example, the compression ob-
tained by interpolative coding is very high. Some other 
advantages of bidirectional, i.e. temporal interpolation in-
clude that. a) uncovered areas can be properly predicted 
from the "future" reference, b) the effect of noise can be 
decreased by averaging between the past and the future 
reference pictures, c) there is no error propagation be-
tween prediction and coding, d) increasing the number of 
B-pictures between references decreases the correlation of 
B-pictures with the references as well as the correlation 
between the references themselves. 

Finally, the motion estimation covers a set of techniques 
used to extract the motion information from a video se-
quence. The MPEG specifies how to represent the mo-
tion information: one or two motion vector pair 16x16 
subblock of the picture depending on the type of motion 
compensation: forward predicted, backward predicted, av-
erage. However, the MPEG does not specifies how such 
vectors are to be computing. Block matching techniques 
are likely to be used. In these techniques, the motion vec-
tor is obtained by minimizing a cost function increasing the 
mismatch between a block and each predictor candidate. 

4.3. Layered structure 
The syntax of a MPEG video bitstream contains 6 layers 

presented in Table 1. 
The MPEG syntax defines a MPEG bitstream as any 

sequence of binary digits consistent with the syntax [6]. 
The bitstream must satisfy particular constraints so that 
the bitstream is decodable with a buffer of an appropriate 
size. Every bitstream is characterized at a sequence layer 
by two fields: bit rate and buffer size. The buffer size 
specifies the minimum necessary to decode the bitstream 
within the context of the video buffer verifier. 

Table 1. 

LAYERS IN THE MPEG SYNTAX 
number layer function 

1 sequence layer random access unit: context 

2 group of pictures layer random access unit: 
video coding 

3 picture layer primary coding unit 

4 slice layer resynchronization unit 

macroblock layer motion compensation unit 

6 block layer DCT unit 

4.4. Error concealment strategy 
In MPEG compression, video frames to be coded are 

formatted in groups of pictures consisting of a sequence 
intra-coded (I), predictive coded (P) and bidirectionally 
predictive coded (B) frames. The structure of MPEG 
implies that if an error occurs within I frame data, it will 
propagate through all frames in the group of pictures. 
Similarly, an error in a P-frame will effect the related 
P- and B-frames, while B-frame errors will be isolated. 
Therefore, it is desirable to develop sophisticated error 
concealment techniques to prevent error propagation from 
I-frames and to improve the quality of the reconstructed 
pictures. 

Two approaches have been used for I-frame conceal-
ment: temporal replacement and spatial interpolation. 
Temporal replacement can provide high resolution image 
data as the substitute to the lost data. However, in motion 
areas a significant difference might exist between the cur-
rent intra-coded frame and the previously decoded frame. 
In this case, temporal replacement will produce large dis-
tortion unless some motion-based process can be applied 
at the decoder. This type of processing is not always avail-
able since it is a computationally demanding task. In con-
trast, a spatial interpolation approach synthesizes the lost 
data from the adjacent blocks in the same frame. In spatial 
interpolation, the intra-frame redundancy between blocks 
is exploited. A potential problem of blurring remains due 
to insufficient high order DCT coefficients for active ar-
eas. To address this problem, a two stage adaptive error 
concealment technique has been developed and evaluated. 
Namely, error concealment process is performed in two 
steps: codeword or frequency domain concealment and 
error concealment in the video decoder. The algorithm 
based on temporal replacement gives good results in still or 
motion areas, while causes large shearing in the fast mov-
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ing areas. In the adaptive algorithm, the first concept is to 
apply decisions to smaller regions of the picture, using con-
cealment modes on a block by block basis. This reduces 
shearing and block artefacts in the concealed areas. Since 
I-frame concealment is both the most difficult and the most 
subjectively important, an adaptive concealment strategy 
has to be applied. This concealment uses some simple 
measures obtainable at the decoder in order to arbitrate 
between spatially based concealment and temporally based 
concealment. For P- and B-frame, major concealment 
strategy is to resume the lost motion information and then 
to use temporal replenishment with motion compensation. 

Error concealment algorithms are essential for many 
practical video transmission scenarios characterized by oc-
casional data loss due to thermal noise, channel impair-
ments, network congestion and so on. Scenarios of current 
importance include terrestrial HDTV, teleconferencing via 
packet networks, TV/HDTV over fiber optic asynchronous 
transfer mode systems, etc. 

5. HDTV CODING 
Many HDTV DCT coding algorithms have been pro-

posed when CCIR has selected the DCT coding algorithm 
as the standard TV coding algorithm [8]. Concurrently, a 
new concept of coding algorithm is subband coding SBC. 
The advantages of SBC scheme are: a) each band can 
select the optimum coding algorithm, b) quantization noise 
generated in a particular band is not allowed to spread to 
other bands, c) parallel processing can be applied to each 
band. Based on the SBC algorithm, many HDTV subband 
coding algorithms are proposed in the open literature [9], 
[10], [11], [12]. 

The subband approach consists of splitting a signal into 
bands, using different techniques to code the bands, trans-
mitting the code in one or more channels and performing 
the reverse processing in the receiver mainly by band in-
terpolation. The compatibility between different standards, 
mainly between TV and the future HDTV is an impor-
tant requirement to coding techniques and can be flexibly 
managed in a subband systems. Furthermore, there are 
additional requirements related to terrestrial digital trans-
mission, among which are graceful degradation and error 
resilience in the case of a low signal amplitude at the re-
ceiver. This feature also can be accommodated in a sub-
band system quite efficiently. 

Based on the SBC algorithm, two HDTV subband 
coding algorithms are proposed, i.e. 
• subband DPCM for HDTV distribution service, and 
• subband DCT for HDTV primary distribution service. 

In subband DPCM for HDTV contribution service, the 
subband DPCM coding scheme can encode original 1,2 
Gb/s HDTV signals without any distortion. The coder 
configuration is shown in Fig. 3. Input signals are decom-
posed into four bands in horizontal and vertical directions. 
The architecture of the short kernel subband filtering re-
duces the entropy of the subband signals, while maintain-
ing the original picture quality. Further entropy reduction 
is achieved by using DPCM coding [11]. Computer simu-
lation results show that it is possible to apply the subband 
coding scheme to distortion-free video transmission at 600 

Mb/s in a Synchronous Transfer Mode STM network. In 
the subband DCT for HDTV primary distribution service 
algorithm, the quadrature mirror filters QMF in the first 
stage decompose the input signal into two bands in the 
horizontal direction. On the other hand, the second stage 
filters decompose the two bands into four bands (LL, LH, 
HL, HH) in the vertical direction. The block diagram 
of the HDTV adaptive subband DCT coder is shown in 
Fig. 4. 

Key: 

MUX Multiplexer 
VLC: Variable Length Coding 
Hp: High-pass Filter and Down Sampling 
Lp: Low-pass Filter and Down Sampling 
DPCM: Differential Pulse-Code Modulation 

HDTV 
Input 
Signal 

(1.2 Gb/s) 

Fig. 3. Subband DPCM for HDTV coding 

Output 
Signal 

(622 Mb/s) 

PCM H VLC F ~ 

HDTV M Output PCM F—i VLC r 
Input U Signal — 

(155 Mb/s) Signal 
(1.2 Gb/s) 

X DPCM H VLC F-

Lp 3M  DCT H VLC

Key: 

DPCM: Differential Pulse-Code Modulation 
MUX: Multiplexer 
Hp: High-pass Filter and Down Sampling 
Lp: Low-pass Filter and Down Sampling 
VLC: Variable Length Coding 
3M DCT: 3 Mode Discrete Cosine Transform 
PCM: Pulse Code Modulation 

Fig. 4. HDTV adaptive subband DT coding 

The HDTV original sample picture "Fashion show" 
and each decomposed signal of the sample picture are 
presented in Fig. 5. All picture element values except for 
LL, are shifted to a predefined level for the convenience of 
the observer. Adaptive DCT is applied to the LL band. To 
maximize the bit rate reduction efficiency in the LL band 
signal, adaptively selection of the DCT coding according to 
the intra-field, inter-field and motion compensated inter-
frame signals was proposed [13]. 

To further reduce the information bit rate, nonuniform 
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length and run length codings are applied to the quantized 
signal. In the nonuniform lengths coding stage, a higher 
level signal is assigned a longer length code. In addition, 
run length coding reduces the length of consecutive zero 
level signals. Since the LH signal contains the lower 
band signal in the horizontal direction and the higher 
band signal in the vertical direction, its pixel to pixel 
correlation is high. Therefore, the proposed algorithm 
applies one dimensional DPCM coding to signals on the 
same horizontal line of the LH band. Since the HL and 
HH signals show little correlation among pixels, those two 
band signals are coded by pulse code modulation PCM 
having a dead zone. The performance of the proposed 
coding algorithm was evaluated in terms of signal to noise 
ratio SNR as well as bit/pel ratio using a picture coding 
simulator and the HDTV sample picture "Fashion show". 
The average SNR was 38 dB, while the average entropy 
was 1,08 bit per pixel (bpp). This corresponds to an 
information bit rate of about 120 Mb/s. 

F-icxirc~Iltal íYe crrcv 

i_ 1,1, i  ] 
{ i.li  1̂ 1íi1.J 

Fig. S. HDTV decomposed signals CFashion show') 

Since rapid expansion of optical fiber lines and network 
digitization are currently being carried out, and construc-
tion of BISDN is anticipated, HDTV digital transmission 
will be dominant in the near future. With BISDN in mind, 
CCITT has recommended a unified new synchronous dig-
ital hierarchy SDH. In SDH, the synchronous transport 
module-i, STM-1, rate of 155,52 Mb/s is a good candidate 
for HDTV transmission. 

Recently, an HDTV bit rate reduction codec was de-
veloped aimed at the transmission of a HDTV signal for 
distribution use. This codec can perform the coding of 
a 1125 lines/60 Hz HDTV video signal accompanied with 

4-channel sound signal at about 133 Mb/s and transmit 
it at the STM-1 rate of 155,52 Mb/s in the synchronous 
digital hierarchy. The sampling frequencies are selected 
considering the sample relation with the studio standard 
as well as the required bandwidth for HDTV distribution. 
A hybrid DPCM/DCT coding scheme is employed as a bit 
rate reduction algorithm, where intra-field 8x8 DCT is first 
performed and then inter-frame DPCM is carried out in 
the DCT coefficient domain. An adaptive intra-field/inter-
frame mode selection is performed only for low-frequency 
DCT coefficients. The intra-field mode is always used for 
high frequency coefficients because the inter-frame cor-
relation of the high frequency coefficient is fairly weak. 
Computer simulation experiments were carried out to ex-
amine the performance of this coding scheme. From these 
experiments, it was confirmed that this codec can transmit 
HDTV at the STM-1 rate with picture quality satisfactory 
for distribution use. 

6. BIT ALLOCATION FOR SUBBAND COMPRESSION 
OF HDTV 
A major component coding schemes is allocating the 

bits for encoding various subbands. Some of the papers 
reported in the SBC of images involved the decision of the 
bit allocations on a perceptual basis [10], [14]. In [14], [15], 
[16] M equisized subbands were generated by QMF's and 
encoded on an objective basis. For sufficiently bandlimiting 
filters, it has been found that the overall distortion D in the 
reconstructed image can be written as the sum of separate 
distortions, i.e. reconstruction error variances, various 
channels. We optimize the bit allocations rk to have 

such that 

min D = 

1 /M 
k 

2 
~rk 

rk≤R, rk≥0 (2) 

where the subscripts are indexes for the subbands. This 
assumption is valid for QMF's which are half band sym-
metric filters whose low-pass and high-pass filters are mir-
ror images of each other. On the other side, the low-pass 
and high-pass perfect reconstruction filters are not mirror 
images of each other. When using such nonsymmetric 
filters, the quantization noise in various subbands will not 
be equally weighted in the reconstruction, even if the sub-
bands are of same size and bandwidth. Thus, in order to 
make a valid bit allocation, we introduce the scaling factors 
wk in (1) and we have that 

min D = 

such that 

2 
W kQrk 

1/M rk ≤ R, rk ≥ 0 (2) 

where wk takes into consideration the filter set being used 
in the generation of subbands. The weighted factor Wk 

represents the energy contribution of the k-th channel in 
the reconstruction when unit variance noise is input to that 
channel in the synthesis filter bank. 
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In the case of M subbands of equal bandwidth, each 

subband has been subsampled by sqrt (M) in each dimen-
sion. Assuming error free transmission and the use of 
PCM or DPCM coding of individual subbands and assum-
ing a constant quantizer performance factor, equation (2) 
can be presented in the form 

such that 

M 

rain D = ~ Ég2-2r k WkU~ 

a/M 

M 

k=1 

T ≤R, rk ≥0 (3) 

k=1 

where the Wk's are the weighting factors, while Qk is the 
variance of subband k if PCM is used and the variance 
of the prediction error if DPCM is used to code the 
subband. Using Lagrangian multipliers to minimize the 
reconstruction error variance with the overall bit rate 
constraint given in (3), we have the approximately optimal 
bit assignment in the form 

1 U~Wk 
( ) rk opt = R + — log2  1'M 4 

2 M 
H=1 u~w~~ 

In order to avoid negative bit allocation, a quickly 
converging iterative algorithm is used. By allocating 
bits based on the mean squared error criterion, the 
longer filters gave the best quantitative performance. The 
background noise is the most objectionable distortion and 
the bit rate of 1,25 bpp is needed to reduce it to an 
acceptable level 

1. ADVANCED DIGITAL HDTV SYSTEM COMPRESSION 
Advanced Digital HDTV (AD-HDTV) is a layered 

digital system that consists of: 
. MPEG ++ video compression 
• MUSICAM audio compression 
• prioritized data transport format 
• spectrally shaped QAM. 

AD-HDTV's layered digital system approach provides 
interoperability at all of its layers. This includes inter-
operability among picture and sound formats, compressed 
video and audio data streams, various packet formats and 
a variety of transmission media. 

AD-HDTV's MPEG ++ compression simultaneously 
provides high quality HDTV pictures and forms the basis 
of AD-HDTV's reliable and robust performance as a 
simulcast system. MPEG video compression was selected 
as the basis for AD-HDTV, based on its outstanding 
picture quality and wide acceptance. It also has important 
capabilities to edit and search compressed video on digital 
storage media. 

Luminance and colour difference blocks covering the 
same spatial region in a picture are organized together 
in a macroblock. It comprises for 4 luminance (Yo —Y3) 
blocks and two colour difference blocks (Cr and Cb) as 
shown in Fig. 6. A macroblock is the unit of motion 
compensation and adaptive quantization. An integer 
number of consecutive macroblocks is organized to form 
a slice. A slice represents the boundary within which 

differential coding of macroblocks parameters (motion 
vectors, DC coefficients, etc.) is performed. Each slice 
has its own header information and can be independent of 
other slices. An entire picture is thus composed of a cell 
of slices. 
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Fig. 6. Entire picture composed of a set of slices 

AD-HDTV's MPEG ++ approach is fully compliant 
with MPEG, but adds important robustness that is essen-
tial to survive the transmission bit errors that will occur 
during simulcasting. To overcome the serious artifacts 
that typically result from errors occurring in critical bits, 
MPEG ++ prioritizes a MPEG codeword stream, dividing 
it into two separate video data streams: a) high priority 
data that is essential to make viewable pictures and b) 
standard priority data that is additionally required for high 
quality HDTV pictures. Specifically, MPEG ++ is a post 
processing layer that splits a standard MPEG codeword 
stream into two separate codeword streams. The high pri-
ority codeword subset constitutes a viewable picture and is 
the basis for providing robustness under heavily impaired 
transmission conditions. 

In MPEG compression, blocks of pixels from 1 or 
more frames are transformed into a set of video data 
structures, including control bits, motion vectors and 
DCT coefficients. These data structures are coded to 
achieve a compressed representation of video. MPEG ++ 
prioritization identifies the important codewords needed to 
make viewable pictures which are transmitted as a high 
priority bit stream. The remaining codewords that are 
additionally required to make a full quality HDTV picture 
are transmitted as a standard priority bit stream. AD-
HDTV delivers high quality HDTV services to its coverage 
areas, which is defined by the reception of both standard 
priority and high priority data. With two separate data 
streams, additional reliability and robustness is provided by 
transmitting the MPEG ++ high priority video data at 
a higher power level-ensuring the reception of viewable 
pictures under virtually all conditions. 

8. CONCLUSION 
To create highly effected multimedia communication 

services high bit rate reduction methods are being studied 
by the MPEG of the ISO with the aim of creating a 
useful standards. These coding methods can be applied 
to HDTV signals. Many HDTV digital coding methods 
have also been studied and it is shown that it is possible to 
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code HDTV signals to achieve a coding bit rate of 15-30 
Mb/s. When highly efficient bit reduction techniques are 
employed various HDTV communication services can be 
provided cheaply to the customers. 

By using the subband coding concept, that has the 
potential to bridge NTSC and HDTV, the following basic 
HDTV coding algorithms can be recommended: 
• subband DPCM for HDTV contribution service with a 

transmission bit rate of about 600 Mb/s 
• subband DCT for HDTV primary distribution service 

with a transmission bit rate of about 120 Mb/s. 
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Iterated Function Systems (IFS's) are receiving a lot of attention in 
the literature as a new technique for signal and image coding. Much 
of this interest stems from the fact that an IFS is simple in form and 
yet capable of representing complicated signals, many of which closely 
resemble those found in nature. In this paper, we present a tutorial 
overview of the basic ideas involved in using iterated function systems 
for image and describe some of the current methods and approaches 
that are currently being used for IFS coding of video sequences. 

1. INTRODUCTION 
Signal compression is an important problem in applica-

tions requiring the transmission of high bandwidth signals 
over a low bandwidth channel as well as in applications 
requiring efficient storage of large amounts of information. 
In order to develop efficient (high compression) coders 
with acceptable signal quality, it is important to exploit the 
properties of the signal that is to be compressed and to 
take into account the limitations and characteristics of the 
observer that will be processing the decoded signal. For 
example, in many applications, it is possible to represent a 
complicated signal parametrically, based on the physics of 
the signal generation process. An acoustic tube model for 
the vocal tract, for example, implies an all-pole model for 
speech. When the number of bits necessary to store the 
parameters related to the model is less than the number of 
bits required to represent the signal, then the signal may be 
compressed. In other applications, a signal may be charac-
terized by repetitions or patterns that may be compressed 
by encoding the pattern and defining the repetition pat-
tern. One form of repetition or redundancy is represented 
in the property of self similarity in which one part of the 
signal may be closely approximated by a suitable transfor-
mation, such as scaling, of another part of the signal. It 
has been asserted that most "natural" signals possess the 
property of self-similarity [1], [2]. Self-similar signals may 
be compressed in a manner similar to repetitive signals. 

In this paper, we explore the use of an iterated function 
system (IFS) for image and video coding. These coders 
are designed to exploit the self-similarity property that 
has often been ascribed to "natural" images. Due to the 
self-similarity in a single image and the similarity between 
successive frames in an image sequence, iterated function 
systems may also provide the basis for an efficient video 
coding system. In developing the basic design of an IFS 
image coding system, we begin with a review of the theory 
of fixed points, contraction mappings, and the definition 

* This work was supported by the Joint Services Electronics 
Program, Grant No. DAAH-0493G0027. 

of an IFS in Section 2. In addition, we describe how 
this theory has been applied to the problem of iterative 
signal reconstruction. In Section 3 we describe how an 
IFS may be used to encode an image. Beginning with a 
block encoding system proposed by Jacquin, we proceed to 
discuss some modifications and extensions of this method 
to improve the coder efficiency and speed. In Section 4 
we look at an orthonormal basis approach to IFS image 
coding and in Section 5 we describe the encoding and 
decoding process. Finally, in Section 6, we describe how 
an IFS coder may be extended and generalized to encode 
video sequences. 

2. BACKGROUND 
The theory of iterated function systems has its roots in 

the theory of fixed points and contraction mappings. As we 
will soon see, this theory has also played an important role 
in solving signal reconstruction problems using iterative 
techniques. We begin, therefore, with an overview of fixed 
points and the Banach fixed point theorem. 

2.1. Fixed Points 
Let U be a complete metric space with a distance metric 

d and let f be a function or mapping from a subset, A, of 
U into U. If the mapping f has a point x* E A which 
is invariant under f, i.e., f (x*) = x*, then x* is called a 
fixed point of f. A mapping may have any number of fixed 
points. For example, the mapping 1(x) = -x from the 
real numbers, R, into R has a unique fixed point, x* = O. 
On the other hand, every point in R is a fixed point of the 
mapping 1(x) = x, whereas the map 1(x) = x + 1 has 
no fixed points. With the appropriate set of constraints on 
f, however, it is possible to insure that f has a unique 
fixed point. One such constraint is that f be a contraction 
mapping which is defined below 

Definition: If A is a subset of U and if f maps A into 
itself and if there is a constant o, with 0 < a < 1 such 

d[f(x),f(y))] ≤ Qd[x,y] 

then f is called a contraction mapping. 

A contraction mapping is characterized by the property 
that it brings points closer together. For example, let x* 
be a fixed point of f so that f (x*) = x*. It then follows 
from the definition above that 

d[f(x),x*] < ad[x,x*]• (1) 

Therefore, the effect of applying f to an arbitrary point 
X E U is to bring it closer to the fixed point x*. In fact, 
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iterating by successively applying f to x we find that, after 
k iterations,** 

d[f(k)(x),x*] ≤ Qkd[x,x*] (2) 
Since a < 1, as k —~ oo the distance between xk = 
f (k)(x) and x* goes to zero 

Jim d[f~ k)(x),x*] = O. 
k—+oo 

An important property of contraction mapping is that they 
have a unique fixed point. To see this, suppose that there 
were two fixed points, x*i, x*2. It would then follow that 

d[x*i,x *2] = d[f(x*i),f(x *2)] ≤ vd[x*i,x*2]• (4) 
Since a < 1, this will be true only if x*1 = x*2. These 
results are summarized in the Fixed Point Theorem below 

[31. 
Fixed Point Theorem: If f is a contraction mapping 

with a contraction factor v on a closed subset A of a 
complete metric space U, then there is a unique fixed 
point x* E A. Furthermore, any sequence of iterates, 
xk = f (k)(xo) will converge to x* with 

d[xk, x*] ≤ Qkd[xo , x*]. 

As an example, consider the function 

f(x) = 3x + 3 • (6) 

Clearly, f is a contraction mapping with a contraction 
factor v = 1/3. Therefore, it follows from the fixed point 
theorem that f has a unique fixed point. To find the fixed 
point, we solve the fixed point equation, f (x*) = x*, and 
find that x" = 1. 

A useful inequality that may be derived from Eq. (6) is 
as follows. From the triangle inequality, which must hold 
for any metric d, we have 

d[xo, x*] < d[xo, f (xo)] + d[f (xo), x*] 
< d[xo, f  (xo)] + Qd[xo, x*]. (7) 

Therefore, 

(3) 

(5) 

d[xo,x*] < 1 1 ad[xo,f(xo)]• (g) 

This inequality is useful since it allows one to place a 
bound on the distance between xo and the fixed point x* 
in terms of the distance between xo and f(xo) without 
having to know exactly what the fixed point is. As we will 
see, this inequality is a special case of the Collage Theorem 
discussed below [2]. 

The Fixed Point Theorem has played an important role 
in the development and theory of iterative signal recon-
struction algorithms using the method of successive approx-
imations. In fact, as we will soon discover, an interest-
ing similarity exists between iterative reconstruction algo-
rithms and IFS signal modeling. The two problems, in 
fact, may be thought of as dual of each other. In order 
to understand this duality, we present a brief overview of 
the signal reconstruction problem. To make the discussion 

** The notation f(k)(x) means the kth iterate of x by the 
function f. For example, f (3)(x) = f(f(f(x))). 

general, signals will be represented as symbols without any 
arguments, such as x and y, so that they may be consid-
ered to be one-dimensional signals such as speech, two-
dimensional signals such as images, or higher-dimensional 
signals such as video sequences. 

The problem of signal reconstruction is concerned with 
the recovery of a signal x from a distorted observation, 

y = D(x)• (9) 
The distortion, represented by the operator D, may be 
nonlinear and, quite possibly, noninvertibie. Examples 
of important signal reconstruction problems that may be 
cast into the framework of Eq. (9) include deconvolution, 
phase-retrieval, and band-limited extrapolation [6], [7]. An 
approach that has been studied extensively for estimating 
x from y is to use the observation Eq. (9) to set up the 
fixed point equation 

x = x + ) [y — D(x)] = F(x), (10) 

where a is a parameter that is chosen to optimize some 
criterion [7]. The signal reconstruction problem is thus 
reformulated as one of finding the fixed point of the 
operator F in Eq. (10). 

In addition to the observation equation in Eq. (9), the 
signal that is to recovered is often known to satisfy some 
constraints such as positivity (image processing), and finite 
support or duration in either the time or frequency domain 
(time-limited or band-limited signals). Representing such 
a constraint in terms of a constraint operator, C, the 
reconstruction problem now becomes one of finding the 
solution to a pair of equations 

y = D(x) 

x = C(x). (11) 

With a constraint operator C, the fixed point equation 
becomes 

x = C(x) + \[y — DC(x)] = F(x). (12) 

If the operator F is a contraction mapping then, for any 
initial starting point or initial guess for x, denoted by xo, 
the sequence of iterates formed by applying the method of 
successive approximations, 

x — k = F(xk-1) = F~ k)(xo) (13) 
will converge to the unique fixed point of F. Thus, a signal 
x is mapped by D to an observation y. A fixed point 
equation is then established, using (12), and a sequence of 
iterates xk is formed to produce an estimated of x. 

In solving the signal reconstruction inverse problem by 
means of the iterative algorithm (13), three important 
issues arise. The first concerns the conditions under 
which the sequence xk converges to a fixed point of F. 
Whether or not xk converges to x* depends upon many 
factors including the properties of the function F, the 
choice of the initial condition xo, and whether or not 
F has a unique fixed point. The second issue concerns 
the relationship between the fixed points of F and the 
solutions to Eq. (11). It is clear, for example, that any 
solution to Eq. (11) will also solve the fixed point Eq. (12). 
However, it is not necessarily true that all fixed points of 
F will necessarily satisfy (11). The fixed point iteration, 
therefore, may produce solutions that do not satisfy (11). 
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A variety of interesting questions also arise when D(x) 
is singular (noninvertible). For example, if x  converges 
to a fixed point then, since the solution to (11) is not 
unique, how close is the fixed point to the desired solution 
x? Finally, the third issue concerns the effects of errors 
on the solution. Several possible sources of error include 
truncation of the sequence of iterations, inaccuracies in 
the measurements of y or in the assumed form of the 
distortion and constraint operators, and imperfections in 
the implementation of the iteration. 

2.2. Iterated Function Systems 
Having introduced the idea of a contraction mapping 

and having considered some of their features and prop-
erties, it is now possible to generalize and define what is 
meant by an Iterated Function System, or IFS. An IFS 
is a finite set of contractive mappings, fi, defined on a 
complete metric space, U, 

(14) 

for i= 1, 2, .. . ‚P with 

d[fi(x), fi(y)] ≤ Qi . d[x, y], (15) 
where 0 < o, < 1. The transformation formed using all 
of the maps of the IFS is written as 

P 

F(B) = U fi(B), 
i=1 

where B C U. Just as with a single contraction mapping, 
an IFS has a unique set of points, called the attractor, that 
is invariant under F. The attractor is given by 

A* = Jim F (Ao),  (17) 

where Ao is some subset of the metric space U. As an 
example, consider the pair of contraction mapping (4) 

1 2 fi(x)= 
3x 

+ 
3 

f2(x) = 
3x 

(16) 

(18) 

that is formed by adding one function, f 2(x) = 3x, to 
that given in Eq. (6). In this case, with Ao the closed 
interval [0,1] over the set of real numbers, the attractor 
is the Cantor Set, C. The Cantor set is a perfect set (that 
is, C is closed and every point of C is a limit point [5]) 
that contains an uncountable number of points. Note 
that, compared with the fixed point of Eq. (6), the fixed 
point (attractor) of the pair in Eq. (18) is remarkably rich. 
The Cantor set may also be generated by the successive 
deletion of middle third open intervals, i.e., C is the limit 
of Ak as k — oo with [5] 

Aa = [0,1] 

Al = [0,1/3] U[2/3, 1] 

A2 = [0,1/9] U[2/9, 3/9] U[6/9, 7/9] U[8/9,1] 

A theorem of interest related to an IFS is the Collage 
Theorem which is as follows, 

Collage Theorem: Let A* be the attractor of an IFS 
and let A be any compact set. Then***, 

d(A, A*) < 1 1  d(A F(A)). 

As with Eq. (8), the importance of this theorem lies in 
the ability to place a bound on the distance between a set 
A and the attractor of the IFS by measuring the distance 
between A and F(A), without having to find the attractor 
A*. 

At this point, we should be asking the following ques-
tion: What do contraction mappings and IFS attractors 
have to do with image compression? The answer lies in 
the observation that it is possible for a very complex set to 
be represented as the attractor of a very simple IFS. Re-
call, for example, that the Cantor set is the attractor of an 
IFS that consists of only two amne contraction mappings. 
Another example is the Sierpinski Gasket shown in Fig. 1 
which is a binary image, defined by the set of points (x, y) 
that have a value of one. This image is the attractor of the 
IFS consisting of three maps 

r  (fill 12 1/2] LyJ L 0

12([;]) = 
L 102 1/2 J LyJ + L O J 

13([;]) = [102 1/2 J Ly1 + 12 J L 1 

Fig. 1. The Sierpinski gasket that is generated using an IFS 
consisting of three contractions mappings 

Therefore, given an image x that is to be encoded, if 
we can find a set of contractive maps, fi, that have an 
attractor that is close to x, then we may consider using 
the parameters of the maps as the code for generating 
the image. Given an IFS, it is straightforward to find the 
attractor. For example, we may simply iterate, forming the 
sequence of "points" 

AF(Ak_1) 

*** Here, d(A,A*) is a measure of the distance between the 
two set A and A*. Typically, the distance metric used is the 
Hausdorf metric [2]. 
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for some initial set Ao C U. The difficult problem is 
solving the inverse problem, i.e., finding the maps that have 
an attractor that is close to a given image x. 

At this point we may illustrate the parallel that exists 
between IFS coding and iterative signal reconstruction. In 
IFS coding, we are given an attractor (the signal to be 
coded) and the problem is to find the contraction mapping 
f; associated with the given attractor. In iterative signal 
reconstruction, on the other hand, the problem is to find 
contraction mapping that will produce, upon iteration, an 
unknown attractor (the signal to be reconstructed). 

3. IFS IMAGE CODING 
In this section we describe the general approach that 

is used to code an image using an IFS. Although many 
of the techniques described in this section have also been 
applied to coding one-dimensional signals such as speech, 
electrocardiograms, and seismic data [8], [9], [10], the 
focus of this section will be on image coding. In Sect. 6 
we extend this to video coding. 

A digital image, x(m, n), is a function of two discrete 
variables, m and n. It will be convenient, however, 
to consider an image as a function of two continuous 
variables, x (u, v), and to represent this image as a 3-D 
graph, i.e., a triplet 

x= [;] , (19) 
u 

where u and v represent the spatial coordinates of a given 
pixel and z = x(u, v) represent the intensity. 

Fig. 2. An original image, x(m, n) 

As noted in the introduction, an iterated function system 
attempts to reduce the information rate in an image 
by exploiting the similarities that exist within different 
regions of the image. Consider, for example, the image 
shown in Fig. 2. Since certain regions of the image 
tend to be similar to other regions, one may consider 
"modeling" or "approximating" one region of the image, 

for example P;, with an appropriately transformed piece 
extracted from another region such as Dk. This, in 
effect, is what an iterated function system is designed to 
accomplish: to represent an image as a collection (collage) 
of suitably transformed versions of itself. Over the set of 
"real" image, however, one must determine what types of 
transformations will produce other "real" images. Clearly, 
these transformations should include translations (delay), 
rotations and reflections (time reversal), shrinking and 
stretching (time scale modification), scaling and inversion 
(gray-scale transformations). 

In IFS image coding, a block coding approach is typically 
used. Thus, the image that is to be encoded is initially 
segmented or partitioned into a set of range (or target) 
blocks, P~(m, n). It is then the task of the FS encoder 
to find a domain block Dk(m, n) and a transformation f= 
that produces the best approximation to the given range 
block P;(m,n), 

Oi(m, n) f=[Dk(m, n)]• 
Therefore, a block IFS image coding system consists of the 
following steps: 
1. Partition the image into a set of range (target) blocks, 

Pt. 
2. Search for an appropriate domain (library) block Dk 

that is to be used to approximate P. 
3. Find the transformation f= which, when applied to Dk, 

produces the best approximation to P. 
Clearly, without any restriction on the form of the trans-

formation, f;, the IFS encoder will be computationally 
intractable. Therefore, the transformations must be con-
strained. One constraint that is typically applied in IFS 
coders is that the maps be affine transformations [11], [12]. 
In terms of the vector x, an affine map is of the form 

.fi(x) = Aix + b=, 

where Az is a 3 x 3 matrix and b is 3 x 1 translation vector. 
For example, an affine map that has been used for image 
coding is the following 

u a; b; 0 u e; 
f: v = c; d; 0 v + f t . (20) 

z 0 0 , z 0E

Note that this mapping is composed of a pa r of decoupled 
transforrf mati

ll

ons. The first,

l f f~,i Uv~l l az d=J Lvj + 
[ f iul e1  T [ v, +t3 

defines how regions (sub-image domains) in the image x 
are mapped under ft. In most cases, the parameters 
in T2 are further constrained to consist only of simple 
transformations such as a spatial scaling (decimation) by 
a factor of 2, 

T. _ 
005 

~ 5 J 
and rotations by 90°, 180°, or 270°

T~=I °1 ii 
0J ;T:=~ 01

The second transformation, 

.fi,2(z) = az + ,3t 

ol 1 ; 
Tti 

fo —11 
1 0

JOURNAL ON COMMUNICATIONS 14 



corresponds to a linear scaling of the intensities by a= plus 
an offset $ . In the IFS image coding system proposed 
by Jacquin [12], the domain blocks are constrained to go 
through a limited set of transformations, including 
1. Spatial contraction: Typically this is set at 2:1. (In 

addition to constraining the set of transformations, a 
spatial contraction of 2:1 simplifies the search for the 
domain block Dk. Specifically, if the range blocks 
are p x p pixels in extent then the domain blocks are 
constrained to a size of 2p x 2p pixels.) 

2. Isometric transformations: One of 8 possible trans-
formations including rotation, reflection, circular shift 
(thus, only 3 bits are required to specify the transforma-
tion.) 

3. Grey-scale transformation: These include scaling, ab-
sorption (setting the intensity equal to a constant), 
translation, and inversion. 
Even with these restrictions on the set of allowable 

transformations, however, it is still necessary for the 
encoder to find a suitable domain block, Dk, for each 
range block P= along with a transformation ft, that 
minimizes the distance between P; and f t(Dk). Without 
any restrictions on the pool of available domain blocks, the 
library of possible blocks that need to be searched may be 
very large and, as a result, the search for the optimum 
domain block may become prohibitively time-consuming. 
For example, consider an image x(m, n) that is N x N 
pixels in extent. If the domain blocks have a size of 
Nd x Nd pixels, then there are a total of (N — Nd + 1)2

possible domain blocks. With N = 512 and Nd = 16 
this implies that, for each range block, there are 247,009 
different domain blocks to choose from. As a result, the 
domain block pool is normally pruned before searching 
for the optimum block. The domain block pool may be 
trimmed in a number of different ways. For example, the 
domain pool may be trimmed by sliding a window of size 
Nd X Nd pixels across the image in increments of bh > 1 
pixels in the horizontal direction and ö > 1 pixels in the 
vertical direction. With óh = őv = Nd, for example, 
the domain pool is constrained to non-overlapping blocks 
which reduces the number of domain blocks by a factor 
of N. In the coder of Jacquin [12], the increments fih
and ó„ were chosen to be equal to either Np or
where Np is the size of the range blocks. To further 
prune the search, Jacquin also classifies each domain block 
according to block geometry as either a shade block, an 
edge block, or a midrange block. Then, for each range 
block, each element in the domain pool of the same type is 
analyzed for the optimum transformation (which depends 
on the domain-pool classification). Another possibility for 
pruning the domain pool is to constrain the domain blocks 
that may be used to represent a given range block P= 
to one that lies in close proximity to P; [10], [13]. The 
motivation for this approach is that pixel values in an 
image tend to be more correlated when they are in close 
proximity to each other. 

Each of the methods described above for constraining 
the form of the affine maps in the IFS encoder and the 
approaches used to reduce the size of the domain pool, 
are attempts to make the IFS encoder more efficient 
from a computational point of view. However, each 

of these approaches affect, in turn, the fidelity of the 
decoded image. Therefore, approaches have also been 
considered for increasing the signal-to-noise ratio (SNR) in 
the decoded image. For example, several different methods 
of using adaptive block sizes have been investigated [10], 
[15], [16]. Although a large block size increases the 
compression since a large block size implies fewer maps 
and, thus, fewer map parameters that must be stored, a 
large block size will also, in general, result in a lower 
quality image. Therefore, by allowing the block sizes to 
vary and to conform to the geometrical characteristics of 
the image, increases in the SNR are possible. Another 
approach that has been considered for improving the 
quality of the encoded image is to use nonlinear maps and 
nonlinear addresses [10], [14]. The increased complexity 
in finding the map parameters and the increased bit rates 
necessary to represent these mappings, however, do not 
seem to result in an improved IFS image coding system. In 
the next section we provide another interpretation of the 
IFS image coding system which will lead to a more general 
coding system. 

A number of variations and modifications to the IFS 
coder developed by Jacquin have been proposed and stud-
ied. Some of these modifications have been briefly out-
lined above. We now describe how the affine transfor-
mations of the IFS image coder may be viewed as sub-
space approximations to the range blocks. Specifically, 
the IFS map parameters are obtained by finding the best 
approximation of each range block by an element of a 
two-dimensional subspace that is formed from a domain 
vector, which depends on the domain block pixel values, 
and a fixed translation vector [17]. 

To develop the subspace approximation approach to IFS 
encoding, recall that the affine transformation given in 
Eq. (20) may be viewed as a mapping consisting of two 
parts. The first, represented by the parameters at, bt, ct, 
d; and ft, defines a mapping from the set of Nd x Nd 
pixels in the domain block Dk(m, n,) to a set of NP X N~ 
pixels, which we denote by the vector dt. This mapping, 
from the domain block to dt, typically consists of spatial 
contractions and isometric transformations. The second 
transformation then scales the elements of d; (the pixel 
intensities) by a factor a; and adds a bias of (3=. Therefore, 
the affine mapping in Eq. (20) may be written as 

Pt = atdi + /3tvo, (21) 

where vo is a vector of pixel values, with each value being 
equal to one. Thus, pt may be viewed as an approximation 
of the range block, pt, using a linear combination of 
two basis vectors — the image dependent basis vector d= 
and the values fixed basis vector vo. It is important 
to note, however, that it is the fixed point (attractor) 
of the transformations defined by the values of a; and 
/3a that determine to pixel values of the decoded image. 
Therefore, pt should not be considered to be the output 
of the decoder in representing the sub-image pt. However, 
since the collage theorem states that the closer each of 
the pt's are to pt, the closer the attractor will be to the 
original image, the encoder seeks to minimize the distance 

d[Pt, Pt]• 
Given the approximation in Eq. (21), it is possible to 
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consider using other basis vectors or, perhaps, more than 
two vectors. For example, Ramstad et. al. [17) proposed 
using three fixed basis vectors in addition to the image 
dependent basis vector. Thus, each range block pi is 
approximated using a subspace approximation of the form 

Pi = ad k + /30V0 + N1v1 + /32v2, 

where vo is a vector consisting of all ones as before, v1 is a 
vector having values that increase linearly in the horizontal 
(u) direction, and v2 is a vector that increase linearly in the 
vertical (v) direction. These three fixed basis vectors define 
a plane and is equivalent to the affine transformation 

u a b 0 u e 

fi v = c d 0 v + f 
\zj I31 2 a .Z 13o 

With the IFS encoder thus formulated in terms of a 
subspace approximation, it is how possible to make the 
encoding process more efficient by orthonormalizing the 
basis vectors and finding the optimum set of constants, a, 
j3, i3 , /3o by projections [17]. 

In addition to increasing the number of fixed basis 
vectors, vk, we may also use multiple domain blocks as 
follows [10], [18], [19] 

K 

Pi = ~ akdk + R0v0 + Nlvl + I32v2 • 

k=1 

Clearly, the use of multiple domain blocks allows for a 
much richer set of basis vectors. However, the difficulty 
in using more than one image dependent basis vector 
compared to using multiple fixed basis vectors is that 
the search required to find the optimum set of domain 
vectors becomes geometrically more time consuming. For 
example, with a domain pool size of P and two domain 
vectors, d1 and d2, the encoder must find the best pair of 
domain vectors out of the domain pool. Therefore, the 
search time becomes proportional to P2 instead of P in 
the case of a single domain block. In the following section 
we present a new type of IFS image coder that uses an 
orthonormal basis to alleviate this problem. 

4. AN ORTHONORMAL BASIS APPROACH 
Each of the previous approaches to IFS image coding 

have been search-based, requiring that a set of domain 
blocks be evaluated for each range block. With the 
orthonormal basis approach presented in this section, a 
set of orthonormal basis vectors are created by the Gram-
Schmidt algorithm and the range blocks are coded by 
projecting the blocks onto this basis. The advantage 
of using an orthonormal basis is two-fold. First, only 
one search is required for a given set of domain blocks. 
Thus, once a suitable collection of domain blocks have 
been selected, encoding the range blocks is based on 
this fixed subset of the domain blocks. The second 
advantage is that the encoding process is relatively fast 
since the encoding may be performed by simply projecting 
the range block onto the orthonormal basis. As with any 
compression technique, we are concerned with reducing 
the dimensionality of the data to be stored. Thus we 
wish to find a smaller subspace in which to accurately 

represent each range block. The goal in determining the 
orthonormal basis will be to create a basis which allows 
each range block to be accurately represented whith a 
minimum number of the basis vectors. By reducing the 
dimensionality of each of the range blocks, compression is 
achieved. 

Beginning with the three fixed vectors, vo, v1, and 
v2, suppose that we add Ns domain vectors, di, i = 
1, . .. , NS, thus forming a set of D = NS + 3 vectors. 
For simplicity, we will assume that these vectors are 
linearly independent. With N x N range blocks, if D = 
N2 then these vectors form a a basis and any range block 
may be represented as a linear combination of these basis 
vectors, 

NS -1 

Pi = QO,ivo + h3 1,iw1 + /32,iw2 + ~ ak,idk = Bai, 

k=3 

(22) 
where 

B = [vo, vl, v2, d1, ... , dNrj (23) 
is a matrix containing the basis vectors and ai is a vector 
containing the weights ak,i and Nk,i. In order to facilitate 
the computation of the weight vector for a given range 
vector pi, we may orthonormalize the basis using the 
Gram-Schmidt algorithm. With the resulting orthonormal 
basis vectors placed in the columns of a matrix Q, the 
representation for a given range block pi becomes 

N S -1 

Pá = ~ wk,iPk = Q,wi• 

k=0 

(24) 

Once the orthonormal basis has been constructed, the 
coding process is straightforward. Specifically, Eq. (24) 
defines the representation of a given range vector, pi, in 
terms of the weight vector, wi, and since Q is orthonormal, 
the weight vector may be determined as follows 

wi = QTPi (25) 

The only remaining task to implement the coder is an algo-
rithm to select the Ns domain vectors. The characteristics 
that these vectors should have are: 
• They should produce a contraction mapping in the IFS, 
• They should be as nearly orthogonal as possible, and 
• They should allow, each range vector to be represented 

with as few vectors as possible 
Several methods have been developed based on these 

three criteria and are discussed below. 

4.1. Covariance Method 
Rather than searching through the relatively large set 

of domain vectors to find the appropriate set of basis 
vectors, di, in the first approach, which we call the 
covariance method, the range vectors are first analyzed 
to determine the optimal basis vector directions. Then, 
the domain vectors are searched to find the vectors that 
are most closely aligned in each of these directions. This 
approach has two advantages: first we are primarily 
interested in representing the range vectors, thus the 
directions for the basis vectors should be based on the 
range vectors themselves; secondly, there are far fewer 
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range vectors than domain vectors and the computational 
task of determining the basis vectors is reduced. 

The covariance method begins by projecting all of the 
range vectors onto the subspace, S°, that is orthogonal to 
the subspace spanned by the a priori vectors, v°, v1, and 
v2. At the kth iteration, denoting the its, projected range 
vector by s, the next basis vector direction is chosen to be 

the vector, sk that is most highly correlated with all of the 

other vectors, sk. Thus the vector, si , that maximizes 

Ci = :: 
I< S~, sj > I 

j=1,j#i 

(26) 

is selected, where I < s~ , sk > I is the absolute value 

of the inner product between s and s and where NR 

is the number of range blocks. Once the kth basis vector 
direction has been determined, the remaining vectors, sk, 

are projected onto the subspace that is orthogonal to sl 
using the projection operator 

T T 
P S~ = I — si (si si ) —lsi (27) 

The selected basis vector direction is saved as tk and the 
process is repeated until the required set of NS vectors 
are obtained. Essentially this procedure performs a Gram-
Schmidt orthogonalization of the range vectors. However, 
the vector used in each step or the orthogonalization is 
the vector that has the largest correlation with the other 
remaining vectors. In this manner, the set of NS direction 

vectors, {ti}Ni, are determined that best represent the 
subspace S°. Since these direction vectors are orthogonal, 
the last two criteria in the list above are satisfied. 

The last step is to use the direction vectors to select the 
domain vectors that will be used in the IFS coder: The 
procedure here is to find the set of domain vectors that are 
most closely aligned with the direction vectors. Since the 
order in which the ti vectors are selected is important, with 
the most significant vector coming first, the same order is 
used to find the domain vectors. Specifically, beginning 
with t1 and progressing through to 'N5, at the kth step 
the domain vector is selected that is most closely aligned 
with tk in the sense of maximizing the projection 

Since it is possible for one domain vector to be the 
largest component for more than one direction vector, 
each domain vector is only allowed to be used once. In 
summary, this algorithm proceeds as follows: 

1. Loop NS times to find the direction vectors, ti 
(a) Find vector with largest correlation using equation 

(26) 
(b) Save vector as ti 
(c) Project remaining into subspace using equation (27) 

2. Loop Ns times for each t; to find best domain vector 
(a) Find domain vector with largest component in direc-

tion of ti using Eq. (28) 
(b) Save vector and eliminate from list of domain vectors 

The final result is the set of domain vectors that are to be 
used in the IFS image coder. 

4.2. K-Means Based Approach 
Instead of searching incrementally over the range vectors 

for a set of NS direction vectors, another approach would 
be to use a clustering algorithms. Therefore, another 
approach that we considered is to use the K-means 
clustering algorithm to group the range vectors into a 
fixed number clusters and then a single representative 
vector, the mean vector, is chosen to represent each 
cluster. In the K-means algorithm, since s; and —sj 
are very different vectors and, since we are interested 
in finding a set of basis vectors, it is preferable to treat 
these two vectors as being equivalent. Therefore, a 
simple modification of the data prior to running the K-
means algorithm is performed to eliminate this problem. 
Specifically, all of the vectors are forced to reside in the 
same half-space. The half-space that was selected is the 
one which includes the positive axes, and any vector that 
is outside of this half-space is negated. A vector may 
be easily be checked to see if it lies in this half-plane by 
examining the sign of the sum of the elements in each 
vector, 

hj = 

i=1 

[2]. (29) 

If hj < 0, then the negative of that vector was used. In 
addition, since the magnitude of each of the range vectors 
is not important for a set of basis vectors, each vector was 
also normalized prior to running the K-means routine. 
Once the NS direction vectors have been determined, the 
domain vectors were searched to find the set which match 
these direction vectors. 

5. THE IFS ENCODER AND DECODER 
The IFS encoder using an orthonormal basis is based on 

Eq. (25) which provides the weights that specify the vector 
in the rotated coordinate system. In order to achieve 
compression, however, the weights must be quantized and, 
ideally most of the weights should be set to zero. The 
encoding algorithm consists of the following steps: 
1. Determine the domain vectors to use by one of the 

above methods. 
2. Form the B matrix and use the Gram-Schmidt algorithm 

to get Q. 
3. Determine the map parameters, wi, with Eq. (25). 
4. Save those weights which exceed a threshold T. 

The final encoded image consists of the indices for the 
NS domain vectors and the quantized weights for each 
map which exceed the given threshold. By adjusting the 
threshold, the accuracy of the reconstructed image can be 
controlled. In addition, the quantization approach can be 
different for the a priori vectors, which will tend to have a 
different distribution as compared to the weights for the bi 
vectors. 

The IFS decoder, on the other hand, is based on 
Eq. (24). The reconst uction process is much simpler than 
the encoding procedure, and begins with any initial image, 
V°, and iteratively performs the following steps: 
1. Gather the basis vectors, di from the image. 
2. Form B as given in Eq. (23). 
3. Apply the Gram-Schmidt algorithm to B to get Q. 
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4. Compute each p; = Qw; and save in the image. 
5. Go to step 1. 
The image typically converges in a few iterations. 

We conclude this section with an example. Shown 
in Fig. 2 is an original 512 

x 512 image that is to be 
encoded. Using the covariance method, this image was 
coded using 0.44 bpp with a PSNR of 30.5 in the decoded 
image [10], [19]. The result is shown in Fig. 3. The basis 
vectors that were used are shown in Fig. 4. In the first 
figure, the blocks are shown prior to the Gram-Schmidt 
process, and in the second figure the orthonormal vectors 
are presented. The results obtained with the K-means 
algorithm were similar. 

Fig. 3. LENA image coded with orthonormal basis method at 0.44 
bpp, PSNR=30.SdB 

6. IFS CODING OF VIDEO 
It is possible to extend the techniques of image coding 

using an IFS to code an image (video) sequence. However, 
with an additional dimension, there are several different 
approaches that may be taken. The most straightforward 
approach would be to partition a video sequence into 
non-overlapping three-dimensional range sequences as is 
done for a single image. Then, for each three-dimensional 
range block, a search would be performed over a region 
extending in space and time for the best domain block 
that would be mapped, by an IFS, to the given range 
block. Another approach is to view the video sequence 
as a sequence of independent frames and apply an IFS 
coding algorithm to each frame individually. In both 
of these approaches, however, the computational burden 
associated with searching for the best contraction mapping 
would be prohibitive. 

Another approach that has been proposed is to partition 
the video sequence into three-dimensional range blocks, 
each consisting of a variable number of rectangular blocks 
that belong to consecutive frames along the same motion 
trajectory [21]. The variability of the depth in the range 

blocks is introduced to take into account the effect of 
occlusion. The IFS map for the first block in any range 
is found by performing a full search for the best domain 
block in the corresponding frame. For each of the 
remaining blocks in the range, the IFS map is found 
by performing a limited search around the projection of 
the domain block associated with the first block on the 
corresponding frame along the motion trajectory. In this 
case, some of the parameters that describe the IFS map for 
the first block can be propagated to the following blocks in 
the range. 

Fig. 4. Basis vector blocks for covariance method. (a) Before 
Gram-Schmidt orthogonalization and (b) After Gram-Schmidt 

orthogonalization 

This approach exploits the correlation that exists between 
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successive blocks along the direction of motion by pre-
dicting the IFS maps of a given range block with that of 
a parent range block along the trajectory of motion. In 
effect, this extends the assumption of near intensity con-
stancy along the motion trajectory to IFS maps. Since 
frame to frame motion is relatively limited in scope, it is 
computationally much more efficient to perform motion 
estimation for a matching range block in a previous frame, 
followed by a refinement of the predicted map in the cur-
rent frame. The preliminary results of this technique are 
quite promising [21]. 

7. SUMMARY AND CONCLUSIONS 
In this paper, we have provided an overview of the basic 

principles and concepts involved with using iterated func-
tion systems for image and video coding. Although the IFS 
approach to coding has some potentially exciting possibil-
ities, at this point it is not clear what types of signals or 
images are best suited to IFS encoding. Initial IFS cod-
ing systems were computationally intensive, requiring long 
searches and perhaps operator intervention. Fortunately, 
this is changing as the encoding and decoding algorithms 
are becoming more efficient. Furthermore, the use of a 
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1. INTRODUCTION 
The present DISTIMA coding schemes [2] use only P-frames 

for the right channel channel sequence. The purpose of the 
work reported here is to investigate the method by which right 
channel I-frames might also be profitably used alongside the I-
frames of the left channel. Specifically the report compares the 
standard MPEG-like DCT coding of the right channel I-frames 
with the (optimum) PCA-based coding based on the eigenvectors 
calculated at the decoder side using a reconstruction of the 
corresponding left-channel I-frame. 

2. KLT VS. DCT 
The basic coding scheme recommended in MPEG [5], [3] is 

Discrete Cosine Transform coding. Although DCT is suboptimal 
it enjoys two advantages [6], [4]: (a) it is close to optimal for most 
images and (b) it is a fixed basis, orthogonal transform therefore 
there is no need to send the transform basis to the decoder. In 
this work we investigate the use of non-DCT transform bases 
for the coding of images. In particular we investigate the use 
of the ltarhunen-Loewe transform basis which is known to be 
the optimal linear transform. Similar approaches have been 
reported elsewhere [1] for non-stereo image sequences. The 
major problem of KLT is that the basis is image-dependent so 
we are faced with the issue of either sending basis vectors to 
the decoder or have the decoder estimate them. In section 3 
we choose the latter approach and develop different techniques 
to improve the estimation of the best transform basis. Section 4 
shows the results of our experiments in a test stereo sequence. 
Finally, in section 5 we conclude showing some direction for 
future improvements. 

3. OPTIMUM I-FRAME CODING 
Let X = [x;j] be an 8 x 8 matrix representing a block to be 

coded. The DCT transform performs the following mapping 

Y = TXT', (1) 

where T = [t;; ], i = 0, . . . , 7, is the DCT basis matrix 

= ; 
((2j+ 1)i 

_ f á'  ~lj ifi=0 c cos   c; 
16 1 otherwise 

and T' denotes the transpose of T. The transform coefficients 
form the 8 x 8 matrix Y. If we let x, y, be the 64-dimensional 
vectors formed by stacking the columns of X, Y, on top of each 
other then (1) can be rewritten equivalently as 

y = (T ®T)x, (2) 

where ® is the matrix Kronecker product. Since T is orthogonal 
(namely TT' = I), (T ® T) is also orthogonal, thus DCT falls 
into the general class of orthogonal linear transforms 

y = Ax, AA' = I. (3) 

It is well known [4] that Karhunen-Loewe is the optimal trans-
form of type (3) for two reasons: (a) the transform coefficients y; 
are uncorrelated, so we do not waste bit-rate to code correlated 
information, and (b) KL packs the most energy of the signal x, 
in the fewest possible transform coefficients, i.e. for any m < 64 
the partial energy ~~ ̀ I  E{y? } is maximum for KL among all 
orthogonal transforms (E{•} denotes statistical expectation). 

The rows of the optimal KL matrix At are the (normal) 
eigenvectors of the autocorrelation matrix R = E{xx'} of x, 

At = [e1e2 . . . e64]', Re; = (4) 

where we assume that the eigenvalues are arranged in decreasing 
order aI ≥ a2 ≥ • • • >_ as4 > 0. 

One would like to code the images using the optimal KL 
transform rather than DCT However, there is a serious problem: 
the KLT basis is not fixed — it is image-dependent — and 
therefore it is not known to the decoder. Although some bit-
rate is saved by using KLT instead of DCT we face the issue of 
transmitting the transform basis. Adding the bit-rate required to 
send the basis to the decoder normally not only erases the savings 
of KLT but can even result in higher bit-rates compared to DCT. 

3.1. Camera calibration 
We can attack the problem by using some estimate of At at 

the decoder and the encoder. Thus we avoid altogether sending 
the eigen-basis of KLT, with the hope — depending on how good 
the approximation is — that we still retain some performance 
advantage over DCT. 

In the case of stereoscopic image sequences it is assumed 
that an I-frame in the left channel has approximately the same 
statistics as its corresponding I-frame in the right channel, after 
camera calibration to correct for systematic luminance differences 
between the two cameras. Using a linear calibration model we 
assume that the images 

x (right channel) 

ax~~ + b (calibrated left channel) 

have similar statistics for some scalar parameters a, b. For blocks 
this assumption translates into the following formula 

R r = E{xr x r, } = E{(ax t + bu)(ax' + bu)'}, (5) 

where xr x t E R64, denote the blocks in the right, left channel 
respectively, and u = [1 • • 1]' E 64 Eq. (5) implies 

E{( 

uu' 

'x 
' I — 

64 / x r  ( I  - 64 ) J _ 

E 
l \I  64 / 

(ax' + blu) (ax' + bl u) , ( I  — 6 4 ) } ' 

r r r 

E (x r — 
uu 

xrl (xr 
— uu xr l ~ 

= \ 64 J \ 64 J 

— 
a2E 

{ \ x, 64 xl/ \ x  ̀ 64 x,/ 

rl 

or more concisely, 

where 

r 2 1 
Ro = a Ro 

r 

Ró - E{xr2rr} xr = xr - 
TL2L xr 

64 

r 

Ró - E{ ' "}, x ° = x t
64 

(6) 
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If xi . . . , x64, are the pixels in a block x then the vector 

^ 64 ^ 

Xi 64 ~ xi 

i=1 
uuI

x=x — —x= 
64 

64 
1 

X54 - 64 ~ xá 
- á=i - 

is equal to the block x after subtracting the DC term 4s  ui4 
X. 

Using (8) we estimate the correlation matrix Ró of hte AC right 

blocks with the scaled correlation matrix a2 Rá of the AC left 
blocks. The scale parameter a2 is not known. Observe however 
that we are only interested in the eigenvectors of Ró, and they 
are not affected by simple scaling. Thus the KLT basis can be 
estimated from the eigenvectors of Ró and there is no need for 
estimating neither a nor b. 

3.2. The proposed transform 

The transform which we shall use is identical to DCT in the DC 
term, but differs in the AC terms. For the AC terms we shall use 
the KLT basis of Ró which, since Ró is unknown to the decoder, 
is estimated from the eigenvectors of R. 

The matrix \\I I — 46  1 is the orthogonal projector matrix for 

the subspace Glu, so Ró u = 0 and Ró u = 0. Thus the vector 

su is a normal eigenvector of Ró (and Ró ) corresponding to the 
zero eigenvalue. In general, the remaining 63 eigenvalues are 
nonnegative, ai > )'.2 > . . . > ás3 > 0 and their corresponding 
eigenvectors of Ró are orthogonal to s  u because Ró is symmetric, 
and so they form the basis for the AC part. 

The total transform matrix is 

A = L8u ei e2 . . . e63J ' • (11) 

A is orthogonal, so 

X = 1
1y -f-

64 

i=2 

1 , , 
yi=8ux, yá=e i_ l x, i=2, . . . ,64. 

3.3. Coding 

The coding is done exactly according to DISTIMA. The 
only difference is that the I-frames of the right channel are 
coded with the approximated KLT transform explained above. 
The transform coefficients are quantized with exactly the same 
quantizers proposed in DISTIMA for the DCT coefficients, with 
the same quantization matrix QI sorted into the following 1-
dimensional array 

QI = [8, 16,16, 16, 19, 19, 22, 22, 22, 22, 22, 22, 24, 26, 26, 26, 

26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 29, 29, 29, 29, 29, 

29, 29, 29, 32, 32, 34, 34, 34, 34, 34, 34, 35, 35, 35, 37, 37, 

38, 38, 38, 40, 40, 40, 46, 46, 48, 48, 56, 56, 58, 69, 69, 83] 

(12) 

For each macroblock we make the field/frame DCT decision 
as prescribed by DISTIMA, while for simplicity we use a fixed 
mquant parameter. We are only interested in I-frames and as a 
result all macroblocks are intra macroblocks. 

3.4. Segmentation 

Images typically include various regions of different texture: 
for example, objects in the foreground may be characterized 

by different statistics than the background. This nonstationary 
nature of images is ignored if we use a uniform transform basis 
for the whole image. A further improvement would require 
that we partition the image into segments and assign a single 
transform basis per segment. The level of sophistication of such a 
segmentation algorithm may be anything from very simple to very 
complex with different advantages and disadvantages in each case. 

We have investigated two different approaches: 
1. Straightforward partitioning: cut the image into rectangular 

segments of equal sizes (or as close to equal as possible). This 
is the simplest segmentation approach. The advantage is that 
no additional bit-rate is required to make the segmentation 
known to the decoder. The disadvantage is that segments do 
not correspond (in general) with regions of uniform statistics. 
Still if the estimation of the eigenvectors was perfect the 
performance should improve over the globally uniform basis 
case and the more parts the better. On the other hand, the 
more parts the smaller they become, and therefore, the bigger 
the proportion that has changed from the left eye to the right 
eye, and as a result the poorer the estimate of the basis. 
Also the more parts we have the longer it takes to compute 
all the different eigenbases. So there is a trade-off between 
the benefit from specializing the eigenbases and the damage 
from loosing eigenbase estimation accuracy. As we shall see 
in the experiment section the balance point of this trade-off 
corresponds to small numbers of parts. 

2. Segmentation based on the variance of the macroblock.s. In this 
approach we compute the variance of each macroblock in the 
right channel and create the histogram of these values which 
is used to partition the macroblocks into (not necessarily con-
nected) groups. We do this by first locating the valleys in 
the histogram and count the number of parts into which the 
histogram is partitioned by them. If these parts are less than 
desired we stop there. Otherwise, we merge the smallest con-
secutive parts together until we have as many parts as desired. 
The advantage of this approach is that it usually gives re-
gions with better statistical coherence than the straightforward 
approach. The disadvantage is that the segmentation is not 
known to the decoder and thus we have to spend bits to make 
it known. If we have N parts, direct coding would require 
(loge Ni bits per macroblock (or flog2 Ni /256 bits per pixel). 
For example, if we have 4 segments, we can represent the class 
of each macroblock using just 2 bits per macroblock (or 0.008 
bits per pixel) without using entropy coding. 
The same trade-off as in the straightforward case occurs here 
as well. For a certain number of segments increasing the num-
ber of segments will only make the performance worse. 

Notice that in none of these approaches (or any other segmen-
tation approach) does the encoder need to send the eigenbases. 
Once the decoder knows the left image and the segmentation, 
it can estimate the eigenvectors on its own as with the single 
segment case. 

4. EXPERIMENTAL RESULTS 

We conducted experiments for a test sequence with rather 
small disparities between left and right eye ("aqua") and good 
calibration between the two eyes. 

We implemented the DISTIMA protocol for I-frames using 
DCT for comparison purposes. In addition we implemented the 
KLT-based algorithm described above using (a) straightforward 
segmentation with different partitions: 1 x 1 (no segmentation), 
1 x 2, 2 x 1, 2 x 2, 2 x 4, 4 x 2, and (b) variance-based segmentation 
with different numbers of segments: 2, 4, 6, and 8 (1 segment is 
the same as the 1 x 1 partition of case (a)). We measured and 
compared the entropy of the transform coefficients in each case 
and we also measured the square error of the quantization. We 
ignored all other bits (header sequences, etc.) since they are the 
same for all methods. 

Fig. 1 shows the results of the experiments with the straightfor-
ward segmentation. We see that we have significant improvement 
of the square error over DCT, without significant difference in the 
expected bit-rate. We even have less entropy. 
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dct entropy: :í9.a6 
1x1 entropy: 57.26 
1x2 entropy: 57.25 
2x1 entropy: 56.73 
2x2 entropy: 56.83 
2x4 entropy: 57.09 
4x2 entropy: 56.60 

Fig. 1. Straightforward segmentation: the aqua sequence. The 
partitions tried are 1 x 1, 1 x 2, 2 x 1, 2 x 2 and 2 x 4. The 

entropy for each case is measured in bits per block. 
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Fig. 2. Variance-based segmentation: the aqua sequence. We 
experimented with 2, 4, 6 and 8 segments. The entropies are in bits 

per block. 

d 

dct-ontropy: 68.55 
2 seg entropy: 66.35 
4 seg entropy: 56.09 
6 seg entropy: 56.04 
8 seg entropy: 55.98 

Fig. 3. Variance-based segmentation: the calibrated aqua sequence. 
The entropies are in bits per block. 

Fig. 2 shows the corresponding results for the variance-based 
segmentation. We still observe that we enjoy some advantage. 
Finally Fig. 3 shows the corresponding results when using explicit 
calibration along with the variance-based segmentation scheme. 
In this case we calibrate the right channel by a simple linear 
transformation: 

r'=a•r+b (13) 

The parameters a and b are determined so that they adjust the 
right channel so as to have the same mean and variance as the left 
channel [7]. This calibrated version of the right channel, which 
statistics approximate those of the left channel, is coded more 
efficiently using KLT since the accuracy of the estimation of the 
eigenbasis, which is based on the luminances of the left channel, 
increases. 

In this case the calibrated image estimate Rr (correlation 
matrix) is directly used rather than R. The eigenvectors of Rr 
are the globally optimal KLT basis. Results show a significant 
decrease of the mean square error over the previous cases. We 

also noticed that the result of using DCT with this calibrated 
version of the right channel is also improved. Sample images and 
errors are displayed in Fig. 4. 

Fig. 4. Images from the "aqua" experiment: (a) Original image (right 
channel); (b) Error image for DCT coding (c) Error image for 
KLT-based coding with no segmentation; (d) Error image for 
KLT-based coding using variance-based segmentation with 2 

segments. Error images are enhanced to show differences. 

5. CONCLUSIONS AND FUTURE DIRECTIONS 
Overall the methods outlined here are most successful for 

stereo sequences that have good balancing between the left 
and right camera. Poor calibration results in deteriorating 
performance. A disadvantage of the proposed method is the 
additional computational cost for the eigenvector estimation. Still 
the overhead is not large since there exist very fast eigen-
computation techniques. However as shown by the results in 
figures 1-6, DCT gives very good results and does not suffer from 
this disadvantage. Thus it is not clear at this point whether the 
payoff of the optimal method is high enough to warrant its use as 
a DCT replacement for the coding of moving image sequences. 

Various lines of improvement of this work can be pursued in 
the future. Some ideas are outlined below. 

• Use of more sophisticated calibration models. The presence of 
disparity between the left and the right images results to errors 
in the estimation of the eigenbasis of the right image at the 
decoder when a model of the left image is used. The use of 
higher order calibration models or models that compensate for 
the presence of disparity would improve the estimation of the 
eigenbasis of the right image at the decoder. 

Furthermore the use of more sophisticated segmentation 
schemes may be examined. 

• Use quantization matrices designed for KLT statistics. So far all 
the experiments were conducted using the MPEG-provided 
quantization matrices (Qi, Qnr) which were designed for 
the DCT coefficient statistics. Of course the design of KLT 
quantization matrices would require extensive experimentation 
with more than just 3 test sequences. 

• Improve eigen-basis estimation by using both the corresponding 
frame from the other channel and the previous frame of the 
same channel. 

• Using non-DCT bases for coding predicted frames. Typically the 
prediction error images resemble edge maps. That is because 
the DCT error is higher at high frequencies, namely where 
there are abrupt changes in the luminance. Therefore error 
images have special statistics. Using KL along with vector 
quantization for coding and transmitting the basis matrix A* of 
error images may prove superior to traditional DCT coding. 
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1. INTRODUCTION 
Subband coding SBC has recently become an efficient tech-

nique for high bit-rate compression [1]. It also seems to be effec-
tive in high quality image reproduction, because it does not suffer 
from block distortion as in the case of transform coding. The 
SBC scheme is also suitable for hierarchical coding, because lower 
resolution images can naturally be obtained in the tree structured 
subband decomposition process [2]. 

In SBC an image is first filtered to create a set of images, 
each of which contains a limited range of spatial frequencies. 
These images are called the subbands. Since each subband has a 
reduced bandwidth compared to the original full-band image, they 
may be downsampled. This process of filtering and subsampling 
is termed the analysis stage. The subbands are then encoded 
using one or more coders. Different bit rates or even different 
coding techniques can be used for each subband, thus taking 
advantage of the properties of the subband and/or allowing for the 
coding errors to be distributed across the subbands in a visually 
optimal manner. Reconstruction is achieved by upsampling the 
decoded subbands, applying appropriate filters, and adding the 
reconstructed subbands together. This is termed the synthesis 
stage. The motivation for this approach is that the subbands can 
be encoded more efficiently than the original image. The key 
elements in a SBC system are: the analysis and synthesis filtering 
bands and the coding techniques applied to the subbands [3]. 

Attractive SBC advantages motivated this presentation. The 
first part deals with some theoretical aspects concerning same 
subband transforms, as well as entropy coding. The second part 
of the paper seeks to provide a model for a comparative study 
on some subband transforms for still image compression. Finally, 
some numerical as well as simulation results will be reported. 

2. SUBBAND TRANSFORMS 
Subband transforms are a subclass of linear transforms which 

offer useful properties for these applications. These transforms 
are generally computed by convolving the input signal with a 
set of bandpass filters and decimating the results. Each deci-
mated subband signal encodes a particular portion of frequency 
spectrum, corresponding to information occurring at a particular 
spatial scale. To reconstruct the signal, the subband signals are 
upsampled, filtered, and then combined additively. For purposes 
of coding, subband transforms can be used to control the relative 
amounts of error in different parts of the frequency spectrum. 
Most filter designs for subband coders attempt to minimize the 
"aliasing" resulting from the subsampling process. In the spatial 
domain, this aliasing appears as evidence of the sampling struc-
ture in the output image. An ideal subband system incorporates 

"brick-wall" bandpass filters which avoid aliasing altogether. How-
ever, such filters produce ringing in the spatial domain which is 
perceptually undesirable. 

As an example, consider the block discrete cosine transform 
DCT as a subband transform [4]. Computing a DCT on non-
overlapping blocks is equivalent to convolving the image with each 
of the block DCT basis functions and then subsampling by a factor 
equal to the block spacing. The Fourier transform of the basis 
functions indicates that each of the DCT functions is selective 
for a particular frequency subband, although it is clear that the 
subband localization is rather poor. Thus, the DCT qualifies as a 
subband transform. 

3. ENTROPY CODING 
The entropy coding EC consists of variable word length (VWL) 

coder to encode the non-zero quantized values and a run length 
coder to encode their corresponding locations [5]. This is 
achieved by considering each scan line as a consecutive black and 
white run. The black run corresponds to zero and white runs 
to non-zero values. In this way only non-zero values need to 
be transmitted. The VWL code set is designed according to the 
average statistics of all bands so that only one VWL code set can 
be used for all bands, at the expense of a slight loss of efficiency. It 
should be noted however, that based on earlier experiments VWL 
coding of non-zero PCM does not significantly improve the coding 
performance, particularly in the case of intraframe. Therefore, it 
may be more convenient to select the number of quantized levels 
within the active range in such a way that fixed length codes can 
be efficiently applied. 

The individual subimages are first partitioned into non overlap-
ping blocks. The scanning is performed on a block-by-block basis 
starting from the first block on the upper left and continuing in 
the horizontal direction until the last block (upper most right) is 
scanned. The resulting bit stream is then run length coded and 
transmitted together with non-zero PCM coded values. This pro-
cess continues in the same manner until the last strip of blocks in 
each subimage is scanned and coded. For the block size of m x n, 
the above arrangement can be viewed as transforming M X N 
image into P x Q where P= M x n, Q= N/n. As for the 
manner in which each block is scanned, there are normally three 
scanning techniques. There are horizontal, vertical and diagonal 
scanning. 

4. SIMULATION RESULTS 
In our experiment we first measured an entropy of subimages 

after the decimation of the test "LENA" image (Fig. 1.). The 
calculated entropies of those subbands are presented in Table 1. 
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Table 1. 

subbands 11 12 21 22 

H [bppl 7,69 4,68 4,78 5,10 

Fig. 1. 

Assuming the 256 gray-scale value image, one can calculate the 
entropy as 

H= 

255 

k-0 

pk ld pk 

where Pk is probability of a k-th gray-scale value in an image. One 
cannot compress an image below this value, not loosing an image 
visibility. 

One can conclude from the Table 1 that the greatest entropy, 
as well as the most energy is concentrated in the lowest subband 
of the image. Therefore, in order to achieve the redundancy 
reduction, the most care should be devoted to a coding of the 
lowest subband. 

In the first one, the DPCM coder with 4 bits is applied in the 
subband 11, while in the subbands 12 and 21 is used the same 
coder with 3 bits step size. The highest 22 subband is coded by 
the 3 bits PCM coder. This DPCM coder has an optimal, linear 
prediction for a previous pixel in the same line and a pixel on 
the same position for a previous line. A quantizer in the DPCM 
loop is a nonuniform, optimal one. This coding leads to PSNR = 
25.86 dB, with the bit rate 3.25 bpp (2.52 with EC). Here, EC 
means the estimated subband entropy using 8-bit linear quantizer. 
Our major asssumption for EC is the independent pixel entropy 
coding. In comparison, DPCM over full-band image gives PSNR 
= 27.4.5 dB with 4 bpp (EC 3.65 bpp). The obtained image is 
presented in Fig. 2. 

The second process involves DCT coder in the lowest subband 
(4 bits), DPCM coding in the subband 12 (3 bits) and PCM in 
21 and 22 with 3 bits, respectively. A separable 2D DCT with 
4x4 pixel blocks is taken, while the transformation coefficients are 
coded by the uniform quantizer with 4 bits. We obtained PSNR = 
24.85 dB with 3.25 bpp (EC 1.15 bpp). DCT coding over full-band 
image gives PSNR = 27.52 dB with the bit rate 4 bpp (EC 0.39 
bpp). For this case, the simulated image is shown in Fig. 3. 
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These results are shown in Table 2. 

Table 2. 

coder BR/BReC CR/CRec PSNR (dB) 

DPCM 4/3.65 2/2.19 27.45 

DCT 4/0.39 2/20.5 27.52 

SBC-DPCM 3.25/2.52 2.46/3.17 25.86 

SBC-DCT 3.25/1.15 2.46/6.96 24.85 

Fig. 3. 

Here BR and BRec represent the bit rates, without and with 
the entropy coding, CR=8BR is the compression ratio without, 
and CRec =8/BR with the entropy coding, while PSNR= 
10 log (255/o e C ) is the peak signal-noise ratio, where oieC is the 
reconstruction value variance. 

5. CONCLUSION 
In an attempt to suggest a model for still image compression 

using the comparative study of some subband transforms, we 
combined the ideas of SBC, EC and transform coding. A 
coder choice was made on the basis of entropy measuring in 
subbands. It can be seen that SBC eliminates blocking effects 
visible in classical DCT use. Combined SBC with DCT gives 
good compression ratio with an acceptable picture quality. On the 
other hand, PSNR is a little bit smaller (with the presence of the 
noise granularity) when SBC-DCT is used instead of DCT over 
full-band image. 
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1. INTRODUCTION 
Estimation of motion between successive frames of an image 

sequence has received a lot of attention in different fields 
of image processing including digital video and dynamic scene 
analysis. High temporal correlation of intensities along the motion 
trajectory can successfully be utilized for motion-compensated 
(MC) video coding, MC image sequence restoration, MC frame 
interpolation, etc. Applications of dynamic scene analysis include 
robot vision, traffic monitoring, biomedical imagery and remote 
sensing. 

Frame-to-frame object motion in an image sequence can be 
represented by a 2D timevarying vector field consisting of the 
local displacement vectors. This vector field is often referred as 
motion field, which is unknown in general and has to be estimated 
based on the given time-varying image sequence. Generally, 
uniresolution motion estimation algorithms (such as smoothness-
based, parametric) using two consecutive frames of full resolution 
have the property of slow convergence rate even with complex 
methods [1]. In the worst case, they are not at all suitable to 
estimate fast motion (large displacement vectors). To overcome 
this problem, multiresolution motion estimation schemes have 
been proposed [2], [3]. 

In video coding motion estimation plays an important role, 
because its use can reduce the redundancy of the image sequence. 
Recently, wavelet theory has been proven to be a useful tool 
in multiresolution representation of video signals and it can be 
used efficiently for coding [4], [5]. Basically, wavelet transform 
decomposes the video signal into a set of subbands, which can 
be coded easier than the original signal by adapting the coding 
parameters to each band and matching them to the human visual 
characteristics at different frequencies. Especially, at low bitrate 
video coding wavelet/subband based methods can be applied 
successfully, because they eliminate the blocking artifacts, that 
appear in traditional standardised DCT coding. For MC wavelet 
coding multiresolution motion estimation is especially suitable, 
because this signal representation has the inherent property of 
multiresolution image representation. 

In this paper a predictive multiresolution motion estimation 
scheme for wavelet video coding is proposed. It is based on the 
estimation of motion fields for all subbands using an advanced 
propagation strategy, which exploits the spatiotemporal smooth-
ness of motion fields. In Section 2 principles of MC wavelet 
coding are outlined. After a brief discussion of multiresolution 
motion estimation a predictive multiresolution scheme for MC 
wavelet video coding is presented. Experimental results obtained 
for real-life video sequences are given in Section 4. 

2. MOTION-COMPENSATED WAVELET 
VIDEO CODING 

The application of wavelet transform to image/video coding can 
be considered to be similar to subband coding. In this framework, 
at first the input signal is split into several subsignals by a set 
of analysis flltr's. Each subsignal is then subsampled, quantized 
and coded. At the receiver the decoded subband signals are 
upsampled and combined through a set of synthesis filters. The 
wavelet decomposition and reconstruction can also be specified 
by quadrature mirror filter (QMF) pairs, that correspond to the 
scaling and wavelet functions [4]. A typical filterbank and its 
subband splitting scheme are shown in Figs. 1 and 2. 

For illustration of multiresolution wavelet-based image repre-
sentation Fig. 3 shows frame 41 from the "Trevor White" sequence 
and its 3-level wavelet transform. The filter coefficients used are 
shown in Table 1 [4]. 

LLLL 

LLLH 

LLHL 

LLHH 

LL 

LH 

HL 

HH 

Fig. 1. Example of a jilterbank 

LLLL 

LL 

Fig. 2. Splitting an image into 7 frequency bands 

Table 1. Coefficients of the filter; h(-n) =h(n) 

n h(n) n h(n) n h(n) 

0 0.542 4 0.023 8 0.006 

1 0.307 5 0.030 9 0.006 

2 -0.035 6 -0.012 10 -0.003 

3 -0.78 7 -0.013 11 -0.002 

In an interframe hybrid motion-compensated DPCM/wavelet 
transform scheme motion compensation can be applied to either 
the original video signal before the wavelet decomposition or 
to all subbands after the transform. It was shown that the 
scheme based on wavelet decomposition of the original video 
signal followed by motion compensation generally outperforms 
the other approach in terms of both the signal-to-noise ratio and 
subjective evaluations [6]. Therefore, our main objective is to 
estimate motion fields for all frequency bands. 
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Fig. 3. Frame 41 of image sequence "Trevor White" and its 2-level 
wavelet decomposition 

3. MULTIRESOLUTION MOTION ESTIMATION 
The multiresolution motion estimation framework consists of 

three basic components: construction of multiresolution image 
representation, motion estimation and propagation strategy for 
refinement of the motion fields estimated in coarser resolutions. 

Generally, uniresolution motion estimation algorithms can be 
adapted to a hierarchical computational framework without diffi-
culties and requiring only minor modifications. Both nonparamet-
ric and parametric methods were investigated in multiresolution 
environment and their performances with respect to robustness as 
well as to convergence speed have outperformed the single level 
algorithms [2], [3], [7]. 

However, efficiency of these estimation procedures is also 
determined by the propagation strategy used for refinement of the 
motion field through the levels of the image pyramid. Design of 
sophisticated propagation strategy can be considered as a task to 
develop an advanced prediction strategy for the initial estimate of 
the motion field. Then it has to be updated within the actual level 
of the image pyramid by a chosen motion estimation algorithm [8]. 
A good initial estimate will reduce the magnitude of the unknown 
update vector, consequently a simple estimation algorithm can be 
applied for the correction vector field. 

For this propagation/prediction strategy it is worth to consider 
the spatiotemporal smoothness of the motion field [9], [10], 
which increases mainly the robustness of the motion estimation 
algorithm. This predictive multiresolution motion estimation 
approach can be applied for MC wavelet coding and it will be 
discussed in the following sections. 

3.1. Motion estimation 

The motion estimation algorithms applied in MC video coding 
are basically blockmatching and pel-recursive approaches. For our 
experiments a Wiener-based pel-recursive motion estimator was 
selected [11]. It operates in a scanwise causal way through the 
images and is based on a prediction/update principle. At each 
pixel the following iteration is performed: 

di+i (x> t) = d; (x, t) + ui , (1) 

where d; (x, t) is the current estimate for the motion field 
vector at spatiotemporal location (x, t), u; is an update vector, 
d;+1(x, t) is the new estimate and i is the iteration index. Three 
strategies need to be specified, such as determination of the initial 
estimate do (x, t) to start the iterations, the computation of the 
update vector u; at every iteration and the control of the iteration 
process. The extension of this algorithm to multiresolution motion 
estimation can be carried out by determination of the initial 
estimate do (x, t) using the propagation strategy of the hierarchical 
framework. 

3.2. Predictive multiresolution motion 
estimation for wavelet coding 

For MC wavelet coding of image sequences, the motion vector 
field has to be estimated for each frequency band. This can be 
implemented in several variations of the predictive multiresolution 
motion estimation. The motion vector for the different frequency 
bands can be calculated separately, jointly, or the motion vectors 
calculated for some subbands can be used for all other subbands 
with proper scaling. Zhang et al. [5] have shown that the most 
efficient technique is to calculate different vector fields for the 
different subbands, and the initial estimates of a subband can use 
the results of another band. This scheme can further be improved 
by using not only the motion vectors calculated for the current 
frame, but the ones obtained in the previous frames, too. 

We have also proposed a multiresolution motion estimation 
algorithm for subband coding in [7]. In that scheme spatiotem-
poral prediction with a Wiener-based pel-recursive displacement 
estimator was applied. 

Experimental results showed that spatiotemporal extension im-
proves the performance of the algorithm, however this approach 
was not yet extended to the other subbands. 

In order to estimate the motion fields corresponding to each 
subband efflciently and accurately the spatiotemporal prediction 
strategy proposed in [12] was applied for the lowpass filtered (LL) 
subbands at each level: 

do =f(da,dpl,dt), (2) 
where do is the initial estimate for the iteration, d, is the spatial 
motion vector calculated from the vectors obtained around the 
actual pixel, dy i is the (properly scaled) motion vector in the 
previous level and dt is the temporal motion vector, calculated 
in the same level of the pyramid in the previous frame. A 
linear combination was selected as function f. It contains two 
parameters, P and Q. P is the ratio of the vector dp; in 
calculation of the motion vector only from the two current images: 

d = Pd, -h(1—P)d, (3) 

and Q is the ratio of the temporal part, when the previous motion 
field pyramid is considered as well 

do = Qdt + (1 — Q)d~• (4) 
The final expression for function f is: 

do = Qdt ±(1 — Q)(Pdp7 + (1 — P)d, ). (5) 

The parameters of P and Q of the linear equation were 
determined experimentally for a given image sequence (see Fig. 4 
and 5), and its typical values are around (1/3). 
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Fig. 4. Mean-square-error of the algorithm as a function of P for 
frames 31-32 of image sequence "Trevor White" 
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Fig. 5. Mean-square-error of the algorithm as a function of Q for 
frames 33-35 of image sequence "Trevor White" 

For the other subbands (LH, HL, HH) a simpler expression 
can be used. The initial estimate for these bands is calculated as 
follows: 

do = 9(d9, du), (s) 
where do is the initial estimate for the iteration d3 is the spatial 
motion vector calculated from the vectors obtained around the 
actual pixel and di1 is the motion vector calculated for the lowest 
frequency band in the same frame and the same level of the 
pyramid. The chosen function is also a linear combination: 

do = Rdu + (1 — R)d, (7) 

and the parameters for the different bands (R1h, Rhi, Rhh) can 
be determined using similar experiments that were used for 
estimation of P and Q. 

4. EXPERIMENTAL RESULTS 

The proposed motion estimation algorithms were tested and 
verified on a real-life image sequence. The odd fields of the 
well-known sequence "Trevor White" were selected, and the 
three algorithms for the low frequency band (the one, using 
only full resolution images, the one using multiresolution image 
representation with P = 0.3 and the one utilising spatiotemporal 
propagation strategy P = 0.3, P = 0.35 were compared). The 
results are given on Fig. 6. 
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Fig. 6. Mean-square-error of the three algorithms 

It is clearly visible, that the pyramidal and the spatiotemporal 
algorithms significantly outperform the full resolution one, and 
at some frames (where the motion is smooth enough) the 
spatiotemporal algorithm results in a smaller mean-square error, 
then the pyramidal one. 

5. CONCLUSION 

In this paper an advanced interframe and interlevel propaga-
tion strategy was proposed for multiresolution motion estimation 

in a wavelet image sequence coding environment. Experimental 
results showed, that the proposed predictive mutiresolution algo-
rithms significantly outperform the one using only full resolution 
images. 

In future research we will focus on testing the proposed mo-
tion estimation scheme with an advanced segmentation algorithm 
which can improve its performance even further. The extension 
of the proposed multiresolution motion estimation to MC inter-
polation for low-bit rate wavelet video coding will be also a topic 
of our future research. 
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1. INTRODUCTION 

The theory of multidimensional and multiresolution signal 
processing is developing at a rapid rate. Video technology has 
made an explosive progress during the past few years, various 
image/video coding standards have been established. Multimedia 
applications and communications are becoming reality. This 
speedy development requires new methods in the solution of 
signal processing problems. 

In general, the signal decomposition techniques are useful tools 
for many signal processing problems. The choice of a suitable 
technique is determined by the point of view of real-rime realiza-
tion and optimality. Optimality refers here to perfect interband 
decorrelation and alias-free split simultaneously for multirate sig-
nal processing. The decomposition of the signal spectrum into 
subbands provides the mathematical basis for two important and 
desirable features in signal analysis and processing. First, the 
monitoring of signal energy components within the subbands or 
subspectra is possible. The subband signals can then be ranked 
and processed independently. Second, the subband decomposi-
tion of the signal spectrum leads naturally to multiresolution signal 
decomposition via multirate signal processing in accordance with 
the Nyquist sampling theorem. 

Multiresolution structural image representation and decompo-
sition schemes typically apply linear filters with progressively in-
creasing spatial extent to generate a sequence of images with 
progressively decreasing resolution. When linear filters fail to pro-
duce satisfactory results, which they often do in image processing 
applications, the alternative would be to pick a nonlinear filter. 
Among the nonlinear filter classes which are becoming increas-
ingly popular is the class of morphological filters. Morphologi-
cal filters are based on the theory of mathematical morphology 
developed by Matheron and Serra. The filters exploit the geo-
metric rather than the analytic features of signals. Morpholog-
ical filters have been widely used in digital signal processing for 
a number of years. They found extensive applications in several 
areas including image compression coding (e.g. subband coding), 
biomedical image processing, shape recognition, edge detection, 
image restoration, image enhancement, etc. Morphological filters 
are relatively simple and very effective for subband decomposition 
and directional filtering. 

Fundamentally, mathematical morphology represents signals as 
sets and a morphological operation consists of a set transforma-
tion which transforms a set into another set. In this paper, first 
the mathematical morphological operations are reviewed, and af-
ter that subband decomposition applications are shown. 

2. MATHEMATICAL MORPHOLOGY 

Mathematical morphology provides an effective approach to 
the analyzing of digital images. The four basic operations in 
mathematical morphology are erosion, dilation, opening, and 
closing. Appropriately used, these operations tend to simplify 
image data while preserving shape characteristics and eliminate 
irrelevancies. An image can be represented by a set of pixels, the 
morphological operations deal with two images: the original data 
to be analyzed and a structuring element, which is analogous to 
the kernel of a convolution operation. Each structuring element 
has a shape which can be thought of as a parameter to the 
operation. Both binary and gray-level images can be processed 
effectively by morphological operations. 

2.1. Binary Image Morphology 
Let the original image X and the structuring element B be 

subsets of the Euclidean n-space E". The dilation of X by B is 

denoted by X ® B and is defined as 

X®B=(cEE n Ic=a-fbforsomeaEXandbE B) 

or 

X ® B = U(X)b, 

bEB 

where (X) b is the notation for a translation of the image X by 
the vector b. The erosion of X by B is denoted by X e B and is 
defined as 

or 

X ® B = (c E E" I for every b E B, there exists an 

a E X such that c= a— b) 

X e B =

bEB 

The detfinition means that the image is translated by the vector 
—b, and all translated images are ANDed together. 

An opening is defined as an erosion followed by a dilation by 
the same structuring element and is written as 

XoB=(XQB)®B 

and finally a closing is defined as 

X•B=(X®B)eB. 

Openings on an image with a structuring element B can be 
pictured by moving B inside all the shapes in an image and 
marking only those places where B fits. Similarly, closings on an 
image with a structuring element B can be pictured by moving B 
around the outside of an image with the result that the concave 
corners are rounded and the convex corners remain square. 

2.2. Gray-level Morphology 

Morphological concepts can be extended to gray-level images. 
In the gray-level morphology, gray-level images are visualized 
as 3D landscapes. The structuring elements of the gray-level 
morphology are operations on a gray-level image by a spherical 
structuring element is equivalent to sliding a sphere across the 
gray-level surface. 

Let the image X(x) be represented as a function of coordi-
nates x. The analytical definitions of the basic 3D morphology 
operations are as follows: 

X ® B = D(x) = max[X (x — b) + B(b)] 
bEB 

X e B = E(x) = min[X(x + b) —
bEB 

where B(b)'s are weights that are a function of b. 
The opening and closing operations for gray-level images are 

defined as follows: 

XoB=(xeB)®B 

X•B=(x®B)eB. 

3. SUBBAND DECOMPOSITION OF IMAGES 
USING MORPHOLOGICAL FILTERS 

Subband coding of images is a procedure in which a digital 
source is filtered to decompose it into a desired number of non-
overlapping frequency bands. These frequency subbands are each 
down-sampled, which effectively demodulates them to baseband. 
This new set of subband sources is coded for digital transmission. 
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The subband splitting is also used for the solution of compatibility 
between different image formats of existing video services. By 
splitting the source signal into several hierarchical video standard 
layers, a receiver selects and decodes only those layers suitable 
for its display monitor. A compatible coding system is nothing but 
a multiresolution coding system. The spatio-temporal spectrum 
of each standard video signal is a 3D function. This requires a 
nonrectangular 3D spatio-temporal subband decomposition. 

Sequential alternating application of the morphological oper-
ations of opening and closing by means of the same structuring 
element removes details of the image that are small relative to 
this structuring element. These alternating sequential filters are 
called morphological low-pass filters. The 1D high-pass filters can 
be constructed with the original signal X and the complement of 
the low-pass filtering [—HL (X)]. The 2D analysis/synthesis filters 
in the case of four-subband splitting are designed by a separable 
product of the above 1D morphological filters (Table 1). 

1 D Filter Bank 

HL: closing [opening (X)] 

HH:X — HL(X) 

FL: dilation (Y) 

FH :Y — FL (Y) 

Table]. 

2D Filter Bank 

HLL • Hi [Hi (X)] FLL : Fi [FL (Y)] 

HLH : HL [HH (X )] FLH : FL [FH (Y)] 

HHL' HH[HL (X )] FHL : FH [FL (Y)] 
HHH : HH [HH (X)] FHH : FH [FH (Y)] 

ri HL 1—•i
 t 2 I---

--~ 

y 

W 

~~
—1 —i 1 2 H' 

HLL ^ ! W x .I Hx LH ; NH 

^ f - 1 

xCm.nJ ~ I HLH H` 2x2i— YCm.n: HL Ll. HL 
—I _____ I I 
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NH UH HHI 
I t--
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Fig. 1. 
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1. INTRODUCTION 

The main problem in image processing, computer vision and 
graphics is to handle a great amount of data. This entails not 
only great amounts of memory to be used but also a huge 
computing time. Since 16-24 bit color printers and scanners are 
now readily available, and true color graphic adapters display 
stunning pictures, and last but not least, hardware prices have 
been reduced, the main aim of the research teams is now moving 
toward the design of data compression algorithms with very good 
performances. In fact a single 800 by 600 pixel true color image 
requires 1.44 MB of memory, while an uncompressed 10/second 
video clip with 30 frames/second at 320 by 200 pixels in true color 
requires an enormous disk space (about 57.6 MB). Nevertheless, 
a good compression ratio is no more the only qualitative feature 
of a data compression algorithm. 

The great performances provided by optical storage devices 
such as CD-ROM and CD-I are not enough to support multi-
media systems. They also need very good data compression al-
gorithms, possibly integrated into dedicated hardware (printers, 
plotters, mother-boards). 

The data compression techniques are classified into two classes: 
redundancy reduction and entropy reduction. 

A redundancy reduction operation removes the redundancy in 
such a way that it can be subsequently reinserted into the data. 
Thus, redundancy reduction is always a reversible process. On the 
contrary, an entropy reduction operation results in a reduction of 
information. The lost information will never be recovered, so an 
entropy reduction operation is irreversible. Codings of the first 
kind are: Huffman coding [1], [2], Run-Length coding [3], Lempel 
and Ziv coding [3], etc.. Of the second kind are: Transform 
coding (Fourier [4]), Cosine [5], [6], [7], Hadamard [4], B Tree 
Overlapping [8] and others [9], [10], [15]. 

The redundancy reduction is error-free (lossless), but it cannot 
reduce the storage very much; on the other hand, entropy 
reduction can achieve high compression ratios but it is not error-
free (lossy). 

The availability of many data compression algorithms gives the 
user the possibility of choice, but it also means not having an 
integrated and consistent environment. Today we need a standard 
methodology accepted all over the world. For this reason, a newer 
standard is emerging from Joint Photographic Expert Group or 
JPEG, a standard-setting body established by ISO (International 
Standard Office) and CCITT (Comité Consultatif International 
Telegraphique et Telephonique). 

JPEG is a standard methodology for image compression which 
uses essentially the DCT (Discrete Cosine Transform) and also 
Huffman coding [6], [7]. JPEG's goal is to look for the best 
methods for image compression among those ones proposed by 
research centres and to adopt them as an international standard. 
This method requires n log n time in the compression and 
decompression step. 

New data compression algorithms come out and are often 
based on new concepts. One of these is fractal geometry. It 
has been formulated by B. Mandelbrot [11]. A very interesting 
fractal geometry application is the one proposed by M. Barnsley 
using self-similarity. He made the observation that all real-world 
images are rich in amne redundancy; that is, under suitable affine 
transformations, large bits of a real-world image look like smaller 
bits of it. This observation led him to the realization of the fractal-
transform process for image compression [15]. Barnsley's method 

has yielded a compression ratio of more than 10,000:1. However, 
it requires a huge computing time during the compression process, 
while the decompression process is completed in a few seconds. 
In this scenario we'll propose a new algorithm that assures a 
reasonable compromise between resource requirements (space 
and time complexity) and the quality of the compressed image. 

2. FRACTAL GEOMETRY 

In analysing, generating and compressing the complex shapes 
of natural objects, the fundamental problem is how the surface 
representing the object is described efficiently. Infact all man-
made objects can be described by means a set of simple shape 
such as spheres, cylinders and so on [12], [13]. Of course, such an 
approach is not suitable to represent natural and irregular shapes, 
because it require a huge amount of data and time computing. 
In the last years Fractal Geometry, due to B.B. Mandelbrot, is 
becoming increasingly more important in the study of image and 
shape characteristics. This new theory has introduced irregular or 
stochastic primitives and it has provided model of natural shape 
(mountains, planets) based on such primitives. 

Fractals are a family of mathematical functions, which are 
characterised by numerous features; among these there are self 
similarity, used by Barnsley in its compression algorithms and 
fractal dimension. These functions are as a set for which the 
Hausdorff-Besicovich dimension strictly exceeds the topological 
dimension [14], [15], [16], [17]. For the purpose of this paper 
we are interested to the irregular shapes and fractal dimension of 
this object. The fractal dimension is a real number rather than an 
integer and it measures the "roughness" of the fractal object. For 
example, a polyline have got a fractal dimension greater than 1 
(line dimension) and smaller 2 (plane dimension). 

Some result obtained from visual perception experiments are 
very interesting. After ten naive subject were shown sets of 
fifteen pictures with varying fractal dimension, these experiments 
have verified that the mean value of the subject's estimates of 
perceptual roughness had a nearly perfect correlation with the 
objects' fractal dimension. The fractal dimension, therefore, could 
be a discriminating and a topic parameter into human perceptive 
system for the pattern recognition. 

An useful mathematical model for such fractals is a fractional 
Brownian function (fBf), which is a generalization of classical 
Brownian motion (mm) [18], [19], [20]. The fBf f(s) is a real-
valued random function such formalized: 

Pr 
f  (x + Ox) - f  (x) < t

J
t/xOx, (1) 

IJ OxI IH

where x represents a point N-dimensional Euclidean space RN 
(for a 3D graph surface such as considered an image N = 2) and 
F(t) is a commutative distribution function of a random variable 
t. The parameter H is a constant and lies in the range [0,1], with 
a Gaussian distribution. The fractal dimension is determined using 
the following equation: 

D=N+1—H=3—H. (2) 

In our model of fBf we assume that the function F(t) is 
zero-mean Gaussian distribution N(0,o .2 ) with variance Q.2 so 
formalized: 
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F(t) 
=J

By the previous discussion we can determine a relation be-
tween H and the expected value of the difference of function 
values over the fixed value distance ( O x I I : 

E[I.f(x+ox)-f(x)I] . iI xII_ H =C (4) 
that is equivalent to: 

log E [If(xox) - f(x)I] - H1og IIoxII-H =log C. (5) 

By means the Eq. (3) we can determine the value C: 

C = ? r. (6) 
2a 

1 ex ( )ds. 
—s 

2~ro 
p 2oz 

(3) 

The values H and C are constant and this, considering Eq. (5), 
suggest that a plot of E [I f (x + Ox) — f(x)I]  as a function of 
IIOxfI on a log-log scale lies on a straight line. Then H is the 
slope of the considered straight line. 

Related to these considerations a new method of digital image 
compression has been designed by the authors and is described in 
the following section. 

3. THE PROPOSED METHOD 
The proposed method is based on simulation of natural shape 

by means of statistical information, fractal dimension and few 
other spatial features. The compression goal is achieved through 
the selection of a minimal set of information contained in 
the image. This information must be enough for the image 
reconstruction by means of stochastic primitives. 

The decompressed image is very similar to the original one 
rather than the same, which means performances and compres-
sion ratio very good together with a good quality image. 

The compression process runs on two phases: the first provides 
the deleting of the redundancy contained in the original image 
using the lossy triangular coding; the second processes the error 
image, that for its random features can be considered as a fbf, 
generated by the previous coding and use a powerful solution 
to the problem of modelling errors as sample path of stochastic 
processes of one or more variables. During this second step, the 
best model input values are computed and are inserted in the 
compressed image together with the triangular code. 

The proposed method considers an image as a discrete surface, 
i.e., a finite set of points in 3D space. Let F(x, y) be a non 
negative discrete function of two discrete independent variables. 
The image, as it is illustrated in Fig. 1, can then be considered 
as the surface A = {(x, y, c)Ic = F(x, y)}, so that for each 
P E A, (x, y) represents the projection of P onto the X — Y 
plane, while c is the pixel's colour (height) [21]. 

Our goal is to approximate A by a discrete surface B = 
{(x, y, d)Id = G(x, y)}, defined by means of a finite set of 
polyhedrons. Each polyhedron has a right angled triangle (RAT) 
face on the X —Y plane, three lateral faces orthogonal to the X —
Y plane and a RAT upper face approximating A [18]. The surface 
B is made by the upper faces of the polyhedrons. The triangular 
coding defines a particular decomposition or segmentation of the 
original image in regions [22], [23]. The decomposition follows an 
iterative process. The first step on the iteration subdivides the 
whole image into two right-angled triangles by drawing the main 
diagonal. 

By means the heights of the vertices of each triangles all points 
can be generated by a linear interpolation. On both triangles 
an uniformity predicate is valued with the original one. If the 
predicate is not verified the triangle is subdivided again. The 
triangle subdivision is made by drawing the height related to the 
hypotenuse (so doing right-angled triangles are always created). 
The topological information related to all subdivision are stored in 
a B-tree structure [24], [25], [26]. The leaves of the tree store the 
spatial position of each triangle in the image and the pixel values 
its vertices. The coding of such a tree is stored in a binary string 
obtained by a breadth first visit that assign the value 0 to a leaf 

node and the value 1 to the others; this represents the first part 
of information stored in the compressed image. 

Fig. 1. An image can be considered as a 3D surface 

By mean this technique we can remove from the image the 
regular pattern, i.e. the textures. The error signal is obtained 
from the difference between input image and triangular coding 
image. 

The second phase is composed of the following two steps: 
• Extraction of fractal-based features from the error. 
• Interpolation of the error by using the extracted features. 

The first step executes a statistical analysis of the error image 
obtained after the triangular coding and it values the stochastic 
model input parameters: mean, variance, fractal dimension and 
some typical point of the error image. These input parameters 
are not the same for the whole image; really the original image 
is segmented in region by means of a fractal predicate and the 
pervious parameters are calculated for each region. 

In the second step the stochastic model generates a connection 
of irregular primitives (one for each region) and in this way it 
similes the shape being in the error image. This step is applied for 
all regions, the leaves of the B-tree, that have a significant fractal 
predicate. At the end of the simulation the quality degree of 
the decompressed image is values together with the compression 
ratio. If this two output parameters are not enough good a greater 
or smaller amount of the typical points of the error image are 
selected again if we want a better quality image or a greater 
compression ratio respectively. The stochastic process at the 
heart of the model used in the second step is the fractional 
Brownian motion (fBm). The model uses also random number 
generator. The random numbers are generated having the same 
probability distribution as the one owned by the signal values 
to be simulated. The mm is implemented using the recursive 
subdivision algorithm. The stochastic model input parameters are 
stored in the computer image after the triangular code. 

The decompression process start with the execution of the 
inverse triangular coding. In this way a partial image is generated. 
Then, by means of the input data contained in the second part of 
the compress image, the stochastic model can run and it generates 
an error image with the same statistic features as the true error 
image. The error image generated by the model is added to the 
partial image obtaining the final decompressed image. 

The behaviour of the algorithm is now illustrated by means an 
example (24 bit true color) relative to a picture representing the 
Madonna con Bambino of Mantegna. In Fig. 2 the input pictures 
is illustrated, while in Fig. 3 the output after triangular coding and 
in Fig. 4 after fractal interpolation with compression ratio=18.0. 

The performance of the proposed technique been evaluated 
by experimenting with a great number of different gray-level and 
true color pictures. For true color images (RGB format), a 
particular conversion might be utilized: the image is converted 
to a colour space with separate luminance and chrominance 
channels. This is done because the human eye is far more 
sensitive to luminance information (Y) than it is to chrominance 
information (Cb and Cr); by separating them, it is possible to 
compress the chrominance information more than the luminance 
before the perceived image quality suffers [6]. 
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Fig. 2. Original Madonna con Bambino picture 

Fig. 3. Madonna con Bambino picture after triangular coding 
processing 
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1. INTRODUCTION AND OVERVIEW 

The principle of fractal image coding consists in finding a con-
struction rule that produces a fractal image which approximates 
the original image. Redundancy reduction is achieved by de-
scribing the original image through contracted parts of the same 
image (self transformability). Fractal image coding is based on 
the mathematical theory of iterated function systems (IFS) de-
veloped by Barnsley [1]. Jacquin [2] was the first to propose a 
block-based fractal coding scheme for gray-level images. In [3] 
we have shown that the coding performance can be greatly im-
proved by applying a vector quantization to the optimal luminance 
transformation and using a better geometrical search scheme. In 
this paper we describe a new luminance transformation in the 
frequency domain. With this transformation the coding efficiency 
can be further enhanced. At the decoder fewer iterations are 
needed to reconstruct the image. In section 2., we briefly present 
the principle of a block based fractal image coder. An improved 
codebook design and an adaptive geometrical search scheme are 
described in section 3. The proposed new luminance transforma-
tion is presented in section 4. The description of the new coder 
can be found in section 5. Finally, in section 6., we present some 
results and discuss the merits of the new coding scheme. 

2. THE PRINCIPLE OF A FRACTAL 
BLOCK-CODER 

The image to be encoded is partitioned into non-overlapping 
square blocks. R; is the image block at the position (i, j) and is 
called a range block. 

The task of a fractal coder is to find a good approximation 
for all range blocks. Each range block is approximated by a 
transformed larger block Dl, k, of the same image (domain block) 
as shown in Fig. 1. 

íaiu~e [t _if.St[11",flf:t: i1,7['.:OX1éILAlÁ(3T i~TtK3 

Fig. 1. Approximation of a range block through a transformed 
domain block 

The transformation rr j combines a geometrical transformation 
and a luminance transformation. The geometrical transformation 
is an affine linear transformation that consists of a spatial contrac-
tion and a position shift that maps the domain block to the posi-

tion of the range block. The domain block that has been scaled 
down to the size of the range block is referred to as codebook 
block. 

Jacquin proposed a 1st order luminance transformation that 
scales the dynamic range and changes the brightness of the pixel 
values of a codebook block. 

In matrix form r; j can be expressed as follows: 

rxl ~kli 

rti, ' ~ IL y J - /C21

z 0 

kOz 

a I ~ z l I bx J 
k2z 0 y + Dy (1) 

z denotes the pixel intensity of an image at the position x, y. (a, 
b, km,n E R)• 

Only the transformations of each range block have to be 
transmitted to the decoder. The set of all transformations 
can be seen as the fractal code for the original image. This 
code, iteratively applied to any initial image, generates the 
reconstructed image. To ensure the convergence at the decoder 
the transformations r; j have to be contractive. This means: 

det [ '1  z1 
<1and lal<1. (2) 

kzI kzz J 

The process of fractal encoding is lossy. The approximation 
error s, that is determined at the coder increases during the 
decoding process since the decoding process since the codebook 
block are generated at the decoder from the fractal reconstruction 
image which is not free of errors. If the scaling factor a is assumed 
constant, the upper bound for the approximation error after the 
decoding is given by e/(1 — lal). 

As the total number of transformations has to be kept low, 
hierarchical coders with variable range block sizes are used. If the 
approximation error for a large range block exceeds a given level, 
this block is split into up to four smaller range blocks for which 
additional transformations are determined. 

For high coding efficiency well chosen coding parameters in 
combination with efficient coding of the fractal transformation 
parameters are necessary. 

3. GEOMETRICAL TRANSFORMATION 

The search for a geometrical transformation can be seen as a 
search in a codebook that contains the set of contracted domain 
blocks. Coding efficiency strongly depends on the construction of 
this codebook. Another important aspect is the order in which 
this codebook is searched. 

When constructing the codebook, the set of all possible 
affine-linear transformations (Eq. (1): km ,n , Ox, and Dy), 
has to be reduced to a suitable subset. As digital images are 
sampled images with a given spatial resolution not all amne linear 
transformations are possible. The size ratio of range to domain 
block is usually chosen to 1 : 2 in x- and y-directions. A smaller 
contraction ratio allows a better approximation of range blocks 
but results in a higher error propagation at the decoder. Using 
higher contraction ratios leads to decreasing similarities between 
range and codebook block. 
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To assure contractivity the codebook blocks are generated from 
the filtered and sub-sampled original image. Jacquin proposed a 
simple averaging filter. We obtained better coding results using a 
10-tap antialiasing filter with a cut-off frequency below it/2. 
We determined an efficient search path by examining the 

distribution of codebook block positions that yield the best 
approximation for a given range block. Very often the best 
codebook block corresponds to the domain block directly above 
or close to the position of the range block to be encoded. This 
fact can be used for an optimized adaptive search scheme. The 
codebook blocks being the most probable are examined first. 
The search path has the form of a spiral and starts with the 
codebook block directly above the range block (Fig. 3). By 
introducing search regions a variable length of the search path 
is possible. The search is aborted at the end of each search 
region if the approximation error is below a threshold value. This 
search scheme reduces the encoding time and the average search 
index. Fig. 2 shows the probability density function of the search 
indices. In the given example an image was encoded with an 8 
bit geometrical codebook as shown in Fig. 3. The entropy of 
the search indices is reduced if additional smaller search regions 
with error thresholds are introduced. Note that we use a relative 
addressing of the codebook blocks and a variable domain blick 
shift. 

1 with 3 search regime and en or threshold 
C 05 
N C 

1':
~w 

G 0.2 
a. 

without error threshold 

32 64 46 26 110 

search index 
192 224 264 

Fig. 2. Probability density function of the geometrical codebook 
indices using a search scheme as shown in Fig. 3. The maximum 

search region was 8 bit. The additional search regions used a search 
width of 0 and 4 bits. 

Search path" 
• first domain bi * fni!':Frrrt.[t11 st?arcl i 

image border 

pQ3SÍlJic 
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range block 

maximum rtizr":1 search 

Fig. 3. Adaptive search scheme using a minimum search region 

4. LUMINANCE TRANSFORMATION 

,4.1. Problems of 181 order luminance transformations 

The 181 order luminance transformation a I proposed by 
Jacquin scales the dynamic range (a) and changes the brightness 
of the pixel values (b) of a codebook block g: 

) I (g) = a • g + b. 

This 181 order transformation has two disadvantages: 
• Only small and 'simple structured' range blocks can be approx-

imated well. 
• The convergence at the decoder is poor. In particular if a 

high approximation error is tolerated at the coder, the error 
propagation at the decoder is very high. In this case the 

(3) 

number of iterations necessary to decode the reconstruction 
image will rise. 

.4.2. Modified i°t order luminance transformation 

Fig. 4 shows the distribution of optimal non-quantized a/b-
values obtained from a fractal coder using the conventational 1s1
order luminance transformation. 

From Eq. (3) it can be seen that the b-offset serves to adjust 
the scaled means of the codebook blocks and is dependent on a. 
Decreasing a-values generally require increasing b-values. This 
leads to a triangular shaped a/b-distribution (Fig. 4). 

There is a strong accumulation of the a/b-values in the region 
of a-values near 1. This indicates that the dynamic range of most 
codebook blocks is kept almost constant. Scaling values close to 1 
have the disadvantage that they result in a high error propagation 
at the decoder. The a/b-distribution and the fact that the means 
represent the largest energy component of the codebook blocks 
result in a high upper error bound. Avoiding the scaling of the 
codebook means by large a-values reduces the error propagation 
at the decoder. 

400 

d 
r 
G► 

w 
w 
O 

scaling factor a 

Fig. 4. Distribution of the optimal a/b-coefficients using the 
conventional 1't order luminance transformation 
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scaling factor a 

Fig. 5. Distribution of the optimal alb-coefficients using the 
modified 1$t order luminance transformation 

We propose a simple modification of the luminance transforma-
tion. We decorrelate the a/b-values by only scaling the dynamic 
part of the codebook blocks. With this modified transformation 
a similar approximation of the range blocks is possible. With a 
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well-chosen factor ao a lower upper error bound at the decoder 
can be achieved. 

~1mod(g) = a ' (g — ttg) + a0 • µg +b. (4) 

The constant factor ao can be chosen from 0 to 1 and is found 
as a compromise: For ao = 1 the variance of the a/b-coefficients 
reaches its minimum, but the luminance transformation is not 
contractive anymore. If ao is set to 0 we obtain a minimal error 
propagation and a minimal decoding time at the decoder. In this 
case the variance of the a/b-distribution is maximum. Our studies 
have shown that with quantized a/b-coefficients the best coding 
results are reached for ao = 0.5. Fig. 5 shows the distribution 
of optimal non-quantized a/b-values of the modified 1st order 
luminance transformation. 

Fig. 6 compares the convergence at the decoder for a critical 
part of the "Clown -image. We compare the conventional and 
the modified luminance transformation with quantized and non-
quantized coefficients. It can be seen that the modified luminance 
transformation outperforms the conventional transformation in 
the reconstruction error and the number of iterations needed. 
Decoding examples are shown in Fig. 7. The significance of 
the artifacts as shown in Fig. 7b is image dependent and they 
only occur with quantized parameters. By using the modified 
luminance transformation these artifacts can always be avoided. 

!.t}.1~1"7,~. ül! 

100 

80 

40 
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Iteration number 
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Fig. 6. Comparison of the conventional and the modified  1't order 
luminance transformation: conventional: 1 non-quantized, 3 

quantized, modified: 2 non-quantized 4 quantized 

conventional- 1`r order tunyintrric 
cirani~tioli. ( I~(1t'' iteration) 

ljodifled :IKt xtirrfer 
tf Yniti forrrl ation' -(.I; f: 

Fig. 7. Original and decoded images using the conventional and the modified 1't order luminance transformation with quantized a/b-values. 
a) original; b) conventional 1°t order luminance transformation (10th iteration); c) modified 1 °t order luminance transformation (10th

iteration) 

4.3. High order luminance transformations in the 
frequency domain 

Any improvement in the approximation of range blocks will 
improve the image quality and can reduce the total number of 
transformations needed to describe the fractal approximation of 
the image to be encoded. 

One approach to do this is to use additional 'basic codebook 
blocks' [4], such as simple polynominal blocks. We feel that such 
an approach is not very promising because these simple blocks are 
easy to encode with the fractal coder itself. 

Another possibility is the use of squared and cubic scaling of 
the pixel intensities of the codebook blocks. The optimal scaling 
parameters are diflicult to determine because of the dependency 
of the parameters on each other. A further problem is to 
guarantee the contractivity of such a transformation. 

A high order luminance transformation has to fulfill the 
following conditions: 
• To enable their individual adaptation the transformation coeffi-

cients should be independent of each other. 
• To assure a control of the contractivity, the requirements for 

the contractivity should be controllable independently by the 
transformation coefficients. 
Our proposal for a high order luminance transformation is an 

extension of our modified 1st order luminance transformation: 
First we transform all range and codebook blocks via the 

discrete cosine transform (DCT). In the frequency domain we 
obtain the energy compacted spectra of range and codebook 

blocks. Then by individually setting or scaling the spectral values 
of the codebook block G(u, v) we can approximate the spectrum 
of the range block F(u, v). 

N-i N-1 

~(g) = IDCT U U a(u, v) • G(u, v) + b(u, v) 

u=0 v=0 

G(u, v) = DCT(g), f (u, v) = DCT ( f ), (5) 

whereby N denotes the size of the blocks, the IDCT is the inverse 
DCT. 

Many coding schemes are possible using subsets of this general 
luminance transformation (5). If all spectral values were set or 
scaled, the number of transformation parameters to be transmit-
ted would increase drastically. However, many range blocks can 
be approximated with low order luminance transformations. 

In this paper we propose a coding scheme using one or more 
scaling factors for the dynamic part of the codebook spectrum. 
For a luminance transformation of order K we merge subsets of 
the spectral values to non-overlapping regions R1 to RK. The 
mean is approximated the same way as with the modified 1St 

order luminance transformation. 
If using a 1St order luminance transformation, all dynamic 

coefficients are scaled with only one scaling factor (a1). A 
2nd order luminance transformation has got three regions, so 
the dynamic part of the spectrum is scaled with two coefficients 
(al, a2). For luminance transformations of order 2 and higher 
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various frequency domain partitions are possible. Fig. 8 shows 
some examples of partitions for 2, 3, and 4 regions. 

N-1 N-1 

K(g)= 7DCT U I I r ao • G(u, v) +b if u= 0, v= 0 
~/ l a(u, v) • Gu, v else 

\u=0 v=0 / 

a(u, v) = a; if (u, v) ER i =, . . . , X. (6) 

For every region R; the optimal scaling factor a, OJ can be 
evaluated: 

e(F, G) = Ob2 + 

ao Ri:a(u.v)=ai 

~ 
u,v)ER~ 

R2:a(u.v)=az 

si :cgion.s (3rz .+ orcer ) 

ai opt = 

~ {G(u, v) • F(u, v)} 
(u,v)ERi 

~ G(u, v)2
(u,v)ER; 

bopt = F(0, 0) — ao • G(0, 0). (7) 

To assure contractivity a; opt must not exceed a value of 1. 
ao again is set to 0.5. If the a;/b-parameters are limited or 
quantized, we get an approximation error plus a quantization 
error: 

~ F(u, v)G(u, v) 
(u,v)ER; 

F(u, v)2

2 

(u,v)ER; 

+ Da~ ~ G(u, v)2

(u,v)ERi 

Oai = ai opt — a Ob = bop s — b. (8) 

R3:a(u.v)=as 
~. 

Fig. 8. Examples of different frequency domain partitions for 
luminance transformations of 1`t, 2n d, and 3r d order (block size 

8x8) 

5. DESCRIPTION OF THE CODER 
Before describing our new coding scheme, we suggest some 

important modifications of the conventional fractal coding scheme. 

5.1. Improvements of the fractal coding scheme 

Partial approximation 

To reduce the total number of transformations generally hier-
archical coding schemes with variable range block sizes are used. 
In a first step, transformations for the largest range blocks of the 
highest hierarchy level are determined. If the approximation error 
is too high for any of the four range blocks of the next hierarchy 
level, the large range block containing these smaller blocks is split 
into sub blocks. For these sub blocks additional transformations 
are determined. The transformation for the large range block is 
kept if the number of additional transformations does not exceed 
two. 

The total number of transformations can be significantly re-
duced if new transformation parameters are determined for the 
remaining part of the large range block. The coding procedure for 
large range blocks can then be described as follows: The transfor-
mation of a large range block and the resulting errors in the sub 

blocks are determined. The sub block that is responsible for the 
highest error component is excluded and a new transformation for 
the remaining 3/4-block is searched. If necessary, this procedure 
is repeated for the 3/4-block and leads to a 1/2-block. Many 
large range blocks that were totally split using the conventional 
scheme can now be coded as 1/2- or 3/4-blocks. 

Codebook-update and a/b-update 

One problem of fractal image coding is the error propagation 
at the decoder. It results from the fact that at the decoder the 
codebook is generated from the reconstructed image whereas at 
the coder the codebook is generated from the original image. The 
error propagation at the decoder can be reduced if the coder 
codebook is updated with the coded versions of the range blocks. 

The a/b-update is comparable to the codebook-update. At 
the end of the coding process the best possible approximation 
of the original image is known. Now the coder could start 
coding the image again and again getting a better and better 
approximation of the decoder codebook. As this increases the 
coding time we propose to keep the geometrical transformations, 
but to redetermine the best a/b-values. The a/b-update can be 
repeated. We found that 1 to 2 a/b-updates are useful. 

Using the modified luminance transformation and the de-
scribed update procedures, the error propagation can be reduced 
and a slightly higher coding efficiency is obtained. The increase 
of the decoding error can be reduced to approximately 1--4 % of 
the coding error compared to more than 10 % using the conven-
tional. 

5.2. Coder description 

We use a coder with a three level hierarchy with range block 
sizes of 16 x 16, 8 x 8, and 4x 4 pixels. For the quantization of the 
luminance transformation we apply a vector quantization (VQ) 
technique. We use an adaptive search algorithm to determine the 
order of the luminance transformation and the search region that 
is used for the geometrical transformation. 

For each hierarchy level we define a set of search classes. 
A search class contains a fixed search region and a luminance 
transformation with fixed order and VQ-codebook size. These 
search classes are searched successively. If the approximation 
error after searching one class fulfills a given search stop criterion 
(error threshold) the search is aborted, otherwise the next search 
class is examined. To obtain good coding etikiency the bit costs 
are increased during the search. This assures to encode a range 
block with the lowest necessary rate. Simulations have shown that 
it is useful to increase both the VQ-codebook size and the search 
width. 

If even with the maximum search class no good approximation 
can be found then this transformation is rejected and additional 
transformations are determined using the partial block approxi-
mation. For smaller range blocks this scheme is repeated until 
the highest search class of the lowest hierarchy level is reached. 
As the splitting criterion we check all errors of the smallest range 
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Fig. 9. Adaptive search scheme combining geometrical and 
luminance transformation (search classes 1 to 4). The applied 

frequency domain partitions of the luminance transformations are 
shown. 

block size. 
The advantage of this coding scheme is that we can locally 

adapt the bitrate to the image contents. There is no classification 
of the range blocks done before the coding process. Fig. 9 shows 
the search classes of the lowest hierarchy level (block size 4 x 4 
pixels). A complete set of coding parameters is shown in Table 1. 

f2.á,5• t 

Parameters to be transmitted to the decoder are: 
• splitting partition of range blocks of the higher hierarchy levels, 
• search class, 
• geometrical index of the codebook block and the isometry (if 

used) and 
• codebook index of the luminance transformation VQ (scaling 

factors a l to ag and the offset b). (The search class of a 
block and the splitting partition are entropy-coded.) 
The image quality respectively the bitrate can be controlled 

over a large range by only adjusting the error thresholds. For 
very low bitrates however, the block sizes have to be enlarged to 
32 x 32, 16 x 16, and 8 x 8 pixels. 

Table 1. Coding parameters used for the coding results shown in 
Table 2. 

hierarchy 
level 

block 
sire 

search 
class 

split error 
threshold 

Imsq] 

search stop 
error 

threshold 
[mat] 

luminance 
transfornation 

geometrical 
transformation 

order VQ codebook 
size [lots] 

codebook size 
(search) [hits] 

3 16 / 60 15 1st 8 3 
2 Its 8 7 

2 8 / 90 30 It 8 3 
2 lit 8 7 

f 4 / - 120 Ist 6 2 
2 it 6 7 
3 2nd 8 10 
4 Std 9 14+3(isomJ 

Table 2. Coding results for the LENA image (512 x 512 pixels). 

tevd and 
search doss 

classification 
bits] 

partition 
[bits] 

geometry 
[bits]_ 

luminance 
[bits] 

into 
[bits] 

number 
of blocks 

product 
[bits] 

Ja r 2 - - - 2 350 700 
3..! 2 - 3 8 13 313 4069 
3_Lr 2 3.13 3 8 16.13 148 2387 
3_2 3 - 7 8 18 68 1224 
3_Se 3 3.13 7 8 21.13 145 3063 
2_o 2 - - - 2 378 756 
2_! 2 - 3 8 13 517 6721 
2_/.e 3 3.22 3 8 1722 236 4063 
2_2 2 - 7 8 17 394 6698 
2_Jo 3 3.22 7 8 2122 340 7214 
1_i 1 2 6 9 1301 11709 
/_2 2 - 7 6 15 461 6915 
/_3 3 - 10 8 21 371 7791 
1_4 3 17 9 29 225 6525 

total: 54L15 
PSNR a 33.45 dB 0.266 bpp 

kJr: (csei k, block is totally split; 
k_.3: evet k, t arch class j, block is not split 
kjr : Ievcl k, search class j, block is partially split (the splitting partition is oddítianally csaledt 

6. SIMULATION RESULTS AND CONCLUSION 

We have proposed a new block-oriented fractal coding scheme 
using an adaptive search scheme with an extended luminance 
transformation in the frequency domain. This transformation is 
able to better approximate codebook blocks to range blocks and 
has a better convergence at the decoder. 

The bitrate is reduced because fewer transformations are 
needed to describe the fractal approximation of the image to 
be encoded. The subjective quality of images coded with our 
new scheme is superior compared to conventional fractal coded 
images. Blocking artifacts are reduced and detailed structures are 
better preserved. 

In our simulations we used a hierarchical fractal coder with 
variable block sizes. Our results show that the 'LENA-image 
(512 x 512 pixels) can be coded at the rate of 0.1 bpp to yield a 
peak-to-peak SNR of 30 dB. Fig. 9 shows the coder performance 
compared to JPEG. 

Due to the high number of parameters detailed investigations 
are needed to achieve optimal coding efficiency. With optimized 
parameters and better codebooks for the luminance transforma-
tion further improvements are to be expected. 

Many different coding schemes are possible using the general 
luminance transformation expressed in Eq. (5). A new efficient 
coding scheme unifying fractal and transform coding will be 
presented in a further publication. 
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Fig. 10. Coding results of the new fractal coding scheme compared 
to JPEG. (Image: LENA 512 x 512 pixels) 
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3D MEDICAL DATA COMPRESSION* 
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THESSALONIKI 54006, GREECE 

1. LOSSLESS 3D MEDICAL DATA COMPRESSION 

The increasing demand for storage and transmission of medical 
images has made data compression essential. There are two types 
of image compression: (1) lossless, or reversible compression, 
and (2) lossy, or irreversible compression. The former implies 
that no information is lost after the reconstruction of the image, 
while the latter implies that the compressed image cannot be 
exactly reconstructed and that some information is lost. Lossy 
image compression can produce compression ratios that are about 
five times as high as those that lossless image compression can 
produce, with very little loss in image quality [1]. However, in 
some cases, lossless compression of medical images is required. 

The methods presented here are: Differential Pulse Code 
Modulation (HINT) using autocorrelation model, DPCM using 
computed autocorrelation and Hierarchical Interpolation (HINT). 

In the methods presented here, the voxel values are first 
decorrelated to remove the statistical redundancy in the image. 
The decorrelated data are then encoded using a variable length 
coder. In this paper we will focus on decorrelation. 

Generally [1], decorrelation methods can be divided into three 
classes: 
• transform decorrelation methods, 
• predictive decorrelation methods, 
• multiresolution decorrelation methods. 

Transform decorrelation methods are best suited for lossy 
compression and they do not perform satisfactorily in lossless 
decorrelation. Transform decorrelation methods will not be 
covered here. 

Multiresolution decorrelation methods are also unsuited for 
lossless compression except for hierarchical interpolation (HINT) 
which will be covered here. Predictive decorrelation methods 
perform well in lossless compression. 

The most widely used predictive decorrelation method is 
differential pulse code modulation (DPCM). 

1.1. Differential Pulse Code Modulation (DPCM) 
DPCM using Autoconelation model 
This method estimates the value of a voxel by using a weighted 
sum of the previously coded voxels. If f (i, j, k) represents 
the original image, the prediction in 3D -DPCM is given by the 
equation: 

f(t, j, k) = a(p, q, r)f (i — p, j — q, k — r), (1) 
p,q,rEW 

where W is the prediction window which defines the previously 
coded elements that are used in the estimation. The differential 
image u = f — f is transmitted where f is rounded to the nearest 
integer. 

If the image is assumed to be a stationary random field with 
zero mean and an exponentially decaying autocorrelation function 
of the form: 

R(k, d, m) = 0.2 p I kI pllI Iml (2)
1 2 3 

the optimum m.s linear prediction (the one that minimizes the 
variance of the differential image) is: 

f (i, j, k) =Pl p2 P3 f (i — q, 7 — 1, k — 1) 

— P1P2f(2 — 1,j — 1, k) 

— P2P3f(z,j — 1,k —1) 

— P1P3f(i 1,j, k-1) 

+ Pl f (i — 1, .7, k) 
+ P2f(2,3 -1, k) + P3f(i,j, k — 1) 

as easily seen by application of the orthogonality principle [2]. 
DPCM using computed autocorrelation 

In general, if R[k,1, m,] is computed using 

(3) 

M -1-p N -1-q L-1-r 
1 for p>0,q≥0,r≥0 MNL f(m+p,n+g, 1+r)f(m,n,1), 

m=0 n=0 1=0 
M-1-pN-i-q L-1 

1 
l 1), forp>0,q≥0,r<0 MNL ~ ~ ~ f (m +p, n + g, + r)f(m, n, 

m=0 n=0 1=-r 

R(p, q, r) = M-1-p N-1 L-1-r 
i 

l+ l), forp >0, q< 0,r > 0 
(4) 

MNL ~ ~ f (m + p, n+ g, r)f(m, n, 
m=0 n= —q 1=0 

M-1-p N-1 L-1 
1 1+ 1), for p≥0,q<0,r<0 

for p < 0, every q — r, 

MNL f(m + p, n+ 4, r)f (m, n, 
m=0 n= -q 1=-r 

RT (—p, — q, —r), 

* This material is based on work supported by the RACE 2045-
DISTIMA project. 

then the coefficients a of 

f(i,j,k)= a(m,n,l)f(i—m,j—n,k-1) (5) 

m n i 
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satisfy 

R(p,q,r)= a(m,n,l)R(p—rn,q—n,r—l). (6) 

m n 7 

1 5 3 5 1 5 3 5 1 
5 4 5 4 5 4 5 4 5 
3 5 2 5 3 5 2 5 3 
5 4 5 4 5 4 5 4 5 
1 5 3 5 1 5 3 5 1 

Fig. 1. Pixel classification scheme for 2D hierarchical interpolation. 
The block size is 4 x 4. 

If m, n, i take the values 0 or 1, (m, n, I) (0, 0, 0), Eq. (6) 
leads to a 7 x 7 linear system of equations with a(m, n, l) to be 
the unknowns. 

This method can be easily extended to 4 dimensions, using 15 
prediction coefficients and thus leading to a 15 x 15 linear system 
of equations. 

In storing or transmitting of medical images, the prediction 
coefficients have to be quantized and transmitted or stored along 
with the differential image. 

1.2. Hierarchicallnlerpolalion (HINT) 

Table 1. Comparison of 2D and 3D decorrelation methods 

Method Entropy Entropy after 
Arithmetic Coding 

Original Entropy 3.65 3.55 

2D DPCM using 
autocorrelation model 3.54 3.46 

2D Adaptive DPCM 3.28 3.31 

2D DPCM using computed 
autocorrelation 3.23 3.25 

2D HINT (4 x 4) 3.26 3.29 

2D HINT (8 x 8) 3.26 3.29 

3D DPCM using 
autocorrelation model 3.34 3.29 

3D DPCM using computed 
autocorrelation 3.17 3.13 

3D HINT (4 x 4 x 4) 3.18 3.19 

3D HINT (8 x 8 x 8) 3.18 3.19 

Hierarchical interpolation [1], [3], [4], is easily explained and 
understood by referring to Fig. 1(2D version). First, the "1" pixels 
are transmitted or stored using a method like DPCM. Thus, a low-
resolution version of the original image is obtained. Then, the "2" 
pixel values are estimated from the "1" pixels by linear or median 
interpolation. The estimates are rounded to the nearest integer 
and subtracted from the original pixel values; the differences are 
transmitted or stored. In the following steps, the "3", the "4" and 
the "5" pixels are estimated from the previously coded surrounding 
pixels and the differences are stored or transmitted. 

The reconstruction is done in a similar way. The "1" elements 
are first decoded and the "2" elements are estimated from them. 
The actual values are obtained by adding the corresponding 
differences to the estimates. The values of the remaining pixels 
are recovered in a similar way. 

Fig. 1 shows the pixel classification with a 4 x 4 block size. A 
8 x 8 block is also used. This method is free of parameters and 
that gives it an advantage over DPCM. 

Hierarchical Interpolation can be extended to take advantage 
of the correlation between slices [1]. A 4 x 4 x 4 block size is 

used. The 3D data are first subsampled by a factor of 43. Then, in 
a way similar to the 2D case, the rest of the voxels are estimated 
by 2D and 3D interpolation of the previously coded voxels. A 
4 x 4 x 4 block size may also be used. 

1.3. Experimental Results 

An MRI multislice image of the head was used to evaluate the 
various decorrelation methods. The slices were filtered to remove 
noise. The distance between slices was lmm. In Table 1 the 
performance of the examined methods is tested. There were 8 
quantization levels (bits) and the size was 256 x 256 x 33. 2D 
decorrelation methods were also used. DPCM and HINT can be 
modified to be used with 2D images. Adaptive DPCM [3] was 
also used. In 2D methods, each slice was treated as an individual 
image. In the 2D DPCM using computed autocorrelation, a set of 
coefficients was evaluated for each slice. In practice, this will pose 
a problem since too many coefficients will have to be quantized 
and transmitted. However, this method performs clearly worse 
than the 3D version in which only 7 coefficients have to be 
quantized and transmitted. Thus, in practice, the 3D version is 
preferred. As seen, the best methos indicated by these results 
is the 3D version of DPCM using computed autocorrelation with 
4 x 4 x 4 3D HINT as second best. In all cases, the error image 
was coded using arithmetic coding. 

2. LOSSY COMPRESSION FOR PROGRESSIVE 
TRANSMISSION OF 3D DATA 

2.1. Description of the method 

A novel wavelet transform is defined for the compression of 
3D data. This transform is based on nonseparable wavelets 
whose form allow the construction of a very efficient algorithm, 
requiring only 2 additions and a division by 2 for each pixel. This 
can be achieved without any multiplications, allowing for a very 
efficient implementation and giving a significant speed advantage 
over encoding algorithms. 

The algorithm has, by nature, a multiresolution form that can 
be exploited to achieve a progressive transmission effect. In 
the algorithm implementation therefore after the transform the 
coefficients are quantized with level-dependent thresholds and 
transmitted. 

The second advantage of this algorithm is that the global 
topology of the inputs needed to produce the coefficients of 
a pixel, lend themselves to the creation of tree structures 
that partition the pixels of the image. These tree structures 
are found to have the property that the majority of the zero 
coefficients are grouped under common subtrees. This allows 
a progressive transmission scheme where for each coefficient 
we also transmit the information of whether it is root of a 
zero subtree. Correspondingly, coefficients that belong to zero 
subtrees rooted higher levels are omitted from transmission. This 
means that we need not transmit zero information for almost 
all zero coefficients, that cover all but few of the pixels. This 
allows a significant increase in coding efficiency when compared 
to independent level by level encoding of the coefficients. 

Fig. 2. The basic 1D wavelet 

Experimental results show that reasonably good compression 
rates can be achieved. A compression of about 10 for 30 db PSNR 
is achieved, even when the values of the quantized coefficients 
are transmitted using PCM. Greater gains are possible when 
entropy coding methods, such as arithmetic coding is employed 
for transmission of the coefficients. This is a result of the ease of 
transmitting the zero quantized coefficients, that are the majority 
of the coefficients transmitted. 
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An additional advantage of the method is that it can be 
extended to cover any number of dimensions. Thus it is 
straightforward to adapt the method to cover the case of moving 
MR image, by employing the 4D version of the algorithm. The 
advantages that are available in the 2D and 3D cases are also 
available in this case as well. 

2.2. The Wavelet expansion form 
The orthogonal wavelet representation [19] of a signal is based 

on translations and dilations of a single scaling function (x). 
In general a function f(x) can be approximated by a series of 
functions of the form i (x 

a ° 
) . In general this form is 

overcomplete, with more coefficients than signal points. This 
happens because several wavelets, each with different dilation, 
can be centered in the same point. In the case discussed here 
though, the high-speed pyramid discussed for 2D in [20], we have 
a complete wavelet representation, by allowing at each point only 
the wavelet with the lowest dilation to have a non-zero value. For 
discrete k-D functions the expression becomes: 

x(m) = n(m)a(n ), (7) 

n in the support of x 

where are reconstruction discrete wavelets formed by a con-

tinuous wavelet by dilations and translations, and the dilation is 
determined by n. By the appropriate choice of the reconstruc-
tion wavelets the evaluation of the coefficients a(m) can be done 
very fast in some cases, as discussed in [8]. The reason the 
method is called the highspeed pyramid is that its implementation 
is done with a very fast algorithm that has a pyramid form, which 
gives pyramid coelficients a of the form: 

a k (
if all elements of are even 
otherwise. (8) 

To completely specify how the method works, it suffices to 
choose an appropriate function 4i(x). The one used here is the 
triangular wavelet defined as: 

4i(x) = I 1 — IxI if lxl < 1 
0 otherwise (9) 

'shown in Fig. 2. This relation is very important because it is 
the central in the development of the fast algorithms. Note that 
this wavelet is also considered in [21] for the pyramid method 
developed there. 

2.3. An overview of pyramid methods 
A pyramid method [20], [13], [15] is based on successive 

approximations of an image with a set of other images of lower 
resolutions, forming a pyramid. The main advantage of that 
form of representation of an image is its ability to implement 
progressive transmission of an image, which is profitable in such 
situations where we are interested on just a characteristic of an 
image and not the whole image. Suppose or g is the original 

Qk+1(n ) 
Í undefined 

= 
xk+1ln) ~k(n-m)+x k(n-m) 
, l 2 

xk+1(n) = J xk( 2 ) 

.k+1(n) +  k( n -m)+xk(n+m)
2 

Where m = f ( i1 ) in the manner discussed in [8]. It is 
easy to see that the computational requirements for coding are 
the same as for decoding, except that one of the pixel additions 
becomes a subtraction. The process requires data of dimensions 
MI x M2 x M3 where Mi = (Bi — 1)26 ± 1. At the lower 
resolution of the pyramid the dimensions of the data are B1 x 
B2 x B3. The above formula take advantage of the correlation 
on all 3 dimensions of the data, is very fast to implement it in 
both hardware and software and by using some coding scheme 
based on tree structures is profitable form very low bit rates of 

image, pyrk is the k level of a pyramid having b + 1 levels and 
pyr6 is the level with the higher resolution, then the most general 
form of a pyramid is: 

pyrk = REDUCE [pyrk+t] 

pyrk+i = EXPAND pyrk], (10) 

where pr k is an estimation of the k level pyramid (notice 
that is not the image itself). All multiresolution approaches are 
based in the above principles. The critical point about it, is the 
appropriate selection of the functions REDUCE, EXPAND. The 
above methods have been used mainly in 2D data, but they can 
very easily expanded in 3D data. A 3D multiresolution method 
can either be separable or not. 

2.. . Relation to the Laplacian pyramid 
The Laplacian pyramid [21] the best known pyramid method. 

It is a separable approach in multiresolution representations so it 
can be easily extended in 3D (as done, for instance in [22]). For 
this reason the one dimensional version will be described. 

Consider first the reduction method. This method uses a 
filter followed by subsamplings. The filter has a parameter a 
that can be any value in the interval (0, 1). The operation is 
repeated on each level, until the lower resolution is produced. 
The expansion method interpolates first with zeros and then uses 
the same filters that the reduction did. Adding the appropriate 
error then recovers the original image. Then method used to 
encode the coefficients was entropy coding. The reason is that the 
entropy of each level was computed and found to be small enough 
to allow large compaction rates, and the use of entropy coding 
achieves compaction close to these rates. The results produced 
to this approach were encouraging, and they were extended and 
modified by many researchers. In addition the fact that they are 
based in the use of filters allow us to base the analysis of the 
method in the well developed framework, and predict its behavior 
and performance. 

The relation between the pyramid approach is that it can be 
shown that each resolution level error coefficients contribute to 
the final level through a wavelet, whose dilation depends on the 
resolution of the level being expanded. One issue that appears 
then is whether the limit of these discrete wavelets in continuous 
time would be a continuous function. This property is called 
regularity. In general for every pyramid method that needs to 
employ this theory as its theoretical background, the regularity 
property must be shown. For the method discussed in this 
paper the regularity property is automatically satisfied because the 
method starts by choosing the wavelet to be used. This avoids the 
problem that the wavelet employed to be continuous. 

3. THE USE OF THE HIGH-SPEED PYRAMID 
The main advantages of that multiresolution representation are 

the computational simplicity and the fact that there is no need for 
extra space for the data above the first level. It can be proved [8] 
that the reduction and expansion processes are: 

if all components of n are even 

if at least one of the components of n is odd 

if all components of n are even 

if at least one of the components of n is odd. 
(12) 

transmission. By the appropriate selection of a threshold we can 
have the desired bit rate and the equivalent PSNR. Of course by 
having a lower bit rate the PSNR is getting lower. 

When coding the values the process can take advantage of the 
structure of the algorithm to produce tree structures that aid in 
encoding, by choosing the appropriate one of the pixels n f nr
as parent of pixel n. These tree structures are found to have the 
property that the majority of the zero coefficients are grouped 
under common subtrees. This allows a progressive transmission 
scheme where for each coefficient we also transmit a bit of 
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position information of whether it is the root of a zero subtree. 
Correspondingly, coefficients that belong to zero subtrees rooted 
higher levels are omitted from transmission. This means that we 
need not transmit zero information for almost all zero coefficients, 
that cover all but few of the pixels. This allows a significant 
increase in coding efficiency when compared to independent level 
by level encoding of the coefficients. 

4. EXPERIMENTAL RESULTS 
To illustrate the compaction properties of the algorithm, it was 

applied to a 257 x 257 x 33 MR data. After coding, a level 
dependent quantization factor was used to uniformly quantize 
the coefficients so that the total error introduced in the wavelet 
representation, when using the quantized coefficients, produces 
a good peak SNR (PSNR). This is done by choosing a smaller 
quantization threshold for the positions where the support of the 
corresponding wavelet is larger. This approach assigns smaller 
thresholds to the lower pyramid levels, which is a desirable 
property. The quantized coefficients that are not inferred to be 
zero from the position bit information are then transmitted using 
PCM. The results are listed below: 

SNR PSNR dip PCM cmPp.~ r b/p ART cm~p. Tcr 

19.930002 29.303882 0.430352 18.589434 0.265558 30.125195 

21.2771-58 32.694994 0.842121 9.499822 0.-548143 14.594723 

21.783139 33.630145 0.850170 9.409883 0.557579 14.347746 

22.603016 34.0208-53 0.885782 9.031568 0.586856 13.631959 

26.547373 39.924536 1.329506 6.017272 0.877409 9.117752 

27.659691 39.077528 1.406331 5.688561 0.903741 8.852096 

28.394373 39.812209 1.441138 5.551168 0.947087 8.446952 

37.184176 -50.561339 2.221246 3.601582 1.526050 5.242293 

It can be easily seen that the last method is superior than 
the Laplacian pyramid. As an alternative the 2D algorithm 
can be applied to every slice separately, instead of applying the 
3D algorithm (without exploiting the correlation in the third 
dimension). In this case we also include the bit rates achieved 
when the encoding of the quantized coefficients is done using 
arithmetic encoding instead of PCM. The results are: 
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DATA VISUALIZATION* 
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THESSALONIKI 14006, GREECE 

1. INTRODUCTION 
Data coding and compression is an essential processing task 

in medical image transmission and storage. The transmission 
of the enormous information contained in medical data through 
limited capacity channels is still an open problem. In this paper 
we investigate various approaches for efficient coding of medical 
data. Alternative techniques are proposed, that do not require the 
transmission of the whole 3D data set, and depend on the desired 
complexity of the decoder. 

In medical applications such as surgery planning and tumor 
detection, surfaces are extracted from the 3D data set, and then 
rendered to provide an easy to understand presentation of the 
information contained in the data set. 

In surface rendering our goal is the creation of realistic pictures 
of 3D objects. This is done by simulating the lighting of the scene, 
the surface properties (e.g. surface color), the camera-eye sys-
tem, the position of the viewer, the object motion etc. Rendering 
can take place at either the encoder or the decoder sites. In the 
former case, a low cost decoder-display system, provides a simple 
user interface for low level operations on the visualized surface. 
The user-specified parameters are transmitted over the channel to 
the coder, that transforms, renders and compresses the required 
information. Then, the decoder decompresses and displays the 
data sequence transmitted. 

As graphics hardware systems are becoming less expensive, 
online rendering can be performed on low cost graphics worksta-
tions. In this case, higher level operations may be performed on 
the decoder, and the coder is decoupled from the user interaction, 
which is performed through a local software interface. 

In the current work, we examine techniques for the coding 
of the whole 3D surface information or a number of 2D views 
of the surface. When these views are presented consecutively, 
object based motion compensation may be used to compress the 
sequence. All proposed methods were tested using head MRI 
data forming 256 slices with a 1 mm distance between slices. 

2. 3D SURFACE COMPRESSION 
If the decoder is a graphics workstation, interaction with the 

user can be performed through a local software interface. The 
task of the coder is to extract the 3D surface from the source data 
set ( MRI, PET, etc. ) and then transmit this information in an 
efficient way. In the decoder the information is uncompressed and 
visualized according to the user specifications (viewpoint, lighting, 
animation etc.). 

Since the original 3D data usually consist of several slices of 
2D data, the 3D surface may be equivalently represented by 
stacking several 2D contours. We assume that the coder is able 
to extract such contours with methods such as recently discussed 
in [1], and cope with noise that produces erroneous edges. The 
contours are constrained to be closed, and we only handle the 
case of a single contour per slice. In this work we investigate, 
lossless compression of each contour using contour following and 
subsequent entropy coding as well as spline modeling of contours. 

* This material is based on work supported by the RACE 2045-
DISTIMA project. 

2.1. Contour Following 
In this approach [2], we simply choose an initial point on the 

contour and then trace the contour in a clockwise manner labeling 
the direction as we shift from one contour element to the next. 
The resulting data stream is then entropy coded using arithmetic 
coding techniques [3]. 

A disadvantage of this technique is that the entropy of the 
directional information does not decrease with the complexity of 
the object shape, as was concluded by experimental results. It has 
the advantage of simplicity allowing for a very fast implementation. 

2.2. B-Spline Representation 
Higher compression rates may be achieved by approximating 

the discrete data (x;, y;) with a continuous parametric curve 
(x(t), y(t)) [4] [5]. The shape of the curve depends on a 
set of parameters p which is the one to be transmitted. The 
approximation error decreases as the number of those parameters 
increases. 

B-Splines are piecewise polynomial functions that can provide 
local approximations of contours of shapes using a small number 
of parameters, the control points. They are widely used for 
representation and smoothing of coarsely digitized contours. 

The B-Spline representation is written as: 
n 

x(t) =
;=o 

where p; = 0, 1, . . . , n is a set of control points, and B( t) are 
the normalized B-splines of order k defined recursively as. 

0, otherwise 

k t— ti   
B 1 (t)± + 

ti+k-1 — t k-1 

ti+k — ti ti+k+1

The parameters ti, the knots, are locations where the spline 
functions are tied together and are usually uniformly defined over 
the range oft. 

The contour approximation problem requires estimation of the 
control points p; that give rise to minimization of the distance 
between the B-spline and the original contour, k,, t; , = 0, . .. , m. 
Since i; are defined on a Cartesian grid, we do not have the 
corresponding parametric values t;. Since t represents distance 
across the curve, for the discrete contour, this distance between 
two successive points is approximately 1 for horizontal and vertical 
directions and ‚/ for diagonal directions. 

The estimation problem can be written as: 

min (x(t;) — i;)2 . (1) 
r; 

í 

Since x(t) is a linear combination of the control points Eq. (1) is 
equivalent to 

nlpn IIAP — CII2, (2) 
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where P = {p; } o , C = {z;}~ ̀ o and A is a k-band matrix with 

elements of the form B c (i, ). Using linear least squares theory, 
the solution of Eq. (2) is 

P = (ATA)-1ATC. 

The computational complexity of the algorithm is due to the 
inversion of a m x m matrix. Faster implementations can be based 
on iterative solution of Eq. (2). The number of control points m is 
selected according to the length of the contour and the complexity 
of its shape. This allows for adaptive contour compression. 

The B-spline curve is invariant under rotation, translation 
and scaling transformation of its control points, therefore such 
operations can be performed very efficiently on the decoder. A 
parametric surface can be easily derived from two successive 
contours using linear interpolation 

S(u, v) = vC1(u) + (1 — v)C2(u). 

Hardware rendering of B-spline surfaces is a common feature of 
many graphics workstations [6]. 

2.3. Experimental Results 

Experiments were performed using head MRI data. Segmenta-
tion of the head boundary was performed manually by threshold-
ing and subsequent morphological filtering for noise elimination 
and shape smoothing. 

The extracted contours were coded with the previously de-
scribed techniques. In the case of B-spline modeling every second 
slice is skipped. The midpoint contours are interpolated at the 
decoder. Table 1 presents the total bytes required to code the 
3D surface. Fig. lb shows the reconstruction of the "Head" image 
when using spline modeling of the contour information. The inter-
frame difference is 26 dB. As can be seen the spline surface filters 
noise on flat face regions but it fails to accurately represent highly 
detailed regions (e.g the ears). Such problems can be reduced by 
decreasing the compression . ratio. 

Table 1. Total bytes transmitted 

Contour following 

44 661 bytes 

B-spline approximation 

24 831 bytes 
(error=0.6) 

3. DEPTH MAP CODING 
In several important medical applications, the method of 3D 

surface description using contour following is not easily applicable. 
In such cases a preferable description of the depth maps may be 
afforded directly by the ray-tracing used. 

A commonly met instance where the transmission of the 3D 
surface description is not necessary, is when a small number of 
snapshots of the depth maps, corresponding to certain angles of 
viewing the object, is sutTicient for the depiction of the medical 
information that must be stored or transmitted. This series of 
snapshots may then be coded as though they were consecutive in 
time and their aggregate may be treated as a "moving" sequence. 
In fact, since motion parallax is a powerful aide to image 
understanding, their actual positioning in a moving sequence may 
be precisely what the medical observer requires. The rotation 
back and forth for example of a 3D MRI image gives a very good 
understanding of medical detail. 

Efficient techniques must then be found for the coding and 
compression of the depth maps corresponding to multiple views 
of a particular 3D data set. Let (X1, Y, Zt ) represent the depth 

map at time t. If V t is the 3D vector denoting the position of a 
point in the 3D space at time instant t, the position of the same 
point at time t + 1 will be: 

vt+1 = R V : + T, (3) 

where R is the rotation matrix and T is the translation matrix. The 
general form of Eq. (3) is: 

rXtFll - ~Rll R12 R13~ 1Xi1 ~Tx~ 
I
L 

Y+1 J Rzl Rzz Rz3 L Yt J ~- Ty (4) 
Zt+1 R31 R32 R33 Zt T z

Thus, compensation is performed using the following estima-
tion of the depth at t + 1: 

Zt+1[Xt+1, Y+1] = R31X1 +R32Yt +R33Z1 +Tzj (5) 

where Xt+1,Y+1 are determined from eq. (4). In the specific 
case where the object rotates around the Y axis with angle of 
rotation 0 then Eq. (4) will be: 

rr Xt+1 cos l 0 — sin 0\ rX t 11

LY+1 J \ 
= 0 1 0 I I Y J . (6) 

Zt+1 sin 0 0 cos 0 L Zt

As seen for the computation of Xt+i,Y+1, the depth map 
at time t(Zi), has to be known at both the encoder and decoder 
sites. Some problems arise in the motion compensation procedure 
due to the floating point form of the 2D motion vectors. These 
motion vector values point to positions, outside the sampling grid 
of the subsequent frame. Therefore an interpolation procedure 
has to be adopted in order to assign values at integer pixel 
locations. 

An efficient approach based on the upsampling of the depth 
map Z1 at time instant t was implemented. Linear interpolation 
was used for the calculation of depth values (intensities) between 
consequent points in the sampling grid at time instant t. The cor-
responding position (Xt+i, Y+t, Zt+1) of a point (X1, Y, Zt ) 
on the new sampling grid, is then computed using Eq. (4). Using 
motion compensation, an extended sampling grid estimate of the 
depth map at time t+1 is produced. Then the depth map is prop-
agated to the desirable resolution using lowpass filtering followed 
by appropriate downsampling. This technique led to satisfactory 
results that improve as the upsampling rate increases. 

The important feature of the motion compensation procedure 
is that only the 3D motion parameters of the objects and the 
object boundaries have to be transmitted. The proposed scheme 
can also work in lossless mode, with the lossless transmission of 
the information contained in the prediction error images. 

3.1. Experimental Results 
A sequence of depth maps corresponding to 2D views of 

the 3D data set were generated from the original MRI slices. 
In our test sequences each frame of the depth map sequence 
corresponds to an object rotation by 2 degrees around the Y axis. 
In order to test the etciency of the motion compensation method 
we coded frames 1,2,3,4 and 5 using motion compensation based 
on frame 0 (which we assume that is intra coded). These frames 
are coded using the 2D contour of each object in the scene — a 
single object exists in our test sequence "Head" — as well as three 
rotational and three translational motion model parameters. 

The performance in bit rate of transmission for each depth 
map is presented in Tab. 2. Results are presented in Tab. 3 
for the sequence "Head". As a comparison the same table 
shows the motion compensated results that are obtained if an 
exhaustive search block-matching method is used for the same 
purpose. Furthermore as a lower bound for the performance of 
the motion compensated methods that may be implemented, the 
results provided by simple frame repetition are also presented. 

The results show that the proposed motion compensation 
method generally outperforms block matching. In fact the block-
matching method generally fails to detect correct correspon-
dences between depth maps. The reason is that the latter method 
yields correspondences based on the similarity of the depths of a 
moving point between the two time instances. Such correspon-
dences are valid only in the case of a translational movement par-
allel to the image plane (in this case the depth of the moving point 
remains almost constant). Results shown in Tab. 3, demonstrate 
the degradation of efficiency caused by increasing the angle of 
rotation. 

Lossless coding of the depth map information is achieved 
if we adopt a lossless scheme for the coding of the predic-
tion error images. An alternative would be to transmit the 
contour information, whenever this is feasible (see Section 3). 
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Table 2. Bit rate required for lossy and lossless coding 
of the Depth Map information ("Head'). 

Lossy Case: Bit rate for the transmission of the boundary information. 
Lossless case: Bit rate for the transmission of the boundary information 

+ Bit rate for lossless transmission of the prediction error image. 

Frame Lossless Lossy 

Number (Bits/pixel) (Bits/pixel) 
1 0.3117+0.0406 0.0406 
2 0.5570+0.0408 0.0408 
3 0.6240+0.0395 0.0395 
4 0.8017+0.0397 0.0397 
5 0.9075+0.0402 0.0402 

Table 3. Depth map Motion Compensation compared 
with Exhaustive Block Matching ("Head'). 

Frame 3D Motion Block-matching Frame 
Number Compensation 2D Motion Comp. difference 

1 45.59 40.42 31.01 
2 43.08 37.85 2&11 
3 40.19 36.32 28.11 
4 38.26 34.91 26.02 
5 35.83 33.99 24.67 

4. VISUALIZATION AT THE DECODER SITE 

If a full-capacity workstation is available at the decoder site, 
it will be sufficient to transmit the 3D information (a) using a 
lossless or lossy 3D data form, (b) in 3D surface form (Sec. 2), 
and (c) in the form of 2D snapshots of the depth maps (Sec. 3). 
The decoder will then visualize the data. Full interactivity is 
possible with this approach. Moreover, since the raw data coding 
to be done will probably be identical to that needed for data 
storage, transcoding will be minimal. 

If the decoder hardware is able to render a given depth map 
then motion compensation may be performed in the depth map 
sequence (see Sec. 4). The decoder produces a reconstruction 
of the original depth map and then uses its hardware in order to 
produce a visualized image that is an approximation of the optimal 
visualized image (corresponding to the correct depth map). It 
must be noted that the visualization process is extremely sensitive 
to errors in depth map transmission. 

Experiments in coding visualized images produced by the 
sequences "Head" and "Brain" have shown that this method 
produces very good results for small angles of rotation. This 
is due to the fact that the error in depth map approximation 
increases with the angle of rotation. As noted above the rendering 
procedure is very sensitive to depth map errors, and the error in 
reproducing the visualized images becomes significant. Therefore 
it is strongly recommended that depth maps transmission for 
visualization at the receiver site be as near to lossless as possible. 

Results are presented in Table 6, for the case of lossy (Mo-
tion Compensated) transmission of the depth map information. 
Lossless transmission of the depth maps would yield perfect re-
construction at the decoder site. The corresponding bit rates 
required for lossy or lossless reconstruction are presented in Ta-
ble 2. As a conclusion we may note that the performance of such 
a method is satisfactory for small angles of rotation, but the fact 
that a very sophisticated hardware is prerequired is a significant 
disadvantage. 

Table 6. Results for visualization at the decoder, 
using motion compensated depth maps. 

Frame "Head" "Brain" 
Number sequence sequence 

1 33.97 30.01 
2 31.58 28.95 
3 29.51 28.19 
4 27.13 26.79 
6 24.80 24.54 

5. VISUALIZATION AT THE ENCODER SITE 

It may be very important in practice to ensure that simple, 
output-only monitors are capable of interactive display of 2D 
and 3D information. Such monitors may be simple personal 
computers or memoryless workstations or TV monitors. The 
coding scheme to be implemented must ensure that physicians will 
be able to view 3D data much as X-ray film is viewed today, using 
simple monitors and a mouse (or a joystick) or other very simple 
signalling device for the remote interactive manipulation (rotation, 
translation, zooming, cut) of the 2D and 3D data. The sequence 
available at the encoder site will contain all images required by 
the corresponding medical protocol. 

The image formation process of the visualized images is a 
perspective projection of a 3D object onto the image plane. The 
center of projection is located at the origin of the 3D world 
coordinate system, at a distance f from the image plane. If 
(Xi, Y, Zt )T is the position vector of a point in the 3D space and 
(xi, yt, f) T is the position vector of its projection at the image 
plane then the following relation exists between the image and the 
world coordinates at two consequent time instants: 

xt+1 
Xt+1 Xt Y+1 Yt

Zt+1 Zt Zt+1 It 
We now assume that the moving point belongs to a rigid 

moving object and that its instantaneous displacement (between 
two consecutive views) can be modeled using three translational 
parameters (T,,,Ty,TZ ) and three rotational parameters that 
describe rotations around the x, y, z axes. These rotational 
parameters generate on orthonormal matrix R having the form of 
Eq. (4). 

However it is very difficult (practically impossible) to use the 
model that yields the luminance of a 3D point at each time instant 
(and thus relates the luminances of two corresponding 3D points 
at two consecutive time instants). This model uses knowledge 
about the lighting conditions of the scene, the surface reliectability 
of the objects in the scene as well as knowledge about the gradient 
of the surface at each point (that is calculated from the available 
depth map for each object). 

Therefore, since we cannot use the underlying luminance 
model, we shall make a simplification common in most motion 
estimation methods (including block matching): we shall assume 
that the projections of a 3D point at two consecutive time instants 
yield equal corresponding luminances. In other words, we assume 
that the pixel intensity is the same in any two consequent frames: 

I2(xt+1, yt+1) = Ii(xt, yt)• (8) 

In fact, Eq. (8) is incorrect, since the intensity of each pixel 
will change according to its position and the parameters (lighting 
model, outer surface gradient etc.) of the rendering procedure. 
However, the precise form of the intensity transformation is very 
complicated. The above assumption Eq. (8) simplifies very much 
the compensation procedure. 

We propose an object-based 3D motion compensation scheme 
which makes motion compensation possible for every point of an 
object in the scene if the following information is available to the 
decoder: 
• A reconstruction of the previous frame in the visualized image 

sequence. 
• The 3D motion information (6 parameters). 
• The depth map corresponding to the current visualized image 

(or a reconstruction of it — e.g. produced by the proposed 
depth map motion compensation method). 

6. STEREOSCOPIC VIEWING AND 
TRANSMISSION 
Depth perception, hence stereo viewing, is very useful in 

most common medical applications. If visualization is performed 
at the decoder site, generation of a second (stereo) view will 
necessitate the completion of two separate rendering procedures. 
If visualization is done at the encoder site, a second (right) 
channel image may be coded precisely as the first (left) sequence. 
Note however, that the methods found to be efficient in Section 6 
of this report, for the coding of visualizations done at the encoder 
site depend upon the transmission of accurate depth maps. Thus, 

=í; xt _ f yt+1__ f yt_ f • (7) 
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transmission of a right-channel sequence may be replaced by 
simple disparity compensation of the left-channel image using the 
depth maps to estimate disparity. In such a case each right view 
image is formed based on the corresponding left view image, 
under the assumption that corresponding pixels have the same 
intensity. We propose to use this method to generate the right 
channel images, whether visualization is done at the encoder or 
the decoder. 

6.1. Experimental Results 

The process of stereo image generation depends on the display 
configuration and human factors that determine the viewing 
accomodation. In our simulations a set up of virtual cameras with 
converging optical axes was adopted. The converging angle was 
assumed to be 4O, and the convergence point was on the center 
of the object viewed. 

We compare the performance of the method proposed in the 
previous section with the 1st generation DISTIMA coder [7]. 
The proposed method performs equally well with the block based 
disparity compensation approach, as demonstrated in Table 13. 

Table 13. Comparison of the performance of the 
1st generation DISTIMA coder versus the proposed 
direct disparity compensation method for the coding 

of the stereoscopic sequence "Head". 

Frame Object Distima Frame 
Number Based Coding Coder difference 

1 30.10 30.06 22.09 
2 29.53 29.95 21.59 
3 29.91 30.11 21.89 
4 29.64 30.10 22.31 
5 29.95 29.82 22.16 
6 30.09 30.30 22.20 
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1. THEORY 

In general, there are two ways of representing pixels in images. 
With the first and most straightforward method, the pixel values 
are represented explicitly. Each pixel is represented by a Huffman 
codeword. Codewords are of variable length, according to the 
probability of occurrence of the pixel. 

A disadvantage of this method is that the mean code length 
per pixel cannot be less than one bit. A trick to overcome this, 
is to take blocks of symbols together. Another solution is using 
run-length codes, where a symbol is not coded directly, but the 
number of times the symbol occurs in one consecutive "run" is 
assigned a codeword to. Further methods use two-dimensional 

codes where one codeword is assigned to pairs of run-lengths and 
pixel values. 

A common disadvantage to most coding systems is that there is 
no provision for progressive transmission of images. The source is 
reconstructed at the accuracy it was coded at, from the beginning 
to the end. If half of the amount of codewords is transmitted, 
only half of the image can be reconstructed at the decoder, and it 
is impossible to have an idea of the rest of the image. 

We present another approach to run-length coding which solves 
the aforementioned problems. Run-length coding is applied not 
only for just one symbol, but for all of them. The proposed coder 
proceeds as follows: we have an alphabet of m symbols. Firstly, 
symbol So is tackled. The positions of all occurrences of symbol 
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So are coded by counting the run-lengths of non-symbol So's 
between the occurrences of symbol So. This coding process goes 
on for the next m — 2 symbols in the same way. The occurrences 
of the symbols which already have been coded, are not counted in 
the run-lengths (skip coding). 

Note that the last symbol 5 m-1 doesn't have to be coded, as 
it occurs in the gaps which have been left open. 

We will prove theoretically that in the case of the method just 
described, the zero-th order entropy of the run-lengths is exactly 
equal to the entropy of the original pixels. So, in final codelength, 
there is no difference between direct coding of the pixels (with 
implicit positioning) and the dual approach of just coding the pixel 
positions (with implicit value representation). Further on, we will 
refer to the second method as generalized run-length coding. 

In the following paragraph, the outline of the proof is sketched. 
First, the proof is given for the rather trivial case of a binary 
source. The result is then generalized to alphabet-m sources. 

1.1. Proofs 

We have a memoryless source with an alphabet with m symbols 
{S; Ii = 0, . .. , m — 1}. Each symbol S; has a probability of 
occuring p;. The source generates N symbols. To be proven 
is that the total code length A needed for representing the N 
symbols is the same for direct coding of the pixel values as for the 
generalized run-length coding. 
1.1.1. Binary source 

We have a memoryless binary source which generates two 
symbols: 0 and 1. The minimal total code length for N symbols 
in the direct case is equal to N times the entropy of the symbols. 

1 

A1 = N • H(po e pz , . . . pm-1) _ —N ~ pi log pi • 
i=1 

The probability of having an uninterrupted run of r ones is 
P(r) = pp o. The entropy of the run-lengths of ones, or, in other 
words, of the relative positions of the symbol So = 0 is then 

00 

HN = —   P(r) log P(r) _ 

r=0 

00 

_ —  pipo log(pipo) 
r=0 

00 00

piporlogpi —  pipo logpo• (1) 
r=0 r=0 

Now, we make use of some well-known series sums: 
00 

~ a r

r=0 

~ 

~ 
ra r = 

r=0 

1 

1—a 

1 

1 —az 

so that the Eq. (1) can be rewritten as 

HN (1 —pi)
 2 po log pi
1pp1)z pologpi 1 1 PO log P0• 

With p0 = 1 — p1 we get HN = — ro (po log po + pi log p1) _ 

= 
i 

H(po)• 
PO 
This entropy represents the minimum number of bits needed 

to represent the relative position of a zero with respect to the 
former zero (the run-lengths of non-So's before each So). In a 
stream of N symbols, and a probability of p0 for a So, there are 
po N zeroes on average in the stream, so the code with length 
given in the formula above has to be applied po N times. 

The total code length then becomes 

A2 = po NHN = —N(po log po + pi log pi ), 

which is equal to A1. 

The two representations are exactly equivalent in terms of 
entropy. Note that for the run-length code, only the positions of 
the symbols So have been coded. The symbols Si fit in where 
no zeroes occur. This result is of course already well-known. 
However, the calculations will serve as the basis for the next 
proof. 

1.1.2. Source with alphabet of m symbols 

These results can now be generalized to memoryless sources 
with an alphabet of m symbols. 

The probability of occurring of symbol S; is denoted asp;, the 
probability that another symbol than S; occurs is called p; . The 
total number of symbols to code is N. Symbols are coded starting 
with symbol So. 

Direct coding of the pixel values leads to a minimum code 
length of 

m-1 

Ai (m) _ — N pi log pi • (2) 
io0 

It is remarked that the probability of the last symbol Sm _ 1 can 
be written as 

m-2 

pm -1 = 1 - ~pk• 

k=0 

(3) 

For the generalized run-length coding, all symbols which 
already have been coded at a certain moment, are skipped when 
the next symbol is coded. pi is the probability of occurring of 
a symbol S; when all symbols {S;, j = O..i} have been coded 
already, and p;' is its complement. To calculate pi, the original 
probability distribution has to be renormalized. p; and pi are 
related as follows : 

pi = 
Pi 

i-1 

1 — Pk 
k=0 

TPi 
‚ = 1 pi 

i-1 

1— Pk 
k=o 

In analogy with the binary case, the probability of having a 
relative position of r is P(r) = p;' rpi. The entropy of the 
run-lengths (or relative positions) of symbol S; now becomes : 

HN! _ ~pti~ rpi lOg(pi Irpi) _ 
~ 

r-0 

= 1 (p;' log p;' + p; log pi ) _ 
p; 

1 _
Pi 

The number of symbols left over after coding symbols {S, jk = 
=O..i-1}is 

i-1 

N;=N (1— ~pk) 
k=0 

(4) 

of which, again in analogy with the binary case, an expected 
number of pink will be equal to Si. We now will prove that 

m-2 

Az(m) _ ~ piN, • HN, = Ai(m). 

i=0 

We remark that the Az-sum runs only over m — 2 symbols. It 
is not needed to code the locations of the last symbol explicitly, 
because it can be filled in in the places not taken by the other 
symbols. 
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When all symbols but the last one have been coded, the total 
code length becomes: 

m-2 

A2(m) = p;N: ' H N! = 
i=0 i

m-2 i-1 

= - ~N( 1- ~pk) 
i=0 k=0 

Pi Pi
(1 - j~ i 1 ) log  

~ 1 — G~k=oPk 1 — 
i-1  )± 
k=0Pk 

Pi Pi  
I + i 1 ) log ) = 

1
 Pk 1 - 

:;-1 

=—N pk 

+ pi log( 
Pi 
_i i-1 

k=0 Pk 

=—N 

1—
m-2 f 

i-1 

~ 

+ pilog pi — pilog(1 — 

(1 — ~ Pk 

i=0 k=0

(lo(1_ Pk — Pi) — log(1 —

k=0 k-0 

i-1 

~ ) _ 
k=0

~`i 1 )+ 
1— k=oPk 
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(1—É 

i=0 k=0 
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k=0 k=0 
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+ pi log (1 — P k ) + p; log P; 

k=0 Pk 

— p;)log(1 
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i=0 
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Pk)log(1 — 

pilogp;+( 1—

With the formula 1 — 

; 

Pk) — 

k=0 

i-1 

— pilog(1 —   Pk) 

k=o 

m-2 m-2 

~ pk)log(1 — ~ Pk). 

m-2 

Pk = Pm-i we get finally: 
k=0 

m-1 

A2(m) = —N p; logpi 
i=0 

which is the same as the entropy A(m) of the source. In other 
words, it is proved that the generalized run-length representation 
is fully equivalent in terms of entropy to the direct pixel represen-
tation. 

More elegantly, the proof can be reformulated as follows. We 
make use of the grouping axioma from the information theory. Let 
G and G be groups of symbols, with pG and pG their associated 

probabilities, and G n G = lJ, then: H(G u G) = 7t(pG)+ 
+pGH(G) +p -H(G), where H(G) = H(po,pl,p2, . . .) = 

m-1 

= — p; log p; the entropy of the symbols within a group, and 
i=0 

m-1 

p; = 0 within each group. Here, we regroup by setting apart 
i=0 

a single symbol from the rest of the group. The entropy of a single 
symbol is zero. 

H(p0,p2, • • •pm-1) = x(p0) +Po 0+ 

+ (1 — po)H (  Pl P2  pm-1  1 
1—po l 1—po 

f
= %í(po) + (

l
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l (  _ 

Lx  C 1 
1? l

po l \1 1 plp0 / H \ 1 — po — pl  

= x(Po) + (1 — po)x I  Pl )±1— p0 
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+(1—po —...—Pi)x 1 
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So, finally we get: 
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Pm-2 
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?:Pi,, 

Pi 

i-1 

1— Pk 
\ k=0 / 

1 

m-2 

H(Po,P2, . . .pm-1 =
P; 

i=0 

(7) 

(8) 

Proof of A2 (m) = A1 (m) (taking into account Eq. (2) and 
Eq. (4)): 

A1(m) = NH(po, pl, p2 ... p,n-1) (9) 

m-2 

I I 

A2 (m) = P; N i • HN! 
i=0 f

m-2 

= —; 
i=o 1 — ~ pk 

m-2 

i=0 

Substituting Eq. (8) in Eq. (9), and comparing with Eq. (10), 
we conclude that A1 (m) = A2(m), q.e.d. The general version of 
Eq. (8) can be written as: 

- 1 

~ 1 pi  N  1 \ , 
i -1 - L Pk ,- x(pi) 

k=0 
Pi 

k=0 

P. , 
, x(Pi)• 

p; 
(10) 

n-1 

H(p0,p2,... pm-1) =

i=0 Pi 

+ p 'H 
Pin 

,  Pn+1 
Pn, k-1 

1— Pk 
k=0 

Pm-1 

k-1 

1- Pk 
k=0 

A very important conclusion from Eq. (11) and Eq. (6) is that 
the codelength generated up to any symbol S is proportional 
to the entropy of just those symbols {S i = 0..n — 1} which 
have been coded. This entropy does not take into account the 
individual probabilities of the symbols {SjIi ≥ n} to come, but 
only their summed probabilities. 
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2. PRACTICAL IMPLEMENTATIONS AND 
APPLICATIONS 

From these theoretical results, we have derived a family of 
coding systems to be used for digital images. The symbols are 
image pixels or transform coefficients. The methods share a 
common feature : symbols are not coded by their value, but 
by their relative positions. Every method allows for easy simple 
SNR-scalability. The lower-SNR code stream makes part of the 
higher-SNR code stream. Extra picture quality can be added 
without any overhead. This makes this coding approach very 
suitable for progressive transmission of images, especially in a 
wavelet or sub-band environment. A well-presented overview of 
other progressive transmission schemes can be found in [1]. 

The relative positions or run-lengths are coded with the simple, 
however efficient limited word-length run-length coding scheme 
of Tanaka and Garcia, as described in [2]: the ATRL-code or 
adaptive run-length code. In the Tanaka/Garcia run-length coding 
scheme, only codewords of length 1 (for run-lengths M) or of 
length m + 1, where m = log2 M, (run-lengths 0 to M — 1) 
can appear. Such a code is called a mode-m truncated run-length 
(TRL) code. m is optimized using a statistic of the run-lengths. 
If the probability of a pixel is p given, and with p = p;' = 1— p~, 
then 

Jay 
m= flog2 LInpJI° 

where y =
The expected codelength per symbol 

1(p, m) = (1—p) [ 1 p 
p2m +(m+ 1)J • 

The efficiency of this code is never less than 95.94, for p = y. 
Higher values of p increase the efficiency. The optimal m can be 
made adaptive by calculating experimental statistics over a block 
of L source symbols. For each coded block, a prefix with the value 
of m is then included in the codestream. In our implementation, 
the optimal m for each pixel value is calculated from the expected 
distribution of the pixel values. For sub-band or transform 
coefficients, this distribution is approximately Laplacian (L(x) = 

zo exp I I [3], which is symmetrical and highly peaked 

around zero. In /the explanation which follows, a uniformly 
quantized Laplacian distribution with an uneven number of levels 
is assumed for the pixel values. For each sub-band in a sub-
band coding scheme, or each order of the coefficients in a 
transform coding scheme, the variance of its distribution has to be 
transmitted to be able to determine the optimal m for all symbols 
at the decoder. 

2.1. GRLC 

We call our first own method generalized run-length coding. 
In fact, this technique, as it is described in the theoretical part 
before, is equivalent to variable thresholding: first, the most 
important (the greatest) pixels are transmitted. Gradually, the 
smaller pixels get their turn. The transmission can be stopped 
at any moment. The coding method guarantees that all pixels 
transmitted up to that moment, are represented in the most 
efficient way possible (neglecting possible inter-pixel correlations). 
The pixels in the high bands are ordered in such a way that the 
less probable, but important pixels with large absolute values are 
coded first. Alternatingly, positive and negative values are coded. 
The first pixels which are coded are relatively sparse, but when the 
absolute values decrease, positions get more dense, and relative 
run-lengths become smaller. 

A disadvantage of this method is the fact that, to code and 
decode all pixels, a number of passes over the image has to be 
made which is equal to the number of possible pixel values, e.g. 
256 for byte images. A parallel approach to decoding is not 
possible, as all positions of already decoded pixels have to be 
known in order to determine new pixel positions. 

2.2. HRLC 

This problem is solved with the — more elaborate — second 
method, which we call hierarchical run-length coding (HRLC). 
In this method, the pixels with values in an interval [a, b] are 
recursively divided into two classes, nl. a class with all pixels 
smaller than a threshold t, nl. [a, t], and a class with pixels larger 
or equal to t, nl. [t, b]. First, the positions of all pixels belonging 
to one class are determined and coded. Then, for each class, a 
new threshold is chosen, and each of the two partitions is divided 
into two new subpartitions. The positions of all pixels of one 
subpartition within a partition are coded. Only the positions of the 
pixels of one partition have to be coded, of course, as the pixels 
of the other partition occur at the positions which are left over. 
The same procedure is carried out again on the subpartitions. If a 
subpartition which is formed in this way contains only one sort of 
pixels, no partitioning is carried out anymore. This process goes 
on until, finally, all pixels have been coded. Once a partitioning 
is made, the two partitions can be processed in parallel, as the 
positioning within each partition can be done independently. 

A trivial choice for the thresholds is e.g. the powers of two. 
For high-pass images with mean zero, a first partitioning can be 
done with a threshold of 0. Then, thresholds of —64 resp. +64, 
to be used within the first two partitions, are chosen. 

Bit rate regulation is now carried out by changing the partition-
ing depth, which is equivalent to applying a uniform quantizer with 
a changing step size. This method resembles somewhat bitplane 
coding, where for each bitplane run-length coding is used. The 
difference is that, with our method lower-order bits belonging to 
different higher-order bit values are coded separately. With sim-
ple bit plane coding, multistage quantization or embedded quan-
tization [1], lower order bits are not coded conditionally on the 
values of higher-order bits, so a lot of potential for compression is 
lost in comparison to our method. 

Other choices for the thresholds could be equally viable. 
Some interesting optimizations can be done for a practical coder: 
after a histogram analysis, the thresholds could be chosen in 
order to allow better performance of the actual implementation 
of the TRL coding for the relative positions, by matching the 
probabilities of the partition runs to the optimal probabilities of 

the TRL coder (nl. p = (1/2)2—m , see [2]). 

2.3. GHRLC 

GRLC and HRLC are the extremes of a whole spectrum of 
different coding possibilities. Hybrid systems could use a division 
into more than 2 partitions. We call these methods generalized 
hierarchical run-length coding GHRLC). 

In an implementation of ours, the pixels belonging to an 
interval [—a, +a] are divided into three partitions: [—a, —t], 
[—t, t] and [t, a]. This partitioning into three classes needs two 
passes over the data: one to code pixels belonging to the first 
class, and a second for the pixels belonging to class 3. The 
rest of the pixels belongs — of course — to the middle class. 
The middle class is coded again with the GHRLC method, while 
both other classes are further coded with the HRLC code (with 
partitioning in two classes). This goes on recursively, until the 
class size becomes less than two bins of the pixel distribution. The 
advantage of this method over HRLC is that it is centered around 
zero, which is favorable for pixel distributions peaked around zero. 
Bit rate regulation is done by varying the partitioning depth, which 
is equivalent to using a zero-centered uniform threshold quantizer 
with variable step size. 

2.4. UVLC and MUVLC 

A code which resembles very much the codes we use, has been 
developed by Macq [4]. This method is commonly referred to as 
the UVLC, which stands for universal variable length code, in spite 
of the fact that this code is not really universal`. The UVLC is 
very suited for progressive or compatible coding [5]. With this 
code, the bitplanes are scanned. First, the positions of all pixels 
with their most significant bit set are coded. The less significant 

* A code is universal if its efficiency converges to one when the length of 
the source increases, regardless of the source's statistics. 
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bits of those pixels are transmitted literally, i.e. uncoded. Then, 
a second pass over the data is done, and the pixels with the 
second most significant bit set, are coded (while skipping those 
pixels already coded). This goes on until the least significant 
bit is reached. Bit rate regulation is here equivalent to variable 
thresholding. 

It is assumed that the distribution of the lower order bits 
when the higher order bit is one, is more or less uniform, so 
that additional variable length coding does not reduce the bit 
rate anymore. This assumption is influenced by implementation 
complexity considerations, as no Huffman coder with its look-
up tables is needed in this way. However, we found that the 
assumption does not hold for Laplacian sources. The distribution 
of the lower-order bits is significantly different from the uniform 
distribution, so that using a Huffman code is useful. We call the 
code where this is done the modified  universal variable length code. 

3. CODER PERFORMANCE COMPARISON 

We compared the resulting bit rates when compressing a 
source with Laplacian distribution with the different coders. The 
source is pre-quantized with a zero-level uniform quantizer, with 
257 levels. The step size of the quantizer is always 1, and the 
performance is evaluated for distributions with variances ranging 
from 1 to 25. For the coders where bit rate regulation is 
equivalent to thresholding (UVLC, MUVLC and GRLC), the 
reconstruction level the thresholded region is zero. In the case of 
coders where the bit rate is regulated through changing the step 
size (HRLC and GHRLC), the reconstruction level is taken equal 
to the mean of the distribution in the interval which is represented 
by the corresponding reconstruction level. The distortion is 
calculated with respect to the pre-quantized Laplacian source. So, 
when all pixels are coded, the distortion is zero. 
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Fig. 1. Bit rate (up) and efflciency (down) for coding Laplacian 
sources with different variance 

In Fig. 1, the bit rate after coding with zero distortion is set 
out versus the original signal variance. The entropy poses a 

minimum to the position of the curves. Signals with small variance 
have low entropy, higher variance leads to higher entropy and 
higher bit rates. As can be seen, the bit rate B of all coding 
systems follows very closely the entropy H. The highest bit rate is 
produced by the UVLC coder. This is due to the rather inefficient 
representation of the lower-order bits. The difference between 
the methods can better be seen on the right graph, where the 
efficiency 9 = 1 — (B — H)/H is set out vs. the variance. For 
low bit rates (around 1 bpp) the Huffman code performs not well. 
At higher bit rates, however, the Huffman coder's performance 
leads the pack. The efficiency of all the other methods, except 
the UVLC code, is always higher than 98%. For intermediate 
variances (5 to 15) the GRLC is best. 

The results show that the methods we propose, nl. GRLC, 
HRLC and GHRLC perform comparably to existing methods 
(Huffman and MUVLC) in terms of efficiency, even when 
their special features, nl. combined compression and bit rate 
regulation, are not exploited. 

Figs. 2-3 show the distortion-rate curves for the different 
coders, in the case of a Laplacian source with variance O.2 = 
= 1, 4,16 and 64. The distortion (the mean square quantization 
error) is normalized on the signal variance O.2. For each coder, we 
regulated the bit rate by the quantization features of the coders. 
We remark again that the code-stream for lower distortion is 
simply a superset of the higher-distortion code-stream, so that 
SNR scaling is very easily implemented. 

The UVLC, MUVLC and our GRLC perform comparably. 
The MUVLC performs consistently a bit better than UVLC, 
which is simpler to implement. The bit rate of the GRLC 
method can be regulated more finely in comparison to MUVLC 
and UVLC: this is due to the fact that with GRLC, thresholding 
can occur at any value, while MUVLC and UVLC only allow 
thresholding at values which are powers of two. 
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1. VECTOR QUANTIZATION AND VECTOR 
PREDICTION 

Vector quantization is a well-known strategy [1,2], widely used 
in many application fields, as well as for image-data compression 

.[3]; main reasons for its consensus lie in its simple implementation 
and good rate-distortion performances in many applications [4]. 

Briefly, it consists in the extension of scalar quantization to 
an ordered set of real numbers (a block in the original data set, 
that is, a vector) coming from monodimensional signals as well 
as from multidimensional ones. More precisely, it is defined as 
an operator T that maps a vector belonging to an n-dimensional 
Euclidean space R' into a finite subset S of R" made up of 
only N vectors (i.e., the codewords or codevectors, S being the 
codebook). 

Two crucial points can be identified: the mapping operation, 
which aims at searching, for a given vector, the nearest codevec-
tor; and the identification of the S space, that is the optimal code-
book generation. Two common strategies are usually employed. 
For the former problem, the Mean Square Error (MSE) is very 
popular, while for the latter, the classical suboptimal strategy 
propesed in [5] is adopted in many cases. 

The simple vector quantizer described above operates on 
vectors as single entities, generating only a series of codevectors; 
therefore it is called memoryless VQ. Form the point of view of 
data compression, the resulting bitrate B needed to code a vector 
by a memoryless VQ equals to B = (log2 N)/n. However, in 
applications dealing with highly correlated sources (in particular, 
images), the rate-distortion theory states that high performances 
are reachable only by employing prohibitively large codevectors 
and codebooks. However, one can achieve lower bitrates also by 
exploiting the notable amount of redundancy between neighboring 
codevectors, which are usually highly correlated; it is sufficient to 
calculate the transition matrices to understand that memoryless 
VQ is not able to exploit this notable amount of redundancy. 
These matrices are defined as [Md]p,1 = P(xp Ixq) where the 
entries (i, j) are proportional to the probability of finding the 
vector xi,, given the vector xq in a previous position, in a raster 
scan, in one of the main directions d, that is 0, 45, 90 and 135 
degrees; the inter-vector redundancies result in matrices very 
sparse. 

So, in order to bypass this intrinsic limit of VQ and to 
improve its performances, considerable efforts have been devoted 
to exploiting this inter-block correlation. A widely known strategy 
is the so-called Finite-State Vector Quantization (FSVQ), which 
was first proposed in [6,7], and subsequently used as a basis for 
various algorithms (e.g., [8,9]). 

In [10], an FSVQ-like strategy was implemented through a 
cache-based lossless prediction scheme (Cache VQ, CVQ); in 
short, it consists in the generation and exploitation of a reduced 
codebook, by taking advantage of the information coming from 
the neighboring-blocks transition matrices. Later on [11], the 
same strategy was implemented using, as predictor, a two-layers 
neural network. 

A slightly different and more performing implementation of this 
strategy is presented in the paper, followed by the proposal of a 
novel and different predicted VQ scheme. Within this scheme, 
the prediction step, carried out by a neural network in the same 
way as before, is aimed at reordering the codebook dynamically 
(Dynamic Codebook Reordering, DCR), thus making possible 
an efficient Huffman encoding of codevector addresses, as the 
entropy of address data is notably reduced. 

2. THE PROBLEM OF PREDICTION AND 
THE NEURAL APPROACH 

The most powerful approach to the problem of prediction is to 
find a law underlying the given dynamic process of phenomenon 
[12]. If such a law can be discovered and analytically described 
(e.g., by a set of ordinary differential equations), then by solving 
them it is possible to predict the future, when the initial conditions 
are completely specified. Unfortunately, the information about 
a dynamic process is often only partial and incomplete; so 
the prediction cannot be based on a known analytical model. 
A less powerful approach attempts to discover some empirical 
regularities in the observation of the series. According to this, 
the unknown dynamic process is described by a generic (usually 
nonlinear) multivariable function z1 = F[zt _ 1 , zt _ 2 , . . . , zt _ K ] 
where the {z }'s are given samples of the series, and F(.) is an 
unknown function. In the simplest case, this function is linear 
and a standard auto regressive (AR) model can be used z1 = 

K 

a k zt _ k where the predicted value is given in terms of a linear 
k=1 

combination of a fixed number K of past values of the series [13]. 
This model provides good results only if a dynamic process is, of 
course, linear or nearly linear. For highly nonlinear processes, 
the AR model-based prediction may be very poor or completely 
wrong. Therefore, a more flexible and universal approach is to 
employ a neural network able to approximate, with nonlinear 
processing units, any nonlinear continuos function on the basis 
of training examples [14]. As said, the advantage of the neural 
network model lies in its generality and flexibility. The training 
process produces multidimensional surface composed by a set of 
simple nonlinear functions that fit the training set in some best 
way. The neural network is trained on the basis of the available 
examples to find such a function. 

The ability of neural networks to generalization and prediction 
of the future can be proved by the approximation theory [15]. 

3. STRUCTURES AND TRAINING OF THE 
NEURAL PREDICTOR 

The proposed approach involves the implementation of a three-
layers perception neural network [16], trained to reconstruct a 
codevector x;, on the basis of the 4 neighboring vectors pre-
viously decoded, that is x; = F[x;_1,~_1 i x;_1,~,x;_1,1+i, 
x;,j_1]. The functional relationship F'(•) of the neural net-
work approximates the unknown function F(.) on the basis 
of the examples given as a training set, so obtaining a vec-
tor xs prediction of the codevector x,,~ , that is xi = 

F'[x;_1,)_1,x;_1,j,x;_1,7+1,x; _1]. In particular, the adopted 
training set is the same set of images utilized to build up the VQ 
codebook. For a good generalization, this set has been selected 
with dimensions satisfying the constraints given in [17]. Such con-
straints relate the number of weights to the number of patterns 
to be learned. 

The classical back-propagation training algorithm has been 
adopted [18]. This algorithm aims at minimizing the distance 
among the vector x (generated by the network on the output 

layer) and the current codevector x,,, after the input layer has 
received a configuration made up of the 4 neighboring codevectors 
preceding it. In other words, the input layer has the dimension 
that equals to four times the dimension of a vector, while the 
output one has simply the dimension of a vector. The dimension 
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of the hidden layer has been experimentally chosen two times the 
dimension of a vector. 

Each neuron (except for the input ones) is characterized by 
a nonlinear activation function f (z) of the hyperbolic tangent 
type f(z) = (ez — e-z)/(ez + e- Z) f : R —• (-1, 1). To 
avoid a compression of the output dynamics, due to the saturation 
of f (z) for the lower and upper values, the output activation 
functions are driven to operate in the linear region by subtracting, 
from the desired values, the mean gray value of the 4 nehgboring 
codevectors. The targets t P = t, , of the network are: 

n 
1 

t p =x i,j — [---
m1 

+ xi-1 ,1 (m) + xi-1,j+1(m)  + x i,j - 1(m
)J 

' 1 (1) 

By defining x the input vector, h and y the hidden and output 
ones, respectively, the output depends on the inputs as h = 
f{[W1]x}; y = f{[W2]h}. The purpose of the network is to 
produce ouputs y that are as equal to the target tP as possible; 
in other words, it aims to minimize the global error on all the 
targets t P , with p = 1, . . . , L (L being the number of training-set 
elements), associated with the inputs 

E_ 

L 

p=1 

II YP - tP Ii2= f{[Wl], [W2]} (2) 

If E is regarded as a surface that is a potential function of the 
weights, a steepest-descent minimization can be performed. Let 
us consider only one vector, for the sake of brevity; we have 

EP =II YP — tP II2=  Eí(yp(t) — t , ( i )) 2 E = EEP (3) 

and then 
1 aEP —eEP 

a[W1]í,j (4)
To obtain the vector on which the minimization step is to be 

performed, the gradient is computed as follows 

hj = f(Ei[W ' ]i,j ' xi) yi = f(~j[W2 ]í,j ' hj) ( 5) 

aE  a
Fi(yi — ti) 2 = 2~i (yi — tí) 

ayi  = 

a[W 2]h,k a[W 2 ]h,k a[W 2]h,k 

aYh  
= 2(yh _h) a[W2]h  k = 2(yh — th)hk 

aaxx) 

As the function f (x) is of the sigmoid type, then = 
af(x) 

ax I f(x).yí — 

1 — y? and then 

aE 

a[W2]h,k 

The input weights vary according to 

= 2(yh — th)hk(1 — yh) 

_  aE 
~[W1]n m

_ aEP ayk 
_ S 

ah n 2Ek(yk—tk)ehn 
= 

(6) 

(7) 

aE  ahn 

= —~ah n a[Wl]n m ($) 

2Ek(yk — tk)[W 2]k,n( 1— yk) 

(9) 
ahn  

= xm(1 — hn) (10) 
a[W l ] n ,m

The resulting weight updating rule is the following 

= 26n(1—h ); O[W2]h,k = 2e(yn —th)hk( 1—y) 
(11) 

This learning rule tends to converge to local minima of the 
energy function, if any. To bypass such minima, in the descent 
phase, a moment of inertia is included: 

O [ W1]í,í (t) = —EEP 
aEP + 

LYO[W']i,i (t  - 1), ( 12) 
a[Wl ]i,j 

where t stands for the iteration index. Moreover, in order to 
speed up the convergence, some heuristic criteria are applied [19], 
concerning the variations in the parameters cr and e. Such criteria 
are: 
• weights are updated according to (12); 
• if a global error turns out to be smaller than the previous one, 

then e = $e with ¢ » 1, and the weights are updated; 
• otherwise, e = $e, with Q « 1, = 0 and the current 

iteration is discarded. 
In summary, at each iteration, when a set of codevectors 

(corresponding to the neighboring codevectors preceding the one 
to be predicted, in a raster scan) are presented to the network 
input, the algorithm applies the updating rule to the synaptic 
weights to minimize the MSE between the vector generated by 
the network and the target. 

3. NEURAL PREDICTED CACHE VQ (CVQ) 

In [10], the Cache VQ was proposed, that is a predicted 
VQ scheme (conceptually based on FSVQ) that allows one to 
obtain higher compression factors, without causing further losses 
in the signal-to-noise ratio (SNR). The basic idea starts from the 
observation of the transition matrices, and develops itself through 
a prediction of a codevector on the basis of these transition 
probabilities. In practice, on the basis of the previously decoded 
neighboring codevectors, a score function f, is computed for each 
codevector x(h) in the codebook; such a function is equal to 

f.{x(h)} _ [Mo]x(h), -1 +[M45]x(h)'xi-1,i-1+ 

+ [1V19o]x(h),xi_1 
i 

+ [M135]x(h),x{-1,i+l 
(13) 

The codevectors x(k) (k = 0, ... , 2b -1, b < log2 N, N being 
the size of the codebook) with higher f r are stored in a codebook 
of reduced dimensions, that is a cache codebook. By addressing 
this smaller codebook, if the correct codevector is contained in it, 
one can achieve a bitrate reduction. In other words, if the current 
codevector xi j is one of the {x(k)}'s, only b bits are required to 
transmit its address within the cache codebook, otherwise, a fault 
configuration (i.e. the "0" one) is transmitted, followed by the 
log2 N-bit address of the codevector xi i in the overall codebook. 

In the case of a correct prediction, the bitrate is multiplied 
by a factor FOP = b/(log2 N) whereas, in the case of a 
wrong prediction, it is multiplied by a factor FwP = (b + 
log2 N)/(1og2 N). Denoting by PAP the percentage of correct 
predictions within an image, and by P,, P the percentage of wrong 
ones (that is, P'p = 1 — PwP ), the resulting final bitrate B1 is 
equal to 

Bf B Fcp Pcp + B Fwp Pwp B 

b 

lo 
NPcp+ 

g2 

b + log2 N 

+ 
B  

to N 
(1 P AP) (14) 

gz 

The threshold value of PAP over which a gain is achieved can be 
computed by setting B1 = B in (14). So P p > b/(loge N) gives 
the condition on the percentage of correct prediction to achieve a 
bitrate reduction. 

Regarding the architecture, the decoder must be of course 
synchronous with the encoder, in the sense that it has to 
accomplish the same sequence of operation to find out the current 
codevector. For each codevector, the prediction is calculated at 
the decoder in the same way as at the encoder, and the same 
cache codebook is generated. If the b-bit configuration received is 
a valid address, the vector is selected from the reduced codebook; 
otherwise (fault condition), the next log2 N bits are used to 
address the overall codebook directly. 

However, such a scheme exhibits some drawbacks that make it 
not so attractive for software and hardware implementation. First 
of all, it requires the storage of the transition matrices, which 
are quite large. Moreover, the computation of the score function 
for all the codevectors poses severe problems; this task requires 
that one access the transition matrices too many times, and is 
therefore very time-consuming. Instead, the prediction carried 
out by a three-layer neural network features many advantages: an 
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easy hardware realization; no requirements for additional storage 
(except for the synaptic weights of the neural network); and above 
all, the considerable generalization, as the performance are similar 
whether images belong or not to the training set (as reported in 
the results section). 

The prediction process does not change so much; every time 
a codevector has to be transmitted, the network receives the 
four neighboring codevectors (i.e. the codevectors already coded) 
as inputs, and generates a predicted vector (not a codevector) 
on the output layer. The prediction result is then used to 
organize a cache codebook that contains the codevectors x(k) 
(k = 0, . .. ‚26 — 1, b < log2 N) at the minimum distance from 
the predicted vector x'; . As in the previous case, if the current 
codevector x; is one of the {x(k)}'s, only b bits are required to 
transmit its address within the cache codebook; otherwise, a fault 
configuration (i.e., the "0" one) is transmitted, followed by the 
loge N-bit address of the codevector x; in the overall codebook. 

The values of the synaptic weights computed during the training 
phase are stored and used by the encoder and the decoder to 
achieve the prediction in the same way. Of course, also in this 
case the decoder must be synchronous with the encoder. Con-
cerning the architecture of the neural-CVQ encoding-decoding 
system, it is the same as in the case without neural network. 

4. DYNAMIC CODEBOOK REORDERING 
VQ (DCRVQ) 

The CVQ presented above shows the disadvantage to be not 
dynamic in the choice of the reduced-codebook dimension, even 
if the predictor succeeds, the bitrate is fixed (two choices), and 
the power of the predictor is not exploited at its best. 
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Fig. 1. The basic idea of DCR vector quantization 
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The optimal way to exploit the predictor is to code the 
difference between the predicted vector and the codevector to be 
transmitted. If one thinks in terms of vectors in a 2D space (as 
the Fig. 1), a codevector can be coded by the distance between it 
and the predicted vector, where distance stands for the number of 
codevectors with lower Euclidean distances from the prediction. 
At the best, if the predictor succeeds every time (the nearest 
codevector is the correct one), a sequence of 0 will be generated. 
However, as in the real cases, the predictor produces vectors near 
enough to the correct codevector, so maintaining lower distances 
(in terms of number of vectors in between). 

The practical way to implement this idea is to reorder in a 
dynamic way (i.e., for each codevector to be transmitted) the 
codebook on the basis of the distances from the predicted vector 
(0 means the nearest, N the farthest); this strategy is called 
Dynamic Codebook Reordering VQ (DCRVQ). As a result, a 
sequence of addresses quite similar is produced, characterized 
by a low entropy. To enhance this fact, an example of an 
addresses' histogram for a memoryless VQ is presented in Fig. 2, 
together with an example of the histogram of addresses with the 
dynamic reordering procedure. In the last case, the energy of the 
codebook addresses is gathered near low values, so achieving a 
very low entropy. This allows for a very efficient entropy coding 
of the latter sequence, if compared to the former one. 
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Fig. 2. (a) An example of the addresses' histogram for a memoryless 
vector quantizer; (b) the same example but for a 
dynamic-codebook-reordering vector quantizer 

As a comment, this strategy aims to produce something 
correlated, while the standard VQ, as well as CVQ (even if with 
a minor grade), produces usually something uncorrelated. The 
global architecture of the encoding-decoding system is displayed 
in Fig. 3, and consists of a standard vector quantizer, the neural 
predictor, the codebook reordering module, and the entropy 
coder. The vector quantizer operates, at the encoder, by 
associating to a given vector a codevector x,1 minimizing the 
MSE between them; at the decoder, it simply works as a look-
up table. The entropy coder performs the compression of the 
codevector addresses (in the codebook) by the classical Huffman 
algorithm [20]. 
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Fig. 3. The global architecture of a dynamic-codebook-reordering vector quantizer 

The neural predictor is identical both at the encoder and at the 
decoder and consists, as said above, of a three-layer perception 
neural network, trained to reconstruct a codevector on the basis 
of the four neighboring codevectors previously decoded. The 
values of the synaptic weights computed during the training phase 
are stored and used by both encoder and decoder. In order to 
decrease the bitrate without further losses, the networks work 
in a synchronous way, in the sense that they receive the same 
data (i.e., the previously coded codevectors), so producing the 
same predicted vector. The predicted vector x'; is used to 
dynamically organize an ordered codebook. First, the coder 
computes both the MSE between each codevector x(h) and x'; , , 
that is Eh = IIx(h) —  112, and the MSE between x, , and 

x',, that is E = IIx; , — x';,~ Jj2 . The address to be transmitted 
equals to a = dim{E,;1 = 1, . . . , N : E, < E}. The 
decoder is synchronous with the encoder, so it has to compute the 
predicted vector, the MSEs {Eh }'s, and to reorder the codebook 
on the basis of these {Eh}'s (i.e., by assigning address 1 to the 
codevector corresponding to the smallest Eh, and so on). Then 
it has to extract, from the reordered codebook, the codevector 
corresponding to the transmitted address. The computational 
complexity of the coding phase is comparable with standard vector 
quantizers, whereas the decoder has to execute a larger number 
of operations. 

53 VOLUME XLV. MAY-JUNE 1994. 



5. RESULTS AND COMPARISONS 
Results reported in the following were obtained on two sets of 

images (first set: a) aircraft; b) Carmen; c) jeans; d) masquerade; 
e) sweater; f) shoes; second set: a) agave; b) LENA c) bike; 
d) peppers; e) fiji; f) Tiffany). No decoded images are shown as 
the prediction step is carried out in a lossless way; so the final 
quality is the same as in memoryless VQ. In particular, the used 
vector quantizer features vectors of dimensions 3 * 3 pels, 256 
gray-levels per pel, and a codebook made up of 256 codevectors 
(same properties of the original vectors). 

Several tests have been done to assess the performances of 
the two coding scheme. In particular, Table 1, which refers to 
the neural-predicted CVQ, shows the results when the cache 
codebook contains 8 codevectors. Bitrates are given in the two 
different cases: images within the training set (that is, the training 
set is made up by the same image set) and outside the training 
set (that is, the training set is made up by the other image set). 
Table 2, instead, furnishes the results of DCRVQ; legenda is the 
same as for Table 1. Finally in Fig. 4, a comparison among 
the two VQ schemes is presented. The most important aspect 
of the neural prediction, as pointed out by the results, is its 
flexibility: the neural-predictor performances are quite similar 
also for images outside the training set. Moreover, DCRVQ is 
more efficient than CVQ, as it exploits intervector correlations in 
a dynamic way. 
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1. INTRODUCTION 

In recent years, a considerable amount of research has been 
focused on image data compression, which plays a significant 
role in image processing and transmission. Videotransmission 
will become a major service of future video communication 
networks. Improvement of network transmission capabilities —
and particularly, introduction of the B-ISDN — will allow new 
services such as HDTV, TV to reach customers through optical 
fiber cables. The transmission of these digital image sequences 
requires that a very large amount of data be transmitted. Image 
compression techniques are used to reduce the redundancies in 
the sequences and make their transmission more economical. 

In the last decades, several new requirements came into 
being: progressive image transmission, compatible coding, layered 
coding for networks. Progressive image transmission allows an 
approximative image to be built up quickly and the details to be 
transmitted progressively through several passes over the image. 
Compatibility between the various services which will reach 
customers (HDTV, TV, videophone, etc.) is clearly requested. In 
layered coding, the video information is divided into several layers 
with lower layers containing low resolution information and higher 
layers the fine information in descending order of importance. 
Such a model has the potential to enable integration of the 
several video services for packet switched networks. The solutions 
of these problems are related to splitting the image signal into 
required parts and to effectively coding these subimages. 

Digital image processing operations — naturally involved im-
age coding operations — are usually computationally intensive, 
because of the large amount of data that must be processed and 
of the complexity of the elementary operations. In addition, in 
the cases of video coding and transmission all calculations must 
be performed in real-time i.e., at a rate of 25-30 images per 
second. To achieve a throughput rate adequate for above men-
tioned applications, the processor arrays appear to be massively 
concurrent processing by special-purpose hardware. A processor 
array is a collection of many similar processing elements (PEs), 
which can be executed in both parallel and pipeline processing. 
Progress of VLSI technology, which allows hundreds of thousands 
of transistors to be manufactured in a single chip, has lowered 
implementation costs for large processor arrays to an acceptable 
level. 

2. MULTIRESOLUTION IMAGE DECOMPOSITION 

The Fourier transform and its extensions have historically been 
the prime vehicle for signal analysis and representation. Since the 
early 1970s, orthogonal block transforms with real basis functions, 
have been studied extensively for transform coding applications. 
The availability of simple fast transform algorithms and good 
signal coding performance made the DCT the standard signal 
decomposition technique, particularly for image and video. The 
international standard image/video coding algorithms, i.e., CCITT 
H.261, JPEG, MPEG I-IV, all employ DCT-based transform 
coding. 

Since the recent research activities in signal decomposition are 
basically driven by visual signal processing and coding applications, 
the properties of the human visual system (HVS) are examined 
and incorporated in the signal decomposition step. The VHS 
inherently performs multiresolution signal processing. 

The multiresolution signal analysis concept fits a wide spectrum 
of visual signal processing and visual communications applications. 
Lower, i.e., coarser resolution, version of an image frame or 
image sequence are often sutPicient in many instances. Progressive 
improvement of the signal quality in visual applications, from 

coarse to finer resolution, has many uses in visual communications 
and related fields. 

Subband coding (SBC) is well established technique used in a 
variety of image processing applications. SBC based techniques 
use splitting of the image into subimages called subbands, which 
are coded separately using individually optimized quantizers and 
coders. This provides the flexibility to dynamically allocate bits 
to different frequency bands, thereby shaping the signal noise 
spectrum according to perceptual or other criteria. The actual bit 
rate is determined by the importance of the particular band for 
the image at hand. Thus, by closely matching the individual band 
statistics, the coding of each subband separately can be done more 
accurately than the coding of the entire image. 

Multiresolution transforms are also known as subband decom-
position techniques or pyramid transforms. Each of them have 
been developed separately and is expressed with different math-
ematical tools. The wavelet theory as it has been introduced 
recently relate all these techniques by associating a mathematical 
modeling to get a better understanding. 

Wavelet transform recently have been proposed as a new 
multiresolution decomposition tool for continuous time signals. 
The kernel of the wavelet transform is obtained by dilation and 
translation of a prototype bandpass function. The discrete wavelet 
transform employs discretized dilation and translation parameters. 
The wavelet transform permits a decomposition of a signal into 
the sum of a lower resolution (or coarser) signal plus a detail, 
much like the dyadic subband tree in the discrete-time case. Each 
coarse approximation in turn can be decomposed further into yet 
a coarser signal and a detail signal at that resolution. 

3. PARALLEL ARCHITECTURES 

The applicability of an algorithm and its adequate architecture 
to image sequence coding problems strongly depends on the 
speed of operation. There are a number of alternative approaches 
to the problem of speeding up an algorithm, namely 
• hardware acceleration, 
• design of fast sequential algorithms, 
• design of parallel algorithms. 

Image compression is an important technique in image pro-
cessing. In order to implement this processing by hardware, one 
can use several array architectures. For real-time image sequence 
coding, general-purpose signal processors are often too expensive 
or too slow to the incurred supervisory overhead. To achieve a 
throughput rate adequate for real-time applications, an alternative 
appears to be massively concurrent processing by special-purpose 
hardware, e.g., processor arrays. A processor array is a collection 
of many similar processing elements (PEs), which can be executed 
in both parallel and pipeline processing. VLSI processor arrays 
dedicated for specific applications appear to be effective, feasible, 
and economic. 

Parallel algorithm expression is a basic tool for a proper 
description of an algorithm for parallel and pipeline processing. 
There are a number of parallel algorithm expressions, such as 
snapshot, recursive equation, parallel code, single assignment 
code, dependence graph (DG), signal flow graph (SFG). etc. A 
good expression should express algorithms clearly and concisely 
so that the execution of the algorithm can be easily pursued. 

Here, we will use the following expressions: 
• dependence graph DG is a directed graph, which is embedded 

in an index space and specifies the data dependences of an 
algorithm; 

• signal flow graph SFG which explicitly express all time infor-
mation in the form of delay edges is suitable to represent a 
synchronous array operations; 
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• data flow graph DFG is suitable for the expression of asyn-
chronous array operations. 
The mapping from an algorithm to processor arrays consists of 

three stages (Fig. 1): 
• express an algorithm by the DG notation and, if necessary, 

modify the DG to achieve a better algorithm, 
• map the DG to an SFG or a DFG array, and 
• convert the SFG array to a synchronous array and the DFG to 

an asynchronous array. 

L  
Dependence Graph DG 

Signal Flow Graph SFG 

r ys5 toolic Array .r 

I 
Synchronous Array 

Data Flow Graph DFG 

I 
Waverront Array .. 

Asynchronous Array 

Fig. 1. Mapping 

Two popular special-purpose processor array architectures are 
systolic and wavefront arrays. By Kung [15], "A systolic system is a 
network of processors which rhythmically compute and pass data 
through the system". The systolic array features the important 
properties of modularity, regularity, local interconnection, a high 
degree of pipelining, and highly synchronized multiprocessing. 
The data movements in the systolic arrays are controlled by global 
timing reference beats. A wavefront array is similar to the systolic 
array. However, the wavefront array does not employ global 
synchronization, instead, each PE has its own local clock (self-
timed) and exchanges data with neighboring PEs by asynchronous 
handshaking. 
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Fig. 2. The ring systolic system architecture 

In an array, the processor elements must be able to communi-
cate data effectively and the total system has to be controlled in 
an adequate manner. The communication structure, the structure 
of the processing elements themselves and the control structure 
together form the architecture [11]. In parallel architectures the 
execution of a program is carried out in parallel. The overall 
execution time is usually shortened by a factor approximately de-
pendent on the number of processors participating in the parallel 
processing. One of the most promising version is the PASM (Par-
titionable SIMD MIMD) parallel processing system. 
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The PASM is a dynamically reconfigurable architecture designed 

to allow both SIMD (single instruction multiple data) and MIMD 
(multiple instruction multiple data) operation, and to provide 
the flexible computation and communications capability needed 
for the wide range of algorithms as found in image processing 
applications [12]. 

4. PARALLEL PROCESSING IN 
MULTIRESOLUTION ENCODERS 

The hybrid coding structure is common for both the H.261 
and the MPEG. The 7PEG is involved in this structure. The 
main parts of a hybrid coder are the motion estimator, forward 
and inverse transform units, motion-compensated predictor, quan-
tizer, run-length coding (Fig. 4 generic structure of hybrid en-
coder/decoder). The real-time operation of these units requires 
parallel processing in most cases. 

It should also be mentioned that digital images are usually 
sampled on a grid and are stored on a 2D array. Therefore, they 
possess an inherent geometrical parallelism. This parallelism can 
be exploited by using a 2D array of processors, possibly one per 
pet. For practical reasons, the N x N size image is segmented in 
square M x M (M sz N) blocks or in strips and each block or 
strip is assigned to a specific processor array. The only problem 
to be encountered in such a solution is the blocking effect. 
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There are two ways for the implementation of hybrid codec: 
• the overall implementation supposing massive parallel process-

ing (MMP); 
• the individual implementation of the several parts of the 

codec (DCT, IDCT, VLC, etc.) with parallel processing units 
containing smaller number of PEs. 

In the next, the last one will be discussed presenting some typical 
examples, without the requirement of completeness. 

One of the most popular techniques for motion estimation is 
the block-matching algorithm (BMA). Fig. 5 shows the block-
matching process between two adjacent frames. BMA estimates 
the motion vector on a block-by-block basis. The reference block 
is compared with the corresponding blocks within a search area in 
the previous frame. The motion vector can be obtained when the 
best match candidate block is found. 

The criterion of search is the MAD (mean absolute difference), 
which is given by 

N N 

MAD(u, v)=  I S(k+ u,1 + v) — R(k,1)1= ADu„(k,1) 

k-11-1 

—p < k, 1 ≤ p, 

JOURNAL ON COMMUNICATIONS 56 



where R(k,1) is he reference block and S(k ± u, l + v) is the 
candidate block within the search window in the previous frame. 
The u and v represent the components of motion vector. To 
speed up the BMA, the inherent spatial and temporal parallelism 
must be fully exploited. The criterion equation can be rewritten 
as 

N N N 

MAD(u, v) = PS' „ = 
[ÉAD (iC 1] 

) . 

The PSúv represents the partial sum of the absolute differ-
ences for the jth column. Last equation implies that the compu-
tation of PS ú and PSú„ for m n, are mutually independent 
and can be performed simultaneously. Therefore the full search 
BMA can be operated in a parallel manner. 

search window 

motion vector 

previous frame 

re f e ren ce block (R) 

Cu r rent frame 

Fig. 5. Motion vector estimation with BMA 

Let a simple example [13] be the following: 

{R(k,1) I 1 < k,1 < 3}, p = 2, 

the search area 

{S(m, n) I —1 ≤ n, n ≤ 5}. 

Fig. 6 shows the search area, the reference block and the 
simplified systolic array. The data of the search window are, from 
left to right, top to bottom, serially fed into the simplified array. 
In this case, the structure of PE is very simple, because it executes 
only the consecutive summation. 
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Some further examples for mapping algorithm into arrays will 
be shown at the presentation on the workshop (e.g., the parallel 
DCT and IDCT, etc.). 

5. CONCLUSION 
The main purpose of our research work is the investigation of 

the several mapping methods for mapping parallel algorithms of 
hybrid encoding/decoding systems. The first results of this are 
shown here. This work is supported by COST-PECO (contract 
No. 12907) and will be executed in the framework of COST 229 
project. 

Future work is the simulation of the selected mapping methods 
and their evaluation taking into account the requirement of 
broadband communication. 
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1. INTRODUCTION 

The recent use of personal computer, PC, as a platform for 
digital processing of video, audio and graphics succinctly referred 
to as Multimedia has also necessitated careful consideration of 
the video/ audio input source in order to still maintain the low-
cost philosophy on which PC is based. Among the available 
video sources, namely, RGB, off-the-air television video signals, 
TV camera, and VCR the cheap and commonly available video 
sources are the last three. However, there are two major prob-
lems for digital processing of video signals from these three video 
sources. Firstly, the video incompatibility among the three world 
broadcast video standards of NTSC, SECAM, PAL. Secondly, the 
composite nature of the video signals and the different implemen-
tation of frequency interleaving of luminance and chrominance 
signals within the bandwidth meant for luminance only. Hence, 
there is a problem of universal sampling frequency common to the 
three, compounded by the fact that SECAM uses two different 
subcarrier frequency modulated colour signals instead of quadra-
tured subcarrier frequency modulated colour signals as utilized by 
NTSC and PAL. Towards finding common sampling frequency for 
the three standards, the CCIR/SMPTE recommend sampling of 
video signal in luminance, Y, and two colour difference B — Y, 
R — Y component forms at basic rate of 13.5 MHz. [1], [2]. 

However, our interest in this paper is digital decoding and 
encoding of samples obtained directly from sampling of composite 
video signals. Hence, we only have to consider PAL and 
NTSC composite signals because of their similarity in colour 
modulation which is amenable to direct sampling. In view 

* The author is spending his sabbatical leave at CSELT, TORINO, 

ITALY 

of the diverse applications of digital video, two sampling rates 
are considered. Sampling rate at 13.5 MHz for applications 
requiring CCIR/SMPTE component video; and sampling rate 
at four times the subcarrier frequency, 4fa~, of the composite 
video. Both have their advantages and disadvantages. The 
sampling of composite video at 13.5 MHz provides a common 
sampling frequency for both NTSC and PAL, few samples than 
sampling at 4f,á, orthogonal sample structure which facilitate 
ease of comb filtering implementation for separating luminance 
and chrominance data, but has the disadvantage of complex colour 
demodulation. On the other hand, sampling at 4fr leads to 
huge samples especially for PAL but facilitates ease of colour 
demodulation and implementation of filter with slow falling slope 
because of the large spectral gap between the baseband and the 
sidebands. 

With the choice of sampling frequency now settled, the next 
task is decoding into luminance and chrominance components, 
and then the demodulating of the chrominance into two colour 
components. Decoding of PAL or NTSC into luminance and 
chrominance components could lead to two major artifacts known 
as cross-colour, and cross-luminance as a result of imperfect 
separation of interleaved luminance and chrominance. The level 
of the incurred artifacts depends on the activities in the image, 
and the decoding process. These artifacts could pose major 
problem if such decoded components would be encoded back to 
composite video signal as is the case in this paper [3], [5]. 

Considering the three dimensional, 3D, spectrum of digital 
NTSC and PAL composite videos, the frequency interleaving of 
luminance at integer multiple of line rate with chrominance at 
odd multiple of half-line (NTSC)/quarter-line (PAL) frequency is 
exploited in the decoding in order to reduce the effect of the 
artifacts. Both 2D and 3D filtering were experimented with, 
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for the purpose of performance evaluation and it was found out 
that 2D filter decoding, if carefully crafted, suffices for good 
quality and low-cost. The decoding and encoding algorithms are 
implemented around Analogue Device ADSP21O1 16 bit fixed 
point DSP. Experimentation has proved that it is viable to realize a 
cost-effective decoding and encoding of PAL and NTSC composite 
signals in real-time using fixed 16 bit DSP. This decoder can serve 
as a front-end, and the encoder as a back-end in a digital video 
processing environment such as a PC. 

2. FREQUENCY SPECTRUM OF NTSC & PAL 

Consider the composite NTSC and PAL signal equations: 

S(t)ntac =Y(t)+Q(t)sin(2ntrf act)+I(t)cos(2ntrfact), (1) 

where 

fac = (455/2)fh, fh = 15.7346 kHz 

_ (455/2)(525/2)fv, fv = 59.94 kHz 

S(t) pal =Y(t)+U(t)sin(2naf act)±V(t)cos(2nafact), (2) 

where 

fac = (1135/4)f, + 1/2fv, fh = 15.625 kHz 

= (455/2)(625/2)fv + 1/2fv, ív = 59.94 kHz 

Sampling Eq. (1) at a rate fa gives: 

S(n/fa)ntac = Y(n/ f a ) + Q(n/ f a ) siin(2nir fac/fa)+ 

+ I(n/fa)  cos(2nirfac/fa) 
l 3J 

S(n/.fa)pat = Y(nlfa) + U(n/fa) sin(2ntrf.•c/,fa)f 

f V (n/fa ) cos(2nirfac/fa ) 

/luminance 

‚ ‚
/ chrominance 

I , i  1 I I I . 
fsc=3.58 

frequency 

Fig. 1(a). NTSC horizontal frequency spectrum 

horizontal 

Fig. 1(b). NTSC vertical/horizontal frequency spectrum 

Fig. 1(c). NTSC vertical/temporal frequency spectrum 
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Fig. 1(e). NTSC vertical/temporal 

A TV video exists in analogue form only in horizontal space, 
since the effect of scanning results in vertical and temporal sam-
pling. This causes peaks at line rate with side lobes at frame-
rate in its frequency spectrum. The broadness of the side lobes 
depends on the vertical details of the image. Colour subcarrier 
frequencies are chosen to exploit the empty space in between. 
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In NTSC the f is an odd multiple of 1/2 line-, and frame-rate, 
hence, effecting perfect interleaving of luminance with chromi-
nance as shown in Fig. 1(a). The vertical/horizontal spectrum of 
NTSC is shown in Fig. 1(b), while its vertical/temporal is depicted 
in Fig 1(c). The f a y of PAL has 1/4 line rate offset and in order to 
cause phase reversal between adjacent lines, 1/2 frame-rate offset 
is added. The phase reversal between the colour information as a 
result of the switching of V component results in different vertical 
frequencies in U and V colour components. The interleaving of 
luminance and chrominance in PAL is shown in Fig. 2(a), while 
Fig. 2(b) and (c) depict the vertical/horizontal, vertical/temporal 
spectrum respectively. 

/luminance 

fsce4.43 

u / chrominance , 
frequency 

Fig. 2(a). PAL horizontal frequency spectrum 
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Fig. 2b. PAL vertical/horizontal frequency spectrum 
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Fig. 2c. PAL vertical/temporal frequency spectrum 
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3. DECODING AND ENCODING 
In conventional TV, one method of retrieving luminance is by 

notch filtering rejection of all video information about the f , 
and recovering of chrominance by a bandpass filter centred on 
the f . But this block rejection decoding encompasses residual 
colour in luminance component and traps some luminance in the 
decoded colour components leading to artifacts known as cross-
luminance, and cross-colour respectively. A closer examination 
of the spectrum of Figs. 1(a) and 2(a) reveals a better decoding 
technique based on selective discrimination by combing. A comb 
filter is a moving average transversal filter requiring storage 
memory (delay), hence, there are sample-, line-, field-, and frame-
comb filters configurations which can be utilized as horizontal 
(band-pass), vertical, field, and frame filter respectively. By 
matching the frequency spectrums of Figs. 1(b), (c) and 2(b), 
(c) with the frequency characteristics of Figs. 1(d), (e), 2(d), (e) 
for post band-pass-filtered vertical, and frame filter confirms the 
feasibility of a perfect separation of luminance and chrominance 
since there is no overlap in the spectrum, however, the viability 
of this perfect decoding is conditional on the scene activity in 
terms of object motion and transitions. Line comb filter will 
work fine on the condition that there is no vertical transition 
over the corresponding sample points over the lines used; while 
frame comb filter gives satisfactory separation for still or slow 
moving picture but fails in rapid motion. Demodulation of the 
chrominance into two colour components, I, Q for NTSC; and 
U, V for PAL, involves multiply the chrominance samples by 
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cosine/sine function as in Eq. 4, and then applying lowpass filter. 

I n,Vn = Cncos(2naf,c /fe), f 8 = 4f, c, or 13.5 MHz 

`fin, Un =Cnsin(2nlrfec/fa) (4) 
At L = 4f. c the above equation involves only multiplication 

by 1,0, or —1 but for f, = 13.5 MHz the operation is not as 
simple as that. 

The process of encoding or recoding luminance and the two 
colour components into composite PAL or NTSC involves lowpass 
filtering to the stipulated bandwidth for that component, and to 
forestall cross effect artifacts, the bandlimited chrominance is 
comb filtered vertically. 

4. DSP IMPLEMENTATION 

The decoding and encoding processes are simulated on ADSP2101. 
The line comb filter algorithm is based on Eqs. (5) and (6); band-
pass filter algorithm is shown in Eqs. 7 and 8. The frame filter 
algorithm is the same as the line algorithm except that a frame 
delay buffer is used instead of line buffer. 

Cn = 1/2[Ln-1 — 1/2(Ln + Ln-2]*Hbp/, ntsc 2 — line 

Yn = Ln — Cn (5) 
Cn = 1/2[Ln-2 — 1/2(L, + Ln _4]*Hbpf , pal 4 — line 

Yn = Ln — Cn (6) 
Cn = 1/2[Sn _1 —1/2(S, +Sn_2)], ntsc—Hbp/ bandpass filter 

(7) 
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In view of the low cost, but nevertheless, effective philosophy of 
the project, the line comb filtering is considered optimum rather 
than the frame combing or the novel technique of circular filter 
[2], [4] which exploits the vertical/temporal frequency. However, 
an adaptive measure is incorporated in our algorithm to switch to 
horizontal filtering when there is a significant vertical transition. 

5. CONCLUSIONS 

The decoding and encoding of PAL and NTSC composite sig-
nals based on 16 bit fixed DSP in real-time was investigated. Ex-
perimentation has validated its possibility. An adaptive line comb 
filter was proved sufficient for maintaining low-cost philosophy 
without unduly sacrifying quality in terms of cross-effects artifacts. 
In the encoding process, vertical comb filtering was applied to the 
bandlimited chrominance in order to forestall subsequent cross 
effects. This system could serve as a front-end and back-end in a 
digital video processing environment. 
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1. INTRODUCTION 

Visual inspection of real environment (e.g., airports, railway 
stations, underground stations, etc.) is a basic task of many 
surveillance systems [1], [2]. Traditionally, the most important 
works of surveillance and monitoring safety have been dependent 
on human visual observation. However, a system able to detect 
dangerous situations can be of help to an operator, even if 
the replacement of human surveillance is not meant. This 
paper describes the application of an image processing system 
to monitor the area of a railway level-crossing. The objective 
is to develop a surveillance system prototype for unattended 
level-crossings, aimed at giving a real-time alarm in dangerous 
situations [3]. The surveillance of unattended level-crossings, 
which can be often under the remote visual surveillance by an 
operator, is particularly important in the field of railway transport 
safety. In normal conditions, the presence of an operator is 
needed before and after the movement of the gate, especially 
when it is closed. The system described in this paper is inserted 
within the Section III of the framework Progetto Finalizzato 
Trasporti II of the National Research Council (CNR) of Italy. 
The basic tasks to be performed by the system are: 
• image acquisition; 

• object detection; 
• object localization. 

Some words are needed to explain the meaning of the term 
"real-time" in the proposed application. The system must be able 
to send a danger signal to allow the level-crossing operator to stop 
a train, to raise the gate, or to make any other decision to face 
the situation. If one or more objects are present in the area of 
interest for a time exceeding a fixed time-out, the danger alarm 
must be activated. 

Up to now, the tasks of monitoring safety and inspecting rails 
have depended on human visual observation [1], [2). It is however 
desirable that in the case of simple inspection and monitoring 
such tasks be executed by a machine vision system whereas, in 
the case of complex monitoring, decisions should be made by 
an human operator with the help of an advanced machine vision 
system. Many are the examples of monitoring facilities that are 
object of different applications in the railway field: inspection of 
wheel tread profile, of rail gap, of wiring abrasion, of sprinkler 
for snow melting and so on [2]. These applications of image 
processing in railway field have a static target: the system has to 
make a decision after checking the measures of an object made 
up of curved surfaces like a rail or a wheel. Every day the system 
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must perform on-line inspections with high frequency, and manage 
statistical maintenance. This type of monitoring is not performed 
by a safety system like the proposed one, whose requirements 
are determined by the need to stop a train in an emergency. 
Similar problems can be encountered in other applications, like 
monitoring a platform for safety purposes (2), monitoring a train's 
front view [1], monitoring the crowd at a terminal or snow on 
tracks [4], which are under study in other research laboratories. 

A fall detection system has been realized in France (Lyon) 
where a fully automatic metro line without onboard driver needs 
to secure safety of passengers standing on the platform versus the 
incoming train [3]. A crowd estimation system is currently being 
studied for a station of the Genoa metro rail system [4]. 

2. SYSTEM ARCHITECTURE 
In this section, the architecture of the system (Fig. 1) is 

described and the reasons for the choices made are given. Image 
sequences of the surveilled scene are acquired by a CCD TR105E 
Sony camera and digitized into 256x256 pixels by using the 
Imaging Technology ITEX (series 151) device. 

Images fro 
camera 

. Signal Map • •- ing and 
Presence Signal em. out c$ dt 

Operator's 
console 

Fig. 1. Functional organization of the described modules 

2.1. Object detection 

The first step of the system consists into detect stationary or 
moving objects inside the area of interest of the level crossing. 
This task is performed by means of a new very fast change 
detection procedure able to identify on the image plane some 
areas characterized by significant modifications respect to a 
reference image (i.e., background image). 

This procedure has been developed directly on the ITEX 
device that can be programmed in C language under UNIX using 
a Sun Workstation as host (Fig. 2). Real-time image acquisition 
and change detection operations can be obtained. 

Video camera 

Video signal 

background updating signal 

~ 

HOST 
Computer 

I(x,y) 

B(x,y)

D(x,y) 

~ 

Image Acquisition 
and processing 

system 

Fig. 2. The image acquisition module 

A simple difference method with hysteresis [5] computes the 
absolute difference 

D(x,y) = II( , y) — B(x, y)I d(x, y)E E NxN (1) 

between the pixel intensities of the input image I(x, y) and the 
background image B(x, y), where N are the image dimensions. 
Two thresholds THR , THR0„t and a state variable are used 
to establish if a point (x, y) is a background point or an object 
point. The output is represented by a binary image D(x, y) whose 
pixels belonging to the changed parts are setted to high gray-level 
[6], [7]. The background image B(x, y) is updated any time the 
illumination conditions of the scene are significantly changed. 

The function used to decide the label of a point is a hysteresis 
function, as shown in Fig. 3. If the state is 'Background' and 
D(x, y) > THR;n , the point (x, y) is marked as an 'object' point 

and the state is switched to 'Object'. Analogously, if the state is 
'Object' and D(x, y) .' THR0,~ t , the point (x, y) is marked as a 
background point and the state is switched to 'Background'. 

Label 

Obiect 

Background 

~ 

~ 

THRout THR In 

Fig. 3. Graphic representation of the hysteresis function used 

The decision on how to mark a point is driven not only by the 
gray-level value of the point but also by those of neighbouring 
points. Al this level of the processing chain, a presence signal 
is available, which is switched on if a significant image part has 
changed. Then, a focus of attention procedure is performed to 
reduce the areas to be processed, thus speeding up the whole 
system functioning [5]. The minimum bounded rectangles (MBR), 
related to the detected changed areas on the image plane, are 
extracted and sent to the object localization module. 

2.2. Object localization 

The object localization module uses the position (cx, cy ) of the 
left upper corner and the dimensions dx and dy of each MBR 
on the image plane to determine where the 3D object is placed. 
Even if an object can be seen at the same time in any zone of 
the interesting area of the level crossing by two or more cameras, 
stereo localization strategies are not used [8] in order to satisfy 
the real-time constraint of the application. The solution adopted 
is that to process separately the information coming from one 
camera at each time instant. The transformation of an image 
plane point into a 3D reference system is a well known ill-posed 
problem [9]. If the intrinsic parameters and the calibration matrix 
M of the used camera are known, only one constraint is necessary 
to regularize this problem. The following calibration matrix is used 
in the present application: 

0.019464 0.036133 -0.279027 71.980393] 
M = 0.158676 -0.278248 -0.170096 98.6316271-0.000818 -0.001059 -0.000689 1.0 

(2) 
A ground plane hypothesis [10] is assumed to regularize the 

localization problem: all objects (e.g., cars, lorries, etc.) moving 
toward the level-crossing are considered placed on the ground 
plane (i.e.,Z = 0).To this end, the image points belonging to 
the bottom line of the MBR correspond to 3D ground plane 
points. In particular, the point P = (Cr, cy — dy /2) is used as 
reference póint to localize the object. By considering the classical 
perspective equations and the calibration matrix, it is possible to 
write: 

(rret — xp • ra3) • X = 0 (3a) 

(m2 — yy • m3) • X = 0, (3b) 
where n; is the i-th row vector of the calibration matrix M, 
(xp, yp ) are the coordinate of the point P on the image plane, 
and X = [Xw,Yw, Zw, 1] is the 3D point to be determined. 
Eq. (3a) or (3b) represents a plane, while the system composed 
by both Eqs. (3a) and (3b) represents a 3D line in the 3D 
reference system. Such a 3D line is passing through both the pixel 
coordinates (ui , ví ) and the origin of the 3D reference system 
(i.e., the system allows a solution for s = 0). Finally, by imposing 
the ground-plane hypothesis (Zw = 0) and by eliminating for 
substitution a variable from Eqs. (3a) and (3b), it is possible to 
determine the component of the vector X which represent the 
3D position of the image point P [9]. 
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When an object was localized inside the interesting area, a 
check for the time-out is performed to decide if activate or not 
a danger alarm. 

Fig. 4. Map of a level-crossing to visualize object positions 

A 2D top-view map (the plane X — Y) of the level crossing 
is used to represent the object position and its approximated 
dimensions (Fig. 4). Such a map, visualized on the console screen, 
shows a rectangular box whose position and state (blinking and 
red for a danger alarm) are continuously updated. 

3. RESULTS 

In this section, the more significant results obtained by the 
proposed surveillance system are presented. The whole system 
has been installed at the level-crossing of Rivarolo located in 
the vicinity of Genoa. The processed images were chosen 
from real word sequences acquired with a CCD TR105E Sony 
camera. Fig. S shows two time-contiguous photograms acquired 
and processed by the system, while Fig. 6 shows the background 
image. 

Fig. S. Two time-contiguous photograms of the level-crossing 
acquired and processed by the system 

Fig. 6. The background image 

Fig. 7 shows the final result of the change detection process. 
It is represented by a binary image obtained directly on the 
ITEX device by means of the simple difference with hysteresis 
technique. At the present, the system processes two images per 
second. 

Fig. 7. Result obtained by the change detection module 

Figs. 8a and 8b shows the results obtained in the case of very 
noisy input images. Such a result confirms the robustness of this 
method to noise. In these images it is also possible to see the 
results of the focus of attention module: each area containing 
groups of changed pixels is selected and identified by means of 
the minimum bounded rectangle (MBR). Then, each MBR is 
processed by the object localization module to determine the 
object position on the 2D top-view map (see Fig. 4). 

Fig. 8. (a) Original gray-level image with 42% noisy points added 
and (b) result of the hysteresis based change detection method 
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1. INTRODUCTION 

The NAVSTAR/GPS is actually the most accurate position-
ing service compared to traditional radio navigation systems. It 
provides satisfactory accuracy for many civil applications. The 
accuracy of the Standard Positioning Service (C/A code), that is 
available to civil users, is under degradation of Selective Avail-
ability (SA) which contribution is the greatest among GPS errors 
(ionosphere, troposphere, satellite clock, ephemeris, multipath, 
receiver's noise, etc.). SA can be bypassed with the use of Dif-
ferential GPS (DGPS) [1]. The information provided to the user 
by a GPS receiver contains many data that tell only a little to an 
inexperienced user. Therefore these data must be user-friendly 
represented and clearly visualized to be useful to anyone. Proba-
bly the most persuading way of GPS data visualization is visualiza-
tion on computerized maps. To gain good results, maps must be 
prepared with special care [2]. Because the majority of maps exist 
as yet only as hard-copies, they must be first input into computer 
through the scanning device. The scanning process depends on 
the type of a certain map. Sometimes scanning errors have a 
great influence on the quality and geometry of digital maps. These 
errors may be reduced or neglected with some image processing 
techniques. These techniques are specific to a map type. On 
colour images some colour reduction and edge enhancement fil-
ters can be used to clear the picture and to reduce the noise. On 
gray-scale images some other filters should be used [6]. If black-
and-white maps are concerned appropriate thresholding technique 
should be chosen to obtain the best result. Another significant 
error caused by the scanning device is a geometric distortion. 
This distortion is also a consequence of paper contraction and 
extension. Some mathematical transformation can be applied to 
compensate such a distortion. After image processing digital maps 
should be stored in a way to occupy as little space as possible 
and at the same time the decompression time should not exceed 
reasonable limits. The JPEG algorithm was found to have been 
very convenient, because of its ability to change the ratio between 
a compression factor and a restoration quality. Depending on 
what geographic or geodetic projection the hard-copy map was 
drawn in, the digitized map must be adjoined into the appropri-
ate co-ordinate system in which the incoming GPS data must be 
transformed too. Maps prepared in such a way can be a good 
base for a CAD program that is used to visualize GPS data and 
can offer a wide range of applications [2]. 

2. MAP DIGITALIZATION 
There exist many different types of maps. In general they 

can be classified by different criteria. One can be measuring 
scale (1:50000, 1:5000, etc.), the other can be purpose (tourist, 
geodetic, . . .). From the digitalization and computerization point 
of view, maps can be divided by the technique they were drawn: 
• black-and-white maps (cadastral maps, land register maps, 

simple line maps usually sparse); 
• gray-level maps (geodetic, military and tourist maps, usually 

very dense with a lot of information); 
• colour maps (geographic (atlas) or tourist maps with a lot of 

information). 
The first decision that should be made when hard-copy maps 

are digitized is how they should appear in a computer. When 
simple black-and-white maps are concerned there is usually only 

one possibility. It should appear as a black-and- white digital map. 
Usually it does not make sense to produce coloured or gray-level 
map out of black-and-white one, even if it is quite possible to 
achieve. The same applies to colour and gray-level images. The 
informational contents should only stay the same or be reduced. 
If this is taken under consideration six possible transformations 
can be done: 

hard-copy map 

black-and-white 
gray-level 
gray-level 
colour 
colour 
colour 
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Fig. 1. Ernmple of a gray-level tourist map (measuring scale 
1:50000) 

Fig. 2. Colour city map (measuring scale 1:50000) 
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There are two possible ways to achieve particular transforma-
tion. It can be done by 
• scanning mode 
• image processing 

The first depends almost only on scanning device being used. 
After digitalization some image processing can also be done to 
improve image quality and to reduce noise. This way images are 
scanned in the mode as the final image should look like. If the 
hard-copy map is gray-level or colour and the result should be 
a binary (black-and-white) image, the scanning mode should be 
black-and-white. The binarization is done by a scanner and the 
user has only a small influence on quality. 

The second way offers much more control over the process 
flow. Scanning is done in the same or one degree higher mode 
regarding informational rate as the final image should be. This 
results in these relations: 

hard-copy map 
black-and-white 
gray-level 
gray-level 
colour 

bitmap image 
black-and-white 
black-and-white 
gray-level 
black-and-white 

scanning mode 
gray-level 
gray-level 
gray-level 
colour 

colour gray-level colour 
colour colour colour 

The most important step here is pre-processing of scanned 
images. The user can choose various image processing techniques 
to gain the result that satisfies his demands [4]. 

In our case two particular cases from above were taken into 
investigation. The first was preparation of cadastral maps for 
a CAD program that can semi-automatically do raster-to-vector 
conversion [3] and can visualize GPS data in real time. The 
second was preparation of colour geographic maps for some 
geographic information system (GIS) applications, including GPS 
tracking. 

3. CADASTRAL MAPS 
Cadastral maps are black-and-white maps, containing usually 

only polygons and some text. The result of map pre-processing 
should be low-noise one bit raster image, that represents the 
original as accurately as possible. The distribution of black 
signal pixels and black noisy pixels on hard copy is very spatial 
dependant. The experiment with black-and-white scanning mode 
showed that the scanner made bad thresholding and the result 
was noisy bitmap image, which would be hardly improved by 
additional image processing. A good binary image was needed 
because of an easier implementation of semi-automatic raster-to-
vector conversion algorithm. Therefore the maps were scanned 
with a dynamic range of 256 gray-levels and a resolution of 200 
dpi. After that each pixel was classified in one of two classes 
using dynamic thresholding, which gave better results as local 
and much better results as global thresholding. Some methods 
of dynamic threshold were tested [5], resulting in a modified 
algorithm for dynamic threshold determination. The results were 
tested with calculating two coefficients: the shape measure and 
the uniformity. 

Fig. 3. The cadaster map scanned in 256 gray-levels 

The threshold in every pixel of the gray-level image was 
determined using the formula: 

T(x, y) = C(x, y)o , -1-

where C(x, y) is the so-called threshold coefficient, defined as 

C(x, y) = kN 

H„ is the number of pixels in the whole image having the same 
gray-level as the pixel itself; N is the number of all pixels in the 
image; 
k is determined experimentally and lies between 0.65 and 1; 
o' , is the standard deviation of the pixel (x, y) and eight 
adjacent pixels; 
µx y is the mean value of nine pixels. 

I 

Fig. 4. Binary image after dynamic thresholding 

4. COLOUR MAPS 

Colour maps were digitized to be used in a GIS application, 
permitting real-time GPS positioning. Because of the amount of 
data and the nature of application, gray-level digital maps were 
chosen as satisfying. Scanning was made in a colour mode, using 
256 colours. 

Then colour was removed and a despecle filter was applied [4]. 
Resulting gray-level image was then processed by a sharpen filter 
twice. This results in a clear 8 bit gray-level image, suitable for 
zooming and unzooming with all text clearly visible and readable. 

nput ____ 
mage 

log 
~

exp 

Fig. 5. Block diagram of a despecle filter 

5. GEOMETRY CORRECTION 

Ti 

~ 

output 
image 

Fig. 6. Transforming of a general quadrangular to a regular rectangle 

The scanner and paper errors result in a geometric distortion of 
a rectangle to a general quadrangular. This was compensated on 
a digital image using special geometric transformation that needs 
only four map's corner points determining general quadrangular 
as an input and four points of a resulting rectangle. 
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The transformation T from coordinate system (£, ), into 
coordinate system (x, y) is expressed: 

x— —Q(-1+pE- ~t+~ j) 

y= 
2a(-1— Q~+crTl+Iv'b, 

where D is a discriminant: 

D = (1 + $x + ay)Z. 

6. IMAGE COMPRESSION 

Digitized maps of large dimensions request also a lot of data 
space on hard disk. The need of data compression arises if many 
maps should be stored on a computer hard disk, being available 
to a certain CAD program to display them and use them in an 
application. On cadastral maps run length encoding is already 
good enough for compression. It was applied on image segments 
to make possible their fast redrawing and almost smooth moving 
across the image. 
6eP blocks DCT-Based Encoder 

Source 
Image Data 

FOOT Quantiaer 

1 

Entropy 
Encoder 

Table 
Specifications 

Cable Compressed 
Specifications Image Data 

OCT-Based Decoder 

Entropy 
Decoder 

~-i Dequan fi? er OCT 

Compressed Heconstruc fed Table Table 
Image Data Specifications Specifications Image Data 

Fig. 7. JPEG compression and decompression 

Grey level images demand much more storage space as black-
and-white. The RLE (Runa Length Encoding) for every bitplane 
separately is not good enough. We found the JPEG algorithm 
[7] very suitable to compress 8 bit gray-level images. The 
compression ratio depends on a demanded image restoration 
quality. Because the input images were quite good, the quality 
of 40 % was selected and the compression ratio of approximate 
10 was achieved. All the maps of Slovenia in measuring scale 
1:_50000, 256 gray-levels were compressed into 80 MB this way. 
The speed of JPEG software compression and decompression 
depends on a computer speed and available memory. This can be 
eliminated with hardware implementation of an algorithm, which 
is already commercially available. 
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1. INTRODUCTION 

Automatic Target Recognition (ATR) is a very specific field 
of study within the general scope of pattern recognition (PR) 
and image processing. A typical problem of ATR may be to 
recognize, from a sequence of images (usually in the visual or 
infrared band), a possible target, such as a plane. ATR can 
be an extremely difficult task since the problem usually involves 
extraction of critical information from complex and uncertain 
data for which traditional approaches of signal processing, pattern 
recognition, and rule-based artificial intelligence have been unable 
to provide adequate solutions. However, despite the many 
difficulties inherent in ATR, it nevertheless will continue to be 
one of the key components of present and future defense weapon 
systems. This is due to the fact ATR removes man for the 
most part from the decision process and makes the system faster, 
reliable, and more invulnerable. The basic stages of an ATR 
system can be outlined as follows: 
• preprocessing where noise in the incoming image is filtered, 
• image segmentation or labelling where possible target or targets 

are spotted and extracted from other irrelevant objects and 
background, 

• feature selection to obtain an optimal set of features, 
• classification where the target is classified into one of the 

classes in the training set, and finally 
• tracking for further action. 

This paper is concerned with examination of two popular clas-
sification techniques used in PR, namely the k-nearest-neighbor 
(kNN) and linear discriminant function techniques, with special 
emphasis on the performance of the kNN algorithm. It is part 
of a project for the development of a complete ATR system, as 
described above. The outline of the paper is as follows: In Section 
II, an overview of different classifier types and training procedures 
is given. In Section III, the construction of the training set used in 
this study and dimensionality-problems, which are very important 
in designing classifiers are examined. The recursive method for 
estimating the L-class Bayes risk is introduced in Section IV. In 
Section V nearest neighbour techniques are described and various 
improvisations are discussed. In Section VI the linear discrimi-
nant classifier is examined. The noise performance of the kNN 
algorithm is examined in Section VII. Finally, in Section VIII con-
clusions are given. 

2. CLASSIFIER TYPES AND ERROR ANALYSIS 

Classifiers can be broadly categorized as statistical (decision-
theoretic) and syntactic (structural). In the syntactic approach a 
complex pattern is represented by its simpler subpatterns. If the 
subpatterns are again complex, they may again be represented by 
even simpler subpatterns until one obtains the simplest subpat-
terns, called pattern primitives. Syntactic classification techniques 
are very powerful in cases where the patterns under study are 
very complex (for example, images of fingerprints) or when the 
number of classes is very large. The basic drawbacks for syntactic 
algorithms are their complexity and long processing times. On 
the other hand, in the statistical approach, a set of characteristic 
features is first extracted from the input pattern because usually 
the dimension of the pattern vector is too high for computation 
purposes (for example, for an image of 512 by 512 pixels, the 
resulting pattern vector is 262144 dimensional). Since the dimen-
sionality must be substantially reduced, there is an inherent loss 
of information in the feature extraction process. Thus, the feature 
extraction algorithm should be chosen to make this loss as small 
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as possible. Statistical algorithms are further divided into two 
subgroups as parametric where the form of the underlying proba-
bility function of the pattern vectors is assumed to be known, and 
nonparametric where such an assumption is not made. One other 
distinction between classifiers is their learning procedure. In su-
pervised learning each feature vector in the training set has a class 
label and the classifier may improve its performance by checking 
its results with these known classifications. In unsupervised learn-
ing, however, such class labels are not given and in most cases it 
is not even known how many classes there are. Unfortunately, 
there is no general method to determine the best classifier in a 
given situation. The standard approach in PR literature is to try a 
number of classifiers and let the data dictate the best one. 

The probability of misclassification (PMC) is the single most 
important property that characterizes the performance of the 
classifier, so effort should be spent to correctly estimate it. 
Small-sample effects are especially dominant in this estimation 
procedure and the estimate for the asymptotic PMC may be 
very biased, if not computed properly. To estimate the PMC, 
two well-known methods were used in this study: Resubstitution 
and leave-one-out methods. In the resubstitution method all 
observations are used in the design of the classifier and are also 
used in estimating its performance. This approach is particularly 
attractive when the number of observations is small. However, it 
suffers from too much optimistic bias. The leave-one-out method, 
on the other hand, produces an effectively unbiased estimate if 
the samples in the training set are independent. Since such a case 
is quite unlikely, in practical situations this estimate will also be 
biased. In [1] the symmetry properties of these two estimates are 
used to establish an estimate for the asymptotic error as 

Poo_ 
PR + PL 

(1) 2 
where PR and PL are the resubstitution and leave-one-out 
estimates, respectively. This estimate is relatively unbiased and 
suitable for small-sample cases that may arise in practice. Another 
quantity developed in [1], which proves useful to determine if 
small-sample effects predominate, if the increase in classification 
error from the asymptotic value due to finiteness of the number of 
samples in the training set, ON = E{PN} —P~. This important 
quantity may be estimated using a nonparametric estimator as 

PN — PL 
(2) 

where PN is the error estimate when N training samples are used 
in the estimation procedure, and P is the asymptotic error. If 
ON is "small" compared to the error estimate found from Eq. (1), 
then one may conclude that the number of samples in the training 
set is sufficient. If not, then new samples should be collected. 

3. CONSTRUCTION OF THE TRAINING SET 
AND DIMENSIONALITY PROBLEMS 

One of the most important points to consider in the design of 
classifiers is the problem of dimensionality. The relation between 
number of samples, N, number of features, n, and PMC was first 
investigated in [2]. It was theoretically shown that for a given 
sample size, the dimension of the feature vector has an optimal 
value, above which the PMC starts to increase again, a curious 
fact which has been called the "curse of dimensionality". A very 
rough rule of thumb is that the number of samples in the training 
set should be at least ten times the number of features used. 
However, in practice, it may often be quite hard to collect so many 
samples. Hence, small-sample size effects can easily degrade the 
design and evaluation of a proposed classifier. 
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The construction of the training set for this work was per-
formed as follows: In our laboratory scaled down models for three 
different types of airplanes were built and their images were cap-
tured using an image grabber. The images were taken from the 
side, up and front for each plane model. Then, using these images 
a three dimensional tensor was formed for each plane class. By 
rotating this tensor by 14 degrees evenly throughout the space, 60 
images per class were formed and an eleven dimensional feature 
vector was extracted from each image. These features consist of 
five of the traditional moment invariants calculated separately for 
the contour and silhouette of the airplane. 

4. COMPUTATION OF THE BAYES RISK 

The derivation of the Bayes risk for a given sample set should 
be the first thing done in classifier design because it gives a lower 
limit to the performance of any type classifier for the specific 
training set. If even the Bayes risk is unsuitable for one's purposes 
then designing a classifier is pointless and the sample set should be 
enlarged. However, computation of the Bayes risk for the L class 
case is difficult. Therefore, the iterative method given in [3] which 
is described below is particularly suited for the L class problem: 
The main idea of the method is to recursively reduce the problem 
of finding the Bayes risk for L classes to the well-known problem 
of two classes. If the a priori probabilities of the classes are equal, 
as usually assumed, then the bounds on the Bayes risk are 

9? > 

L 

L(L — 2) ' 

(L — 1)2

L2(L — 2) 
i=1 

' 

i-1 

L 

(3) 

We first compute the (2 ) pairwise, binary Bayes risks. Then 
using the bounds given above the bounds on the ternary Bayes 
risks are found, and so forth. The pairwise Bayes risks may be 
computed once the probability density functions of the classes 
are estimated. This may be done using either the Parzen or the 
k-nearest-neighbour (kNN) method. In our work we have found 
that the Parzen estimate was better and gave lower variances than 
the kNN method, once a suitable smoothing parameter, a n , is 
found. The Parzen estimate for the probability density function of 
x is given as 

n 

( l

N  

( 1 P(x)—~~\ n/ B,Cxan1/ 
:=1 

0 1 1 I 1 I 1 1 I 

(4) 
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Fig. 1. Upper and lower bounds on the Bayes error for 3 features 
and a n = 0.3 

The choice of the kernel K'(u) does not affect the estimate 
very much and so we have chosen the simple hypercube function. 
The choice of a n , however, greatly affects the estimate and care 
should be given when choosing it. Generally a range of values 
is tried and the best value is determined empirically. Using 3 
features and 60 samples from each class we found that the optimal 
value of a n is about 0.03. Such a small value of this parameter 
hints at the fact that the underlying density function is multimodal 
and non-Gaussian, a common phenomenon in ATR applications. 

The upper and lower bounds calculated using the above method 
are plotted in Fig. 1 for the case where the vectors in the training 
set are three dimensional (i.e. three features were used). 

5. NEAREST NEIGHBOUR TYPE ALGORITHMS 

The idea behind the NN rule is intuitively obvious as summa-
rized by the saying "birds of a feather flock together". In recent 
years NN type classifiers have gained a tremendous popularity in 
PR applications. In the NN algorithm the distances between the 
feature vector to be classified and all the vectors in the training set 
are calculated. Then the given vector is classified to the class of 
the vector having the nearest distance. Despite its extreme sim-
plicity, the NN algorithm may sometimes approach the PMC of a 
Bayes classifier and in the worst case it has twice this much error. 
In fact, the following well-known result may easily be proved [4] 

92 < 32NN ≤ 9?(2 L L 1 9?), (5) 

where L is the number of classes, 1Z is the asymptotic Bayes risk, 
and 9NN is the asymptotic risk of the NN classifier. It is seen 
that when L is large, as is the case usually, the NN risk is bounded 
above by twice the Bayes risk. One should be very careful in 
using Eq. (6), however, because that result was proved for the 
asymptotical case of infinite samples. When a finite number of 
samples is used the NN classifier is biased. In [5] the expected 
value of this bias is derived as: 

E(b(X1XNN)) = Q1 Ex(I AI1l Ntr(A-1 BM(x))), (6) 
where A is the distance measure matrix used and BM(x) is the 
second order Taylor series expansion of the risk. The quantity j3 
may be expressed as 

a1— 
r 2 /N(N/2 + 1)r(2/N + 1)r(N + 1) (?) 

Nar(2/N + N + 1) 

where r represents the gamma function and N is the number of 
samples used in classification. One thing to note from the above 
complicated expression is that the bias of the NN classifier drops 
off rather slowly with increasing number of samples. 

5.1. E,fects of the Distance Metric 

The first step in using an NN type classifier algorithm is to 
decide on a suitable distance measure. The general quadratic 
distance function between a given feature vector, x, and a feature 
vector of a sample belonging to class i, y;, may be written as 

d2 = (x — yi)TA(x — yi)• (8) 
Though there is quite a large number of such measures (for 

a summary refer to [6]), the most commonly used ones are 
the Euclidean distance for which A = I, and the Mahalanobis 
distance, for which A = E~ 1, where E; is the covariance matrix 
of class i. The Mahalanobis distance has the useful property of 
taking into account the correlation between the feature elements. 
However, since in ATR applications computational time is a main 
consideration, the Mahalanobis distance is not used in this study 
because it involves a matrix inversion, which is computationally 
demanding. 

The result given in Eq. (5) is independent of the particular 
metric used; however, when the number of samples is finite, the 
performance of the NN classifier depends a great deal on the 
distance metric. From Eq. (6) one may observe how the distance 
matrix A affects the bias of the NN classifier. Unfortunately, 
since BM (x) is a very complicated expression of A, the selection 
of A to minimize the bias when the distribution of the data is 
nonGaussian is not clear. Trying to improve the efficiency of the 
NN algorithm by modifying the distance metric looks promising 
but very little work has been done in this area. Most studies 
generally assume either the Euclidean metric or a similar variant 
such as the city-block metric. Another popular approach, which is 
discussed below is to modify the metric by weighing the distances 
in the originally defined metric which cannot be considered too 
great a modification. 

Quite a different approach is provided in [7] where an optimal 
distance measure is introduced. This measure uses a local approx-
imation to the conditional density function in the neighbourhood 
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of the given feature vector to be classified. One problem with this 
approach is that the metric should be evaluated for each different 
x from a small region surrounding x. Still another problem is 
that since the metric is local, information concerning important 
features of the distribution cannot be recovered from it easily. In 
order to remedy these problems, an optimal global NN metric was 
proposed in [8]. 

5.2. The /CNN Rule 
The k-nearest-neighbour (kNN) algorithm is a modification of 

the NN algorithm in which k feature vectors in the training set 
that have the least distance to the given feature vector are found 
and the vector is classified to the class which has the greatest 
number of representatives in these k vectors. If two classes have 
the same number of representatives, then either the given vector 
is rejected without classification or the tie is broken randomly by 
throwing an L-faced die. Unfortunately, the undesirable effect 
of the NN algorithm is also present in the kNN algorithm and 
the performance does not increase considerably even when the 
number of samples is doubled. The change of the performance 
of the kNN classifier with the number of samples and number 
of features used is shown in Fig. 2 for three neighbours. The 
slow decrease in PMC is evident. We also observe that the 
estimation of the Bayes risk found from Fig. 1 is quite correct. 
The change of performance with the number of neighbours used 
may be observed from Fig. 3 where 11 features were used. One 
may observe that for our training set between three or five 
neighbours gives good results whereas increasing the number of 
neighbours deteriorates the performance. This may be explained 
by the fact the feature vectors in our training set do not form 
neat hyperellipsoids in the feature space and the classes are quite 
mixed up with each other. 
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Fig. 2. The change of performances with different number of 
features of the /CNN algorithm using 3 neighbours 
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Fig. 3. The change of performances of the kNN algorithm with 
increasing number of neighbours using 11 features 

Another property of the NN and kNN algorithms is that when 
the number of samples used is small, these type of classifiers run 
into small-sample size problems and result in very large values 
of PMC. This fact may be checked when the estimate given in 
Eq. (2) is used to test whether the number of samples is adequate. 
We have observed that for three classes when the total number of 

samples is less than 30, kNN has inadequate number of samples 
and should not be used. This limitation may not affect applications 
such as character recognition where hundreds of samples may 
easily be found; however in ATR application one rarely has this 
luxury and small sample size is the rule rather than the exception. 

5.3. The Weighted /NN Rule 

One of the main problems of the kNN algorithm is the 
occurance of ties. Although these may be resolved randomly, it 
is better to devise a method which avoids them completely. In 
order to solve this problem, while at the same time increasing the 
performance of the algorithm, one might propose the intuitively 
appealing idea of weighing the votes of the neighbours which are 
nearer to the vector to be classified more heavily instead of a 
plain majority-vote decision. Indeed this improvisation has been 
proposed quite early by Dudani in [9] as follows: Suppose for 
j < k, d• is the distance between the j'th neighbour and the 
given vector to be classified. Then we define the weight of this 
neighbour as 
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Fig. 4. Comparison of Dudani's method and unweighted /NN rule 
for 3 neighbours and 11 features 

Then the given vector is assigned to the class that has the 
greatest total weight. It may easily be seen that the occurance 
of ties with this method is quite unlikely. This method has 
been criticised heavily by a number of researchers in that its 
performance is inferior to that of the unweighted kNN rule. The 
problem with the above rule is that when d = dk we set 
w~ = 0 and thus the k'th neighbour is effectively excluded from 
the decision process. Hence the weighted kNN rule, as described 
above, cannot perform as well as the unweighted one. We have 
implemented and compared Dudani's method as described above 
and compared it with the unweighted kNN classifier. The results 
are shown in Fig. 4 and Fig. 5 for different number of features 
used. It is observed that Dudani's method is worse when a small 
number of features is used and even when it is superior the 
difference and is too slight to warrant the use of the algorithm. 
Note that the pessimistic leave-one-out estimate only was plotted 
in these graphs and the averaging procedure given in Eq. (1) is 
not used. This is because it is impossible to use the resubstitution 
estimate when working with weighted kNN rules. This undesirable 
property may be corrected by redefining the weighing procedure 
as follows [10]: 

( (d5 — dj)+a(ds — dl) 
wj  = 1Il (1+«)(da—dl) dr ~ dl ' 

da = dl1 

where d, is the distance between the given vector and its s'th 
nearest neighbor and o is a positive constant. When d = dk
and a = 0 this rule boils down to the one given previously. It is 
shown in [11] that, given a training set containing infinitely many 
samples, the unweighted kNN rule always outperforms any type 
of weighted rule. However, in [10] it is argued that this may 
not always be the case when the number of training samples is 
finite. Hence with a good choice of a and d0 it may be possible to 

JOURNAL ON COMMUNICATIONS 70 



outperform the unweighted kNN rule. We have tried the weighted 
kNN rule with different values of these parameters together with 
the unweighted kNN rule. The results for this a -weighted kNN 
rule is shown in Fig. 6 for two values of a. It may be observed 
that the performance is bad compared with the unweighted kNN 
rule. One really has to play around with the variables in this model 
to get better results but in our case this rule has not produced 
superior results for a wide range of parameter values. 
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6. LINEAR DISCRIMINANT CLASSIFIERS 
Linear discriminant classifiers (LDC's) represent quite a dif-

ferent approach from the distance-based algorithms in that they 
first transform the given sample space to a one having a lower 
dimension. In this way the number of distances to be computed 
from the given vector to the sample vectors is greatly reduced. 
The general LDC for the L classes may be written as L functions 
of the form 

9i (x) = wiT x + wi0, (9) 

where w; is an N dimensional vector, commonly referred to as 
the weight vector, for class i, and w;0 is called the threshold 
weight for the same class. The classification algorithm is then to 
calculate g; (x) for each class and assign x to class i if g; (x) . 
gj (x) for all j i. The question of where to assign x if 
the results for two classes are equal naturally arises and this 
is an open academic problem. Most researchers, [4] and [12], 
recommend the rejection of x when this occurs and we have 
followed this convention in this work. The LDC has its own 
drawbacks, however. The decision regions are convex which limit 
the applicability of the classifier a great deal. Due to this fact the 
LDC is better suited to problems where the a priori probabilities 
of the classes are unimodal, which is not generally expected in 
ATR applications. Moreover, the classes have to be linearly 
separable, which is an extremely hard condition to check for. One 
way to convert a linearly inseparable set into a separable one is 
to increase the number of features used. Unfortunately, as we 
have seen, this can not usually be achieved in practice because of 
dimensionality problems. To illustrate the method, we first define 
the vectors for each class i as 

u.= 
se ' 

1 ifj=i 
0 otherwi 

These vectors are L dimensional and they have the special 
property that the distance between any two of them is identical 
and that their norms are identical. Then we let v,,, = u; 2 if 
the sample x„6 belongs to class i. Thus, the set of vector pairs 
(xm, v—ra) summarizes completely the information in the training 
set. Next we look for a linear transformation in the form: 

v = Tx+ b. (10) 

We desire to find a T such that the interclass distance should be 
as large as possible while preserving the intraclass distances. We 
also desire T to be linear since deriving optimality conditions for 
a nonlinear transform is quite difficult and it also brings about 
excessive computational requirements. However, using a linear 
transformation is not as restrictive as it looks because if we want, 
say, a quadratic transform, then we first transform the sample 
space quadratically to a new one and seek a linear transformation 
there. The solution to this problem is the linear regression 
function as given by 

v = RvxRX 1(x — m ' ) -I- m', 

where we define 

= 

m'  = 

mX = 

N 

i=1 

N 

1 — m')(xi — mR)T 

i — m x)(x; —

Note that, though a matrix inverse operation is called for, the 
number of distances to be computed has dropped from N to L, 
which brings about enormous savings in computation time (In our 
case, the maximum number of samples used was 180 while the 
number of classes were three!). The results of the LD function 
classifier is shown in Fig. 7. The performance much worse than 
the kNN rule as may be observed. This is due to the fact that our 
classes are probably not linearly separable. 
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7. NOISE PERFORMANCE 
Checking the performance of classification algorithm S against 

noise is important because even though the incoming image is 
filtered from noise, if the incoming image is too noisy, the filtering 
operations may not be able to filter all the noise present and some 
of it may reach the classification stage. The amount of this noise 
present would be very small if appropriate filtering operations are 
applied. Therefore, it is necessary to check the performance of 
classification algorithms for small values of noise present in the 
training set. The images in the training set were contaminated 
by 5 % impulsive noise. Then the feature vectors for all these 
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contaminated images in the set were extracted and the classifier 
algorithms were tried on this noisy input. The performance of the 
kNN algorithm for the contaminated sample set is shown in Fig. 8 
where 11 features were used. By comparing this figure with Fig. 3. 
we observe that the increase in PMC is between 10 %-15 % 

regardless of the number of features. When a high number of 
neighbours are used, the increase in PMC is greater. The reason 
for this difference is that the noise tends to be averaged out 
between the neighbours. 
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1. INTRODUCTION 

Classification of earth terrain within an image is an important 
application of polarimetric data. The normalized magnitude 
and phase of the waves backscattering from terrain are reliable 
features for data classification purposes. 

A number of polarimetric SAR analysis techniques have been 
reported in the literature to measure and characterize the po-
larization response of natural targets, to maximize the contrast 
between regions based on polarimetric filtering, or to classify data 
using Bayes classifier. Most of these classification techniques are 

supervized and then require the selection of training areas for 
each class of terrain cover. However, an accurate and detailed 
knowledge of the scene contents is required to select the ap-
propriate classes, and training areas should be homogeneous and 
contain enough samples to estimate the polarimetric backscatter 
characteristics of each class with good accuracy. This is not always 
possible, and in addition, selecting training areas becomes time 
consuming as the number of classes, the data volume, and the 
data rate increase. Because of these limitations, there is a strong 
interest in developing unsupervized techniques for analyzing po-

JOURNAL ON COMMUNICATIONS 72 



larimetric SÁR data. 
The object of this paper is to present a method of unsupervized 

analysis for polarimetric SAR data. This method segments 
the data into classes of homogeneous microwave polarimetric 
backscatter characteristics. 

Polarimetric backscatter classes selection is based on a multidi-
mensional fuzzy clustering [1] of the logarithm of the parameters 
composing the polarimetric covariance matrix. The advantage of 
operating in the log domain are outlined in section 3. 

Clustering is set up by only one parameter which is the number 
of classes. Given the classes of polarimetric backscatter, a 
maximum a posterior (MAP) polarimetric classifier is used to 
segment the entire polarimetric array. A recent study [4] has 
shown that the statistical properties of forest, using polarimetric 
SÁR data, are well represented by the K-distribution. In this 
paper, the K-distribution in the MAP classifier is used to classify 
the forest areas and the results are compared with the ICM 
classification method using a Gaussian model. 

The potential and usefulness of the unsupervized technique is 
illustrated using fully polarimetric SÁR complex data acquired by 
the NASA/Jet propulsion Laboratory Airborne polarimetric radar 
(AIRSAR). 

The paper is organized as follows. In section 2, Gaussian 
and the K-distribution models for the polarimetric SÁR data 
are presented. In section 3 the polarimetric feature vector used 
for clustering of the polarimetric SÁR data and the clustering 
technique are defined. Section 4 presents the MAP polarimetric 
classifier. In section 5 experimental results are analyzed. A 
conclusion summarizes the major drawbacks of the proposed 
technique. 

2. STATISTICS MODELS OF POLARIMETRIC 
SÁR DATA 

In this section, two models for the conditional distribution 
of the polarimetric SÁR complex data, given the region labels, 
are presented. The region label of pixel site s in the image 
plane is designated as Ls = 1 with l E {1 . . . k}, where k is 
the number of regions, Y denotes the single look polarimetric 
measurement vector at pixel site s, i.e., the vector of the three 
single look polarimetric complex amplitudes measured at site s by 
the polarimetric radar, 

HH HHi + iHHy
yg = HV Y H + iHVy , (1) 

[ VV LVV±iVVJ4 

with: 
HH: the signal transmitted is H polarized and the return response 
is H polarized (copolarization). 
HV the signal transmitted is H polarized and the return response 
is V polarized (cross-polarization). 
VV: the signal transmitted is V polarized and the return response 
is V polarized. 

The VII return is not present in Eq. (1) since symmetrized 
with the HV return during compression and calibration of the 
data. 

2.1. Gauss model 

A Gaussian conditional distribution of the single look polari-
metric measurement vector Ys given its region label Ls is as-
sumed, 

P(Yr /l) =
~3~ZIC1It~2 

exp-2(Yry CF 1Y.). (2) 

The superscript y denotes complex conjugation and the trans-
pose of the vector. The 3 by 3 complex matrix CI =< YYry >l 
where < > denotes ensemble averaging, is the polarimetric co-
variance matrix of the data in region I. The Gaussian model 
assumes that each region has stationary backscatter statistics, i.e., 
the covariance matrix C1 is translated invariant. The only source 
of spatial variability of the SÁR signal at different polarizations 
and within an homogeneous region is the image speckle. In the 
case of the real polarimetric SÁR data used in this paper, mea-
sures of local statistical characteristics of the signal such as its vari-
ance and correlation coefficient reveal that the Gaussian assump-

tion is not satisfactory [5][8]. The SÁR signal is also significantly 
modulated by a spatial variability of the backscatter coefficient of 
the imaged surface, in which case multivariate K-distribution may 
better model the statistics of the polarimetric SÁR data [5][7]. 

Direct evaluation of Eq. (2) at each pixel location involves 
prohibitive computation of the Hermitian form (Y7 C' 'Y,). A 
simplification is possible in the presence of azimutally symmetric 
targets [3], since the HV amplitude is uncorrelated with the HH 
and VV complex amplitudes, and the covariance matrix is: 

1 0 P1 ry7 
Ci=01 1 0 el 0 

LPi i1 0 Y1 

with 

Pl = 
(E[I HH]2]1E[I VV I2],)a.s 

where the superscript * denotes the complex conjugate. Replac-
ing C1 in Eq. (2), leads to [3]: 

1 í  IHHI2  1HV12 

ár3/2 eXp —
oj(1 — IPII2) olel 

IVVI2 
+232e(HH•VV* Pr) 

űlyi(1 — IP112 0l yr(1 — IPII2) 
— Ln(Pl€1 '1(1 — IPII Z))} • (g) 

To improve the labeling process to each pixel site s, the 
conditional distribution of a single polarimetric measurement 
vector Eq. (1) is replaced by the joint conditional distribution of 
a small set of polarimetric measurement vectors contained in a 
neighborhood Vs of site s. Then, region labeling will exploit the 
additional polarimetric information provided by the neighbors of 
S. 

We will assume that the N polarimetric measurement vectors 
Ys contained in Vs are spatially uncorrelated, i.e., conditionally 
independent as they are Gaussian. The conditional distributions 
of the Y's becomes [3]. 

al = E[IHHI2]r 

E[IHVI2]1 
E[I HHI2]1 

E[IVVI2]1 
1'1 = 

E[I HHI2]1 
E[HHVV *]1 

E _ 

(3) 

(4) 

(5) 

(6) 

P(Y/l) = 

(7) 

P(Y/l) = -sN exp{—NUl (Y/1)}, 

where the energy function Ui (Ys/Ls = 1) is: 

IHHNI2 IHVNI2

with: 

and 

Ui (Ys/Ls = 1) = 
71(1 — Ia112 ) 0IE1 

IVvNI2 
71y1(1 - IPII2)+

+ 23te 
~1 11(1 — IP112) 

— Ln(oi Eryl(1 — I P11)) (10) 

(HHN •VV*N P1) 

(9) 

N 

HHNVV*N = 
N 

•

i-1 

N 

HHN = 
N 

I j .2 (12) 

-t 

Computing Eq. (12) is exactly equivalent to multi-look opera-
tion performed on N single look polarimetric SÁR complex data 
samples. Hence, the segmentation technique described here is 
applicable in a straightforward manner to the case of multi-look 
polarimetric SÁR complex data. 
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ItVV = < IVVI2 >m 

In particular, the second-order intensity moment is given as: 

2.2. K-distribution model 

In previous publications [2][3] on this subject, Gaussian statis-
tics have been frequently assumed for the radar return signals to 
build the Bayes terrain classifier. However, abundant experimen-
tal evidence shows that terrain radar cluster is non Gaussian, i.e., 
non Rayleigh in amplitude distribution. Among many non Gaus-
sian statistics, the K-distribution has proven to be useful in char-
acterizing the amplitude distribution of electromagnetic echoes 
from various objects, including diverse ground surface and wave 
propagation through atmospheric turbulence. 

By assuming a product model where the received polarimetric 
returns are the product of complex Gaussian random vector and 
a Gamma-distributed scaling factor, a K-distribution with two 
parameters  and g was derived in Novak [11]. In this paper, 
another approach, a clustered terrain scatterer model, is used to 
derive the k distribution with one parameter a. By setting µ = a 
and g = 1/a; the result in [11] can be transformed into Eq. (13) 
in this paper, 

( 2a)n/4+ca/2 , (~r*TCF lY 9 )a/2-n/4 

P(Y/1) 1 (2a)n/~ICiIl/ 2

X Kn/2-a(( 2a) l / 2 ' (Ye*TC~ lY  
)l/2) (13), 

where n is the vector dimension, a is the parameter of the model. 
The normalized intensity moments of HH, HV VV are defined 

as follows 

I tt`HH = < 
IHHI2m > 

< IHHI2 >m 

Itt'HV = < 
IHVI2m > 

< IHVI 2 >m 

< II/j/I2m > 

(14) 

(15) 

I(2) -z2(1 -1- 1/a). 

In this paper a is estimated by simple averaging, 

a 
= (aHH ± aHV + aVV ) 

3 

(15) 

(17) 

(18) 

2.3. Markov random field 

Markov random fields (MRF) are mathematically convenient 
for representing local interaction between neighboring pixel at-
tributes. They can model the spatial extent of the interactions. 
They have an equivalent description in terms of Gibbs energy 
function which provides a more practical way of describing the 
state of organization of physical attributes within a system than 
local probabilities. The conditional distribution of the region label 
Ls, given the region labels elsewhere, is only dependent on the re-
gion labels of an immediate neighborhood (Markovian property) 
and is expressed as: 

P(Ls = l/Lv) = exp{—NUz (Ls = 1/Lv)) (19) 

with: 

~ • U( Ls = 1/Lv) _ 
—ii. 

~ á(Ls — Lr) 

rEVa 

(20) 

and 

Z = exp{—NUz (Ls = l;/Ly)). (21) 

Lv is the set of labels neighbors, Vs is a neighborhood of N 
elements excluding its center s, Z is a positive normalizing 
constant independent of 1, Q is a positive constant and ó is the 
Kronecker symbol. 

To be consistent with Eq. (10) the same neighborhood struc-
ture is selected for modeling polarimetric complex amplitudes and 
the region labels Vs is 3 by 3 square box, i.e., a second-order 
neighborhood window. 

Higher order neighborhoods provide better smoothing of the 
data and segmentation accuracy within homogeneous areas but 
impair the detection of small structural details and also increase 
the classification error at region boundaries. The positive constant 
,0 encourages neighboring pixels to have the same region label and 
also determines the degree of clustering. 

The value ,0 = 1,4 was adopted in all our experiments. 

3. VECTOR CHARACTERISTIC AND 
MULTIDIMENSIONAL CLUSTERING USED 
TO PARAMETERS ESTIMATION 

The polarimetric covariance matrix C, fully characterizes the 
first order statiscics of class 1 of polarimetric backscatter. Hence, 
a possible mode of unsupervized selection of the classes of 
polarimetric backscatter is to perform clustering on a feature 
vector composing the matrix C,. We choose the feature vector 
Xc to be equal to the logarithm of the parameters composing the 
polarimetric covariance matrix as: 

< Ln(IHHI2) > - 

X~ = < Ln(IHVI2 ) > 
< Ln(IVVi2) > 

Ln(I <HHVV* > I)_ 

The first three coefficients represent the backscatter cross 
section in dB of the surface element at three different linear 
polarizations. The fourth component measures the magnitude of 
the HH — VV correlation function. The polarimetric feature 
vector Xc contains the complete polarimetric information in the 
case of azimutally symmetric targets. 

The advantage of operating in the log domain instead of the 
linear domain are two-fold [2]: 
• In the log domain, image speckle has the statistical characteris-

tics of additive noise with a power level not varying much across 
the image. Therefore, operating in the log domain renders 
clustering robust to the presence of image speckle. 

• In the linear domain, the cross-polarized terms (i.e. HV) are 
often several orders of magnitude smaller than the copolarized 
terms (i.e. HH, VV), and clustering is mainly driven by the 
copolarized terms unless an arbitrary weighting of the different 
channels is used. 
The optimal weighting may vary with the type of targets or the 

environmental conditions. 
To measure the separation between a polarimetric feature 

vector Xc; of the i' th sample and cluster center Oi (written 
as a vector similar to Xc;), an Euclidean distance may be 
used. The choice of this metric leads to iterated fuzzy c-
means (FCM) clustering algorithm which minimize the following 
objective function EC with respect to fuzzy membership P(Xc;, l 
and cluster center Oi [1]: 

k m 

(22) 

EC = ~ ~ P(X ci, ,1)' • IXc, — O, 12, (23) 
1=1 i=1 

where m is the number of samples used in the clustering 
algorithm, a is the fuzziness index, a> 1. 

The FCM algorithm is executed in the following steps: 
• Initialize memberships P(Xc;, l) of Xc; belonging to cluster 1 
such that 

k 

P(Xc;, l) = 1. (24) 

i=1 

• Compute the fuzzy centroid Oi for i = 1, 2,. .. , k using 
m m 

Oj = (P(Xcie9 'Xci)/ P(Xcie7) a . (25) 

i=1 i=1 

• Update the fuzzy membership P(Xc;, l) using 

P(Xci,l)a = (1/IXei —Oii2)a-1/ 
k 

~(1/IXc ; —
j=1 

(26) 
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• Repeat steps 2) and 3) until the value of EC is no longer 
decreasing. 
In our experiment, we have chosen n = 1.4, the initial 

configuration of the cluster centers is the Isodata solution, and 
the FCM optimization process is iterated until the number of 
samples points changing their memberships P(Xc;,l) by more 
than e = 1 % is less than 4 %. 

A known inconvenience of the FCM clustering algorithm is 
that it is not adapted to the situation where natural clusters 
are elongated in one direction. However, variability of the 
cluster elements can be modeled as resulting from three different 
sources: 
• images speckle 
• system noise 
• texture. 

In the log-domain, the variance of the signal due to image 
speckle and system noise is constant whatever the polarization. 
As a result, it is reasonable to assume that the clusters are nearly 
spherical in the polarimetric feature space. 

4. THE MAP CLASSIFIER AND ITS 
IMPLEMENTATION 

Using Bayes' theorem, the posterior distribution of the region 
label Ls given the single look polarimetric amplitudes Ys and the 
region label of a neighborhood Vs is: 

P(Ls = l/Lv, Ys) = P(Y /l) • P(Ls = l/Lv)/P(Y ). (27) 

As Ys is known, P(Ys) is just a positive constant independent 
of the region labels. Expressed in terms of an energy function, we 
have: 

P(Ls = l/(Y5 , Lv)) a exp[—NUl (Ys/Ls = 1) 

— NU( Ls = l/Lv)]. (28) 

The MAP estimate of L minimizes the global energy of the 
image expressed as: 

EMAP = Ui (Y,. /Ls = 1+ u: (Ls = l/Lv)]. (29) 

Originals images (HH,HV V V) 

Spitmsome image 
liítr 
iteration 

Fig. 1. ICM Implementation 

Energy functions Ui and Uz only depend on local conditions, 
i.e., local polarimetric amplitudes and region labels. The nec-
essary iterative stochastic relaxation algorithms are often imple-
mented by simulated annealing, but the cost is intolerable for 
many applications. The MAP is thus implemented using a deter-
ministic technique: the ICM (Iterative Conditional Modes) algo-
rithm [10]. The initial configuration is taken as the result of the 
FCM algorithm. At each iteration through the image sites, the 
state of each site is either changed to the state that yields maximal 
decrease of energy, or is left unchanged when no energy reduction 
is possible. The process always stops at a local minimum when 
no more changes can be made. To accelerate the convergence of 
ICM we use a table of stability measured by Markov probability in 

the labeled image. A pixel is classified as unstable if there exists 
at least one pixel in the neighborhood with a different label. Fig. 1 
shows the ICM method. 

5. EXPERIMENTAL RESULTS 

The results are obtained from data measurements of the 
MAESTRO-i campaign made by the NASA/JPL polarimetric 
AIRSAR system which operates at P (0.44 GHz), L ( 1.225 GHz) 
and C (5.3 GHz) frequency band with an incident angle ranging 
approximately from 40° to 50°. The campaign measurements 
were made on the 16 of August 1989 when meteorological and 
environmental conditions were optimal in France. All data are 
in the form of one-look resolution complex scattering matrix and 
each pixel represents 6.66 m in slant range and 3 m in azimuth 
on the ground. The test-site selected is a Forest (Les Landes) 
in south-western France (near Bordeaux). It is almost totally 
formed of maritime pine (pinus pinaster) and consists of a section 
of forest where trees are of different ages and number. 

For the experimental results, we have selected five regions of 
trees which differ by their ages (from one to 46 year old) and clear 
cut region. 

Fig. 2 represents the HH image of the test-site at L-band with 
a look direction parallel to the row direction. 

Fig. 3 shows an idealized configuration (there exists some trees 
in each area which does not meet the age range). 

Fig. 2. Image HH at L-band 
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Fig. 3. Real conflguration of the areas test 

5.2. Segmentation using the Gauss model 
with one polarimetric component 

To compute the characteristic vector Xc, we use a window 
of size 13 by 10 pixels (after some experimental trials). The 
segmentation result HH component (respectively VV) is shown 
in Fig. 4 (respectively Fig. 5) and Table 1 (respectively Table 2) 
summarizes the percentage of good classification. 

Table 1. Numerical result of segmentation 

area I: 
41-46 
years 

area?.: 
33-44 
years 

area3: 
clear 
cut 

area 4: 
6-10 
years 

area 5: 
33-44 
years 

area 6: 
1-5 
years 

VV 75% 39% 70% 29% 38% 86% 
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Table 2. Numerical result of segmentation using the HH 
component 

area 1: 
41-46 

years 

area 2: 
33-44 

years 

area3: 
dear 
cut 

area 4: 
6-10 
years 

area 5: 
33-44 
years 

area 6: 
1-5 

years 

HH 82% 38% 73% 6% 80% 84% 

Fig. 4. Segmented image using the VV component 

Fig. S. Segmented image using the HH component 

5.3. Segmentation using the three polarimetric 
components HH, HV, VV 

Fig. 6 represents the polarimetric segmentation of image. 
Percentage of correct segmentation is presented in Table 3. 

Fig. 6. Segmented image using the full polarimetric components 

Table 3. Numerical result of segmentation using three 
polarimetric components 

area 1: 
41-46 

years 

area 2: 
33-44 

years 

area3: 
clear 
cut 

area 4: 
6-10 

years 

area 5: 
33-44 

years 

area 6: 
1-5 

YCHI'S 

HH, 
HV 
W 

75% 70% 82% 75% 62% 96% 
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For each area the latter classification exhibits good classifi-
cation percentage which is always better than the worse result 
present in Table 1 or Table 2. 

For area 2 and 4, the use of combined polarimetric data leads 
to considerable improvement. 

No area present a misclassification percentage grater than 
38 % when using the combined data. 

The error dispersion matrix indicates that the misclassification 
rate increases when two conditions are met: 
• neighboring areas 
• overlap of age ranges as in area 1 and area 2. 

Table 4. Errors desperation represented in the matrix (in 
percentage) 

areal: 
41-46 
years 

area 2: 
33-44 

years 

area3: 
clear 
cut 

area 4: 
6-10 

years 

area 5: 
33-44 

years 

area 6: 
1-5 

years 

zone! 0 30 0 0 0 0 

zone 2 25 0 0 0 0 0 

zone 3 0 0 0 0 0 18 

zone 4 0 0 0 0 36 0 

zone S 0 0 0 25 0 0 

zone 6 0 0 4 0 0 0 

5.3. Segmentation using the K-distribution 
with three polarimetric components 

Fig. 7. Segmented image using the K distribution. 

Fig. 8. Image HH in P-band 
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Fig. 10. Segmented image using a K-distribution model 
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1. INTRODUCTION 

Imaging radar is an active electromagnetic wave sensor which 
operates by radiating electromagnetic energy in the microwave 
part of the EM spectrum and sensing the presence and character 
of the returned signal from the earth surface. The echoes from a 
target surface detected by the receiver of the radar will undergo 
signal processing procedures and form a digital image in which 
the pixel values correspond to the backseattering properties of the 
earth surface. 

In practice the well-known imaging radar is the Synthetic 
Aperture Radar (SÁR) which was developed on the base of 
experiences of improvement the azimuth resolution of the Side 
Looking Airborne Radar (SLAR). Examples for these radar 
systems: The European Remote Sensing Satellite (ERS-1), 
the SLAR developed by the Remote Sensing Group at the 
Department of Microwave Telecomm. A radar imaging system 
compared with optical imaging sensors has the main advantage 
that the imaging capability is independent of time and weather 
conditions due to the use of microwave frequencies. 

Although the radar images and the optical images may contain 
useful information the quality of a radar image should not be 
analysed by how it compares to an optical image. The main 
point is that how faithfully it represents the spatial distribution 
of microwave reflectivity of surface. Moreover, the radar images 
may contain unique information about target features revealed 
by image processing techniques and which are not obtainable 
otherwise. 

The purpose of image processing techniques (i.e. noise filtering, 
edge enhancement, segmentation procedures), is to transform the 
digital radar image to a format which retains the main features and 
character of a target but it is readily understandable by human 
observers. 

2. THE PROCESSING ENVIRONMENT 

The image processing procedures were executed with the help 
of The Integrated Land and Water Information System (ILWIS) 
software package which has the facility using and running of user 
defined processing tools. The original raw SLAR images were 
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created by The Remote Sensing Group at the Technical University 
of Budapest, the raw ERS-1 SÁR image was available on CD by 
courtesy of European Space Agency. 

3. SPECKLE IN RADAR IMAGES 

The radar generates images by coherent processing of scat-
tered signals from the tiny surface structure. The effect of the 
random Huctuations in the return signal observed from a surface 
area represented by one pixel produces a speckle on the image, 
i.e. there are variations in the gray-level between adjacent resolu-
tion cells that is the image has a specific granular appearance. 

The presence of speckle largely reduces the detectibility of 
objects and observability of fine details. Fig. 1 shows a typical 
speckle pattern on ERS-1 SÁR image. 

Fig. 1. ERS-1 SÁR image over the river Danube 

4. SPECKLE SMOOTHING TECHNIQUES 

Numerous speckle suppression techniques have been proposed. 
These procedures basically fall into two categories. In the first 
category improving the appearance is performed by averaging 
several sample collected from the same part of the target area. 
This early method of speckle reduction can be executed on board 
of the aircraft. The disadvantage of this technique is the loss 
of spatial resolution and that the speckle noise is not completely 
suppressed. In Fig. 2 a SLAR image is shown. In this case eighth 
independent samples have been averaged for producing a pixel. 
The degradation resolution can be observed because of extension 
of composing of bright point like targets. 

Fig. 2. SLAR image over the river Danube 

The another procedure for smoothing the speckle noise is the 
filtering technique. Filtering is a process in which each pixel 
intensity is replaced with a new value with applying a certain 
function to the pixel and its neighbours. In Fig. 3 the result of 
median filtering is given which is a simple method but it has the 
advantage that it retains the character of step and slope transition 

between adjacent pixels and suppresses the spiky noise. 

Fig 3. A median filtered ERS-1 image 

5. EDGE ENHANCEMENT 

The significance of the edges, one of the simple features of an 
image, is that an image with over-enhanced edges produces better 
feeling to the human analyst, and the edges are widely used to 
outline the boundaries of objects for classification and analysis. 
For example in case of homogeneous areas such as agricultural 
fields it is necessary to preserve the average brightness values 
within, and maintain sharp edges between adjacent fields. Fig. 4 
shows the effect of edge enhancement filter applied on the raw 
radar image. 

Fig. 4. Edge enhancement on ERS-1 image 

6. ASPECTS OF IMAGE INTERPRETATION 

It is desirable to reduce speckle noise in radar images to 
facilitate interpretation and to preprocess images for further 
classification. It has been accepted that some filters produce good 
performance in smoothing while others work well at the vicinity 
of edges. The outcomes of these procedures are shown in Fig. 5 
and 6 successively. Fig. 5 is abundant in particulars while on the 
Fig. 6 the linear structures, like rivers, ridges, field boundaries can 
be observed better. 

The classification and the clustering are parts of interpretation. 
Classification means the sorting of the image features into groups. 
The separation based on creation of a sample set on image 
with certain, well-recognizable image segments which have typical 
brightness distribution. In the case of Fig. 7 four samples have 
been chosen: river, forest, agricultural field, artifical object and 
the classification was a built-in ILWIS algorithm. 
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Fig. 5. Image with numerous well-seen particulars 

Fig. 6. ERS-1 image with enhanced rivers, ridges 

The clustering is a kind of reverse classification. In this case 
the aim of the procedure is to find groups to the existed image 
elements. In clustering such segments belong to one group which 
are comparable with others well and there is significant difference 
to another ones. The effect of a built-in ILWIS clustering 
procedure is given on SLAR image in Fig. 8. It can be said that 
this result approaches better the original stage then the previous 
one. 
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Fig. 7. Classification of SLAR image 

Fig. 8. Clustering of SLAR image 

7. CONCLUSION 
In this study some well-known image formation procedures 

have been applied to raw radar images. The outcomes of the 
analysis show that the different methods make the original (raw) 
image data readily understable by human observer. In case of 
after-image-formation procedures it has to make an effort to use 
algorithms (or series of algorithms) which produce a final result 
with suppressed noise effects and retained structural and textural 
features. 
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