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1. INTRODUCTION 

Edge detection is mainly the process that measures, detects 
and localizes changes of intensity. Edges may or may not 
correspond to an object boundary, but they have the desirable 
property of drastically reducing the amount of information to be 
processed subsequently while preserving information about the 
shapes of the objects in the scene. Most vision systems use 
an edge description of the scene as input to higher level image 
understanding processes. 

In literature a number of optimal linear filters have been 
proposed for edge detection. These filters can be divided into 
two classes. The first class of filters are first order derivatives of 
low-pass filters and look for maxima in the output of the filter (cf. 
Canny [1], Deriche [2], Sarkas and Boyer [11]). The second class 
of filters are second order derivatives of low-pass filters and detect 
zero crossings in the output of the filter (Marr and Hildreth [8], 
Deriche [3], Sarkar and Boyer [10], Shen and Castan [12]). These 
filters are always obtained in the 1D continuous domain. The 
criteria used are those introduced by Canny: good detection, good 
localization and a low spurious response. The influence of nearby 
edges is not taken into account. An important aspect in obtaining 
these filters is the natural uncertainty principle. This principle says 
that the product of the good detection and the good localization 
criteria is invariant with respect to spatial scale. However, the 
filtering has to be performed in the discrete domain. Discrete 
filters are obtained by sampling the continuous filter. 

2. 1D EDGE DETECTION IN THE 
DISCRETE DOMAIN 

In this section we will discuss the influence of the sampling 
process on the performance of the different edge detectors. The 
performance criteria are similar to those used by Sarkar and 
Boyer [10] (adapted to the discrete domain): large SNR (i.e. a 
large slope ratio), a good localization (Localization=1/localization 
error) and a low multiple response (a large MRC-value will 
result in fewer spurious responses). In the continuous domain, 
the product of the SNR and the Localization is independent of 
the spatial scale of the filter. However, increasing the spatial 
scale results in an increase of the influence of nearby edges (De 
Vriendt [5]). This influence should be taken into account both 
in the continuous and in the discrete domain. Therefore, in the 
discrete domain we also introduced a parameter 4, which takes 
into account the influence of nearby edges. dh is defined as 
the minimal distance between two edges with the same intensity 
step (but with a different sign) such that the localization error 
has a maximum of 12 pixel. The performance (per f = SNR • 
Localization • MRC) of different filters is compared for a given 
dh. The derivation of the expression of the SNR, Localization 
and MRC are found in De Vriendt [6]. 

The SNR is given by the slope ratio, i.e. 

SNR =  IYa(1 ) — Ya(0)I 
(1) 

— yn(k -1- 1))2] 

where y(k) = s(k) * h(k), s(k) the Gaussian filtered (and 
sampled) version of the ideal step edge A • U(x) and h(k) the 
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zero crossing based edge detection filter. The Gaussian filter ga, 
represents the low-pass filtering introduced by the system's optics. 
yn (k) = n(k) * h(k), where n(k) is white Gaussian noise, i.e. 
E[n(k)n(k + r)]] = o ö(r). After some c

l

alculations we obtain
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The Localization is obtained as 

Localization = 
1 

V E[l2] 
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In De Vriendt [4], [6] we have obtained a very good approx-
imation for the distribution of the localization error. From this 
distribution the variance of the localization error is obtained. The 
MRC is given by 

MRC= d , 

where dze is the mean distance between zero crossings in y, (k) 
and W is given by 

(3) 

(4) 
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(6) 

It is easy to prove that (crf. Papoulis [9]) 

MAC=  
a  

L.
(7)

arccos p W 

Due to the low-pass filtering introduced by the system's optics, 
the natural uncertainty principle is no longer valid. The minimum 
in the standard deviation of the localization error is no longer 
obtained for a filter width which approaches zero. Furthermore, 
the sampling of the continuous filters proposed by Sarkar and 
Boyer [10], Deriche [3] and Shen and Casten [12] leads to aliasing. 
As a consequence, the response of the filter to a constant signal 
is no longer zero. The detection filter has to be modified. 
Alternatively, we can use the projection function p(x) (i.e. the 
double integral of h(x)), sample p(x) to obtain p(k) and finally 
compute h(k) by convolution of p(k) with a small filter for 
approximating the second order derivative i.e. 

h(k) = p(k + 1) — 2p(k) + p(k — 1). (8) 

The filter considered in the comparison are in case we start 
from the projection filters: 

PGauss(k) =go(k) for IkI <5.5o 

=0 for IkI > 5.5o (9) 

PISEF(k) =alkl (10) 

PSar(k)=(1+QIki+ +122 
k2)e—Rlkl (11) 

PDer(k) = ( 1 +NppIkI)e—Rlkl (12) 
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In this case the zero crossing based edge detection filter h(k) 
are obtained by using equation (8). In case we immediately start 
from the sampled versions of the continuous edge detection filters 
we have: 

hGauee (k) = k2o4 2 9o(k) + est for IkI
= 0 for IkI > 5.5ű (13) 

where est is chosen such that +O° h(k) = O. For the ISEF 
m=—oo 

we define h(k) as (cfr. Shen abnd Casten [12]) 

hISEF(k) = 1+a  a lkl — 6(k) with a E]o, l[ . (14) 

This filter (as well as the next 2 filters) can easily be imple-
mented as an IIR filter. As an approximation for the filter of 
Sarkar and Boyer [11] we use 

h5ar (k) = ± y(~aI kI 
a 

a 1 a2IkI2)) e l (15) 

with 

~ = ( 1+a)(1 — a) 1  11a/j ~-2«(1—a)+(«-1-1)(3(1+a)J 
en a =e — Q 

(16) 

(17) 

The value of y is chosen such that mO° 
—oo 

h(k) = 0. Sarkar 
-

and Boyer choose a = 0.312 because this value maximizes the 
product of SNR, localization and MRC. The filter proposed by 
Deriche is a special case of the filter of Sarkar and Boyer (i.e. for 

= —1). 
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Fig. 1. The performance (per]) as a function of dh for the different 
filters in the 1D domain (dh = 0.6) 

Again the value of y is chosen such that +°° h(k) = 0. 
m--oo 

In the continuous domain the best performance is obtained for 
the filter of Sarkas and Boyer, followed by the filter of Deriche, 
the Gaussian filter and the filter of Shen and Castan. This result 
is still true for large filter widths i.e. for large dh. We could 
expect this result because for large (spatial) widths of a filter, the 
bandwidth of the filter is very small and consequently there is no 

aliasing (except for the filter of Shen and Castan (De Vriendt 
[6])). However, other conclusions are obtained for smaller dh
(see Fig. 1). For d h smaller than 3.84, the Gaussian filter gives 
the best performance. Except for the filter of Shen and Castan, 
all filters have an increasing performance when dh increases. Of 
course, an increasing dh also results in a larger influence of nearby 
edges which is not reflected in the performance. The optimum of 
perf • dh' is obtained for the Gaussian filter (dh = 2.78) for a 
spread of the Gaussian filter of a = 1.41. In De Vriendt [7], [6] 
we obtain the optimal 1D edge detection filter using these criteria. 

3. 2D EDGE DETECTION IN THE 
DISCRETE DOMAIN 

A 2D filter can be obtained by convolving a linear edge 
detection filter aligned normal to the edge direction with a 
projection function parallel to the edge direction. A substantial 
saving in computational effort is possible if the projection function 
is the double integral of the edge detection filter. Indeed, the 
edges can be detected by first filtering the image with a 2D 
version of the projection filter and then computing the second 
order directional derivative in the direction of the gradient. This 
method is used by Marr and Hildreth [8] (though they compute 
the Laplacian instead of the directional derivative), Deriche [3], 
Sarkar and Boyer [10] and Shen and Castan [12]. 

The performance criteria are the natural extensions of the 
criteria in the 1D domain. These criteria are: SNR, Localization, 
MRC and dh. In the 2D continuous domain, the product of 
SNR and Localization is independent of the spatial scale. On 
the other hand, in the 2D domain, the SNR increases strongly 
by increasing the width of the filter, and the Localization is almost 
constant (slightly increasing) for an increasing width of the filter. 
If we would only take into account the SNR, Localization and 
MRC in the performance evaluation, the optimal filter would 
have an infinite width. Therefore, the parameter dh is very 
important in the 2D domain. dh takes into account the influence 
of nearby parallel edges. For an edge parallel to a given direction, 
the length of the edge in that direction will also be limited. 
Therefore, also the extent of the projection function p(k) should 
be limited. A new parameter a- is is introduced as a combination 
of Qp, the spread of the projection function, and the spread of 
the low-pass sampling filter. The performance in 2D is defined as 
per f = SNR • Localization • MRC/«apt . Filter are compared 
for a given dh. 
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Fig. 2. The performance (per]) as a function of dh for the different 
filters in the 2D domain 
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A MULTI-STEP FAST MEDIAN ALGORITHM 
FOR 2D DATA OF VARIOUS WORD-LENGTH 
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1. INTRODUCTION 

Two-dimensional median filter is widely recognized as a power-
ful tool for impulsive noise removal in digital imagery. Its effec-
tiveness depends on that abnormal values due to superimposed 
noise pulses do not affect the response, as for linear filters, but 
are simply discarded as extreme local values [1]. In image pro-
cessing applications of median filtering, a local window is moved 
from one column to the next along the rows of the image and 
the median of the pixels contained within the window at each 
position is computed. Finding the elements of a new window 
requires the replacement of a number of pixels in the previously 
displace window equal to the number of rows in the window. The 
median obtained through this process is called the running median 
[2]. Since the direct approach of sorting a given set of numbers 
and finding the median is an extremely time-consuming operation, 
faster algorithms have been designed in the practical case of image 
data with a finite number of levels L [3]-[6]. 

Perhaps the most well-known fast algorithm for two-dimensional 
nonseparable median filter has been proposed by Huang et al. 
[5], and is based on the concept of local histogram of gray-levels, 
instead of sorting criteria, to determine the median. The local 
half-percentile is thoroughly computed only for the first pixel of 
each row and then upgraded from the update of the local his-
togram obtained by considering pixels entering and leaving the 
local sliding window. This scheme heavily reduces the computa-
tional burden with respect to implementations based on sorting 

concepts, in the hypothesis that only a finite set of values are 
allowed. In fact the number of operations needed to process a 
pixel is O(n), for an n x m window, whereas in conventional 
sorting implementations this number ranges between O(n2 • m2 ) 
and O[n - m(log n + log m)], and in sorting schemes exploiting 
1D recursion O(n log n) [7], [8]. 

Other fast algorithms for 1D and 2D median include the 
scheme developed by Ataman et al. [3], that determines the kth 
bit of the median by inspecting the k Most Significant Bits (MSB) 
of the samples. Another algorithm to compute the median, or 
any other rank-order value, was presented by Danielsson [4]. 
This algorithm computes the median by examining the bits of the 
argument columnwise starting with the MSBs. The algorithms 
discussed in [3] and [4] are based on the binary representation 
of the data for finding out the median and therefore have a 
cost logarithmic with the number of levels. They are efficient 
for real-time realizations on array processors or other parallel 
hardware. However, the implementation of these algorithms on 
general-purpose computers will not be suitable, since most of the 
high-level languages, such as Fortran, Pascal and C, do not provide 
bit manipulation facilities. 

A further algorithm for running median computing was devel-
oped by Rao and Rao [6], who consider the complement of the 
local Cumulative Distribution Function (CDF) instead of the local 
histogram. The scheme is more efficient in the 1D case; while 
computing the median becomes as bitonic operation and therefore 
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has a logarithmic cost, the update of the complementary CDF is 
extremely onerous, especially for 2D windows, being proportional 
to the number of levels. Finally, a different fast algorithm has 
been developed by Ahmad and Sundarajan [9], whose execution 
time is independent of the data precision and is relatively insensi-
tive to the noise level, or to the spatial correlation, in the image. 
Instead of using a histogram and updating it, the elements inside 
a window are put into two subsets that are updated for each po-
sition of the sliding window. This algorithm has the noteworthy 
property of exploiting the recursion along both rows and columns, 
thus reducing the update time, but implementation is critical 
and requires efficient structures in order to take advantage over 
histogram-based algorithms, especially for large local windows. 

Another drawback of some fast algorithms specifically designed 
for integer data, like those reported in [5] and [6], is that their 
computational cost linearly depends on the number of levels 
L, that is on the length of the local histogram, as well as on 
the linear size of the local window. While the latter is limited 
to relatively small values, at least in practical situations, the 
number of levels of the input image data can be also considerably 
elevated in applications where high precision values are require, 
i.e. whenever local fluctuations of small entity compared to 
the full scale value are regarded as significant, as in medical 
imaging, or in remote sensing for geology, hydrology, agronomy 
applications. The invariance, or at least a slow variance of the 
execution time for a given window size as the data wordlength is 
increased, is a desirable feature especially in view of the fact that 
modern high-precision scanners have led to processing images of 
10, 12, and 14 bit precision. 

In this paper a modified version of the algorithm introduced 
in [5] is proposed as specifically designed for integer image data 
with a very large, or even huge number of levels. The algorithm 
is based on factorizing the number of levels and introducing the 
concept of reduced local histogram relative, in case of binary 
representation of the data, to some MSBs of the image samples. 
A multi-step algorithm provides a coarse-to-fine estimate of the 
actual median value. The first, or coarse, step works on the 
most reduced histogram according to the modality stated in [5], 
which will be reviewed in Sect. 2, when explaining the outline 
of the novel algorithm. The gross estimate of the median 
is refined in further phases, involving only limited portions of 
histograms, relative to LSBs of the samples. Comparisons in 
terms of theoretical average number of operations, reported in 
Sect. 3, between the single and a two-step fast running medians, 
explain the features of the modified algorithm and its advantages 
over histogram-based schemes, when dealing with high precision 
integer data. Running time comparisons, reported in Sect. 
4 between the histogram algorithms and Quicksort, show that 
significant advantages are achieved with respect to both Huang's 
and rank-sorting median, in many practical image processing 
application cases. 

2. OUTLINE OF THE ALGORITHM 
Before describing the coarse-to-fine fast median scheme, the 

algorithm proposed by Huang et al. [5] is summarized in the 
following steps concerning the retrieval of the running median 
from the local histogram, and relative to processing of an 
individual row. 
1. Set up the gray-level histogram of the first window of size 

n x m and find the median, by making the count ltmdn 
of the number of pixels with gray-level less than the median 
(ltmdn ≤ [(n x m)/21). 

2. Move to the next window by deleting the leftmost column 
of the previous window and adding one column to the right. 
Update the histogram and the count ltmdn from the n leaving 
and n entering pixels. Now ltmdn stores the number of pixels 
in the current window having gray-levels less than the median 
of the previous window. 

3. Starting from the previous median, move up/down the his-
togram bins one at a time if the count ltmdn is not greater/greater 
then [(n x m)/2J and update the count ltmdn until the me-
dian bin is reached. 

4. Stop if the end of the line is reached; otherwise go to Step 2. 
Notice that if in Step 2 the count ltmdn is unchanged with 

respect to its previous value, then the median is the same as 

before; therefore, Step 3 is skipped. 
Now, let us introduce a reduced histogram HR of size L1

from the histogram H of size L: 

(k+1)L2 -1 

l=kL 2

HR(k) = 

<L 

H(l) k = 0,1, . . . , L1 — 1, (1) 

where L2 = L/L1. If B1 = loge (L1 ), then HR is the local 
histogram of WR, the B1-MSB representation of W, the data set 
inside the local window. The correspondence between the two 
histograms in graphically evidenced in Fig. 1. 

n.euae i+apw.m 
(.z. L') 

(iks L, J 

Fig. 1. Whole and reduced gray-level histograms for two-step fast 
running median computing 

The two-step algorithm consists of finding rmdn, the median of 
WR, whose bits are the B1 MSBs of the median of W mdn [3], 
while computing a raw estimate of Itmdn and then of finding out 
the LSBs of mdn, by refining ltmdn, adding the bins of H from 
the (mdn • L2)th to the [(mdn + 1) • L2 — 2]th at most. The 
outline of flow may be condensed in the following five steps, again 
referring to filtering an individual row. 
1. Set up the histogram H and the reduced histogram HR (1) of 

the first window of size n x m and find the median, by making 
the count ltmdn of the number of pixels with gray-level less 
than the median. 

2. Move the next window by deleting the leftmost column of the 
previous window and adding one column to the right. Update 
H, the count ltmdn, and HR (scale pixel values by L2 to 
discard their LSBs). 

3. Scale the median of the previous window by L2, move up/down 
the bins of HR one at a time if the count ltmdn is not 
greater/greater then L(n x m)/2j and update ltmdn until the 
median bin of HR, namely rmdn, is reached. 

4. Starting from rmdn • L2 move up/down the bins of H one at 
a time if the count ltmdn is greater/greater than L(n x m)/2J 
and upgrade ltmdn until the median bin of H is encountered, 
or until the [(rmdn + 1) • L2 — 2]th bin is reached. In which 
case the next bin will necessarily be the median. 

5. Stop if the end of the line is encountered; otherwise go to 
Step 2. 

Again, if in Step 2 the count ltmdn is unchanged with respect 
to its previous value, then we have the same median as before and, 
therefore, Steps 3 and 4 are skipped. Otherwise, even if rmdn 
is unchanged from the previous window, at least one iteration of 
Step 3 will be performed. A three-step algorithm may be easily 
derived; however its application may be recommended only for 
extremely large level numbers (more than 14-bit data), as it will 
be experimentally shown in Sec. 4. Notice that even if two (or 
more) histogram-updating as well as median-upgrading steps are 
necessary, there is only one count ltmdn. 

3. THEORETICAL PERFORMANCE ANALYSIS 

The two-step histogram algorithm described in Sec. 2 will now 
be compared with the classical histogram algorithm in terms of 
orders of computational cost, and maximum and average numbers 
of operations per pixel. 

The order of computation time for the running Huang's 
algorithm depends on two main contributes: update of the local 
histogram and of the number of pixels lower than the median 
ltmdn; upgrade of the local median from the new histogram. 
The former depends on the size n of the side of the sliding 
window perpendicular to the recursion direction, i.e. the number 
of rows of the window fore raster scan of the image data domain, 
and is O(n). The latter is proportional to the length of the 
local histogram, that fs to the number of gray-levels L, as O(L). 
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Therefore the overall cost is taken as O(L), in the practical 
case n « L. For the coarse-to-fine two-step algorithm, the 
term relative to median searching is split into O(Li + L2) = 
O[max(L1, L2)], where Lt represents the size of the reduced 
histogram HR and L2 denotes the number of bins of the local 
histogram corresponding to an individual location of HR, as in 
Fig. 1. Therefore the global cost is O[max(n, L1i L2)] but, as 
it will be shown in the following of this section, practically reduces 
to O(L2) when image correlation is taken into account. 
The formulations expressed in the above paragraph theoret-

ically hold for uniformly distributed and uncorrelated 2D data. 
More significant for histogram-based algorithms, when dealing 
with natural images, are the maximum, or worst-case, and average 
numbers of comparisons. For Huang's scheme, even if the former 
1s NMAX = 2n + 1— 1, the latter is given by 

NA = 2n +  + 1.5 + 0.5po (2) 

ere, if d is the difference of two adjacent n x m medians along 
the scan line, dl is the average of absolute value of d, and po is 
the probability of d being zero in one picture. For a given image 
with L gray-levels the term Idi should decrease as the window size 
increases, since medians of large windows, overlapped except for 
one column, are likely to be close in value. For 8-bit correlated 
images and windows usually employed in image processing, the 
authors have found that the term dl + 1.5 + 0.5p is about 10 
[5]; therefore NA « NMAX. 

For the novel scheme the worst case is NMAX = 2n + 
L1 + L2 — 2. Even if the number of comparisons (to upgrade 
ltmdn, which is unique) is not changed, two histograms are to 
be updated for each new position of the sliding window, and this 
affects computation times, as it will be addressed in Sect. 4. The 
operation of median retrieval is split into two cascaded steps of 
maximum cost Lt — 1 and L2 — 1, respectively. Instead, the 
average number of operations NA, which is related to the actual 
computation time, not per pixel but of the entire image, results to 
be 

NA = 2n + 2LI I 
+ L22

 1 + 1.5 + ~° (3) 

with po as in (2). The assumption is made that the B2 = 
log2 (L2 ) LSBs are uniformly randomly distributed among adja-
cent medians; therefore dl reduces by a factor L2i while the 
average search cost of the median refinement step is (L2 — 1)/2. 
Such hypothesis is likely for the typically adopted window sizes, 
provided that the number of levels is conveniently great. For 
natural images the best factorization of L, that is the choice of 
either of L1 or L2 minimizing NA will be investigated in Sect. 
4, when explaining the experimental results. As a tendency, Lt 
should be as greater than L2, as smaller dl is. 

The major advantage of the two-step algorithm lies in that, 
differently of logarithmic schemes like [3] and [4], it fully exploits 
the spatial correlation between two adjacent medians, as for 
Huang's scheme. In this way the cost of median retrieval from the 
histogram is intermediate between a linear [5] and a logarithmic 
scheme, but closer to the latter, at least for reasonable values of 
L (10-12 bit wordlength), whereas the enormous computational 
overhead of histogram updating, typical of logarithmic schemes, is 
strongly reduced. 

The analysis reported in this section ignores the comparisons 
made in finding the median of the first window in each line. The 
additional number of comparisons can be significant compared 
to (3) for large number of levels and small image size in the 
horizontal direction. This effect can be eliminated by applying the 
algorithm vertically at the end of each line and scanning alternate 
lines in reverse direction, as suggested in [5]. 

4. EXPERIMENTAL RESULTS AND COMPARISONS 

Computer tests have been performed to outline the features of 
the coarse-to-fine histogram-based running median algorithm and 
to assess the analysis presented in Sect. 3 when dealing with true 
images, as well as to compare computation times with those of 
the fast algorithm proposed by Huang et al. This is credited to be 
the most efficient for gjf-line software implementations on general 

purpose computers of 1D and 2D median filtering of 8-bit data, 
as well as of any rank-order statistics filter [7], [8], [1], besides 
being the prototype of our outline. Also comparisons with a 
standard sorting algorithm based on Quicksort are reported. Even 
if sorting-based median schemes are generally less efficient than 
histogram-based schemes when dealing with integer data [7], [8] 
their computational cost is not affected as the number of gray-
levels increases. Comparisons have been carried out in terms of 
processing time versus number of gray-levels for different window 
sizes. Since the number of operations of both the histogram-
based algorithms is data-dependent, computing times reported are 
averaged on the same test images. Three sample digital pictures, 
reflecting practical application cases, have been chosen for the 
experiments. 
a A 512 x 512 portion of a 4-look amplitude SAR image, 

originally provided with 16 bit/pel, at a theoretical SNR of 6 dB. 
b A 512 x 512 section of the head, originally provided with 

12 bit/pel, not all significant, resulting in a somewhat noisy 
appearance. 

c A 512 x 512 portion of a 150 dpi-scanned RX plate of the chest, 
produced at 12 bit/pel, with superimposed uniformly distributed 
impulsive random noise with occurrence probability 0.1. 

Versions with 16 bits have been achieved from b and c by 
adding 4 randomly generated bit-planes. Versions with reduced 
number of levels have been achieved for tests by simply discarding 
some LSBs of each sample for all test images. 

Computing times, relatived to C language implementations of 
all the algorithms running on a DEC 5000 Unix workstation, are 
reported in Figs. 2a-c as functions of the number of levels L 
(in octaves between 256 and 65536), for 3 x 3 (a), 5 x 5 (b) 
and 7 x 7 (c) square windows. For the scheme proposed the 
times are relative to the optimal size of the reduced histogram, 
aspect that will be examined in the next paragraph. All the 
values are normalized to that of Huang's scheme for 256 levels, 
for an easier comprehension, and expressed in logarithmic scale. 
In order to process exactly the same number of pixels for any 
window size, the image data set has been extended by even-
mirroring the samples neighboring to the four edges. Since all 
the values reported are normalized to the same unique value, all 
the plots are comparable to each other. The Quickrort median 
scheme is represented by horizontal lines, since its run-time is 
independent of the number of gray-levels, depending only on 
the window size. Due to the reduced bit-plane correlation for 
decreasing significance from MSB to LSB, the cost of Huang's 
algorithm has a trend proportional to the number of levels, as 
theoretically stated in Sect. 3, while for the novel scheme the 
linear trend starts after the 14-th bit, but could be easily dropped 
by adding a third intermediate step (i.e. using a triple histogram). 
Increasing the window size decreases the advantages of the novel 
scheme, referred to as HMED (i.e. Huge MEDian), over 
Huang's scheme, as the time for updating two histograms, which 
significantly influences the overall cost, proportionally increases. 
This contribute is independent on the number of gray-levels 
and roughly expressed by the difference of the values relative 
respectively to HMED and HUANG, in the leftmost part of the 
curves in Figs. 2a-c, in which the median-upgrading procedure has 
approximately the same cost for both the histogram schemes. 

As more than one factorization is feasible for the coarse-to-fine 
algorithm, also the best choices have been investigated, varying 
with the window size and the number of levels. Computing time 
values in seconds are reported in Tables 1 and 2 for 4096 and 
16384 levels, respectively, relative to the SÁR test image only. 
It is noteworthy that even if the optimal size of the reduced 
histogram is critical for the performance, for the same image 
its value is practically independent of the number of levels and 
slowly varies with the window size. This behavior might be related 
to the decaying spatial correlation of the bit-planes, so that the 
mean correlation length of the reduced medians should be the 
same as for their full representation. Therefore, as a trend a 
more correlated image would require a greater L1i as it has been 
verified for th RX image. 
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Fig. 2. Computing times (in log scale) versus number of levels (in 
octaves) for windows 3 x 3 (a), 5 x 5 (b), and 7 x 7 (c) 

normalized to the value of Huang's algorithm for 256 levels (1.95s). 

We also have investigated the dependence of the optimal 
choice of the 2D median scheme among Huang's HMED and 
Quicksort, as a function of the number of gray-levels L and the 
side n of the square sliding window. By inspecting the plots of 
Figs. 2 to 4, one can note that in all of them there exists an 
interval of the L axis in which HMED is more efficient than the 
other. In Table 3 the minimum run-time scheme, among HMED, 
HUANG and QUICK, is reported as a function of L and n, for 
which the most efficient algorithm is derived from the curves of 
Figs. 2a-c and from other plots relative to a 9 x 9 window. As it 
appears, Huang's scheme is better for lower L, as n decreases; 
Quicksort-based scheme is recommendable for larger L, as n 
increases; instead, the superiority of the double-histogram scheme 
holds when both 1 and n are large, yet not exceeding values 
corresponding to practical application cases. 

Table 1. CPU times (s) of a 12 bit image; number of bits of 
reduced histogram along row; height of square window along 

column; minimum values are underlined 

8 7 8 ! 10 11 

3 10.7 6.1 _4 8 5.3 6.9 10.3 

5 15.8 9.7 6.6 _6 4 7.7 11.7 

7 19.7 12.7 8.5 _8 2 9.3 13.6 

Table 2. CPU times (s) of a 14 bit image; number of bits of 
reduced histogram along row; height of square window along 

column; minimum values are underlined 

~ 
7 8 9 10 11 12 

13.0 9.2 _8 4 9.1 12.0 17.9 

16.3 11.1 9.6 9.7 11.3 15.3 

19.8 13.1 10.9 11.1 12.2 15.4 

Table 3. Minimum run-time median scheme, among Huang's 
(H), two-step (D) and Quicksort (Q), as a function of wordlength 

along row and window size along column 

n 
3 

5 

7 

9 

8 9 1 1 1 1 1 1 1 

O 1 2 3 4 5 8 

H H D D D Q Q Q Q 

H H H D D D D G O 

H H H H D D D D Q 

H H H H H Q Q D D 

5. CONCLUDING REMARKS 

A multi-step version of Huang's fast algorithm, exploiting 
also reduced local gray-level histograms, is proposed for efficient 
calculation of running median in digital monochrome images 
whose number of bits is larger than 8. Comparisons in terms 
of theoretical number of operations and computing times show 
that a two-step version of the new algorithm is especially efficient, 
compared to the classic Huang's algorithm, when the number 
of levels of the input image is greater or equal to 1024. As 
the number of gray-levels further increases, a standard sorting 
algorithm (e.g. Quicksort) may be more efficient, at least for 
relatively small windows; therefore, a three-step algorithm may be 
recommendable. However, it is experimentally shown that for a 
wide range of gray-level numbers and window sizes the proposed 
algorithm outperforms both the other examined schemes. The 
optimal size of the reduced histogram is steady with the number of 
levels and the window size, and essentially depends on the spatial 
correlation of the data field. Also, the simplicity of the outline 
is far greater than that of schemes based on sorting criteria and 
implemented through tree or heap structures. 
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FILTERING VIA THE DISCRETE FOURIER COSINE TRANSFORM 
T. TRUMP* 

ROYAL INSTITUTE OF TECHNOLOGY (KTH) 
5-100 44 STOCKHOLM, SWEDEN 

1. INTRODUCTION 

Filtering with linear finite impulse (FIR) filters is one of the 
classical subjects of digital signal processing. It is well known that 
if both the signal to be filtered and the impulse response of the 
filter are long, con'siderable computational saving can be achieved 
by performing filtering in the spectral domain [5]. Straightforward 
application of spectral domain filtering will, however, result in a 
so-called cyclic convolution, since the technique implies that the 
sequences considered are periodic with a period equal to DFT 
length. To obtain linear convolution, one has to pad both the 
input sequence and the filter impulse response with zeros. The 
computational advantage of this approach lies in the existence of 
efficient algorithms for computing the Discrete Fourier Transform 
(DFT). For efficient DFT algorithm, see e.g. [1], [6]. 

In [3], the use of Discrete Cosine Transform which is not 
the real part of DFT is studied for filtering purposes. The 
possibility of deriving rather simple relationships, provided that 
the filter frequency response is real and even, is demonstrated. 
In a recent related work [4] a usage of a family of discrete 
cosine transform for filtering purposes is studied and symmetric 
convolution operation is introduced. 

In this paper we investigate a way to perform filtering using the 
Discrete Fourier Cosine Transform (DFCT) which is just the real 
part of DFT. 

Define DFCT from a real sequence x(n) with length z  + 1, 
N = 2i, where I is a positive integer as [2] 

N 
~ 

C(k) = ~ x(n) cos 
2 

N  

k 
, k=0,1, . .. ,—       

 
. (1) 

n=0 

DFCT of the sequence x(n) is equal to the DFT of a sequence 
obtained from x(n) by properly scaling and extending it to the 
interval [0, N) as a periodic function with even symmetry. To see 
this, define 

x(n) if 0≤ n< z xP(n) = m(N -- n.) (2) 

* On leave from Dept, cf s diu ..nú Cam;oanicatiw. 2e.gineering, 
Tallinn technical 1Jni. ersit?r, Estonia. 

Compute the DFT from xp(n) 

X(k) = 

N-1 

n=0 

tank 
p(n) exp N

N -1 

=x p(0)+ 
xp(n)eXp \ 

j2Nk) 

( 
2ank)

xp(n)exp j 
N 

n=1 

N 
+ xp 

2 
cos(ka) + 

N-1 

n= +1 

N -1 

= xy(0) + xP (n) exp ( j 
2ank) 

\ N 

+ xp ~ cos(ka) + ~ xp(N — n) exp ( j 
2a( 

N  

n)k)

where 

n=1 

N -1 

n-1 

~-1 

=x(0)±2 ~ 

n=1 

N -i' 

(n) cos 
2 

N  

k 
+ x(~ ) cos(ka) 

2ank 
x~(n) cos 

n=0 
N ' 

_ I x(n) 
x'(n) 

1. 2x(n) otherwise. 

The last expression is closely related to the definition of DFCT 
(1). Consequently, it is sufficient to investigate the problem of 
Ending the linear convolution of sequences x(n) and h(n) wing 
the cyclical convolution of extended sequences y (n) ai 1 h,P (n) 
Having even sy:nmetry. 

2 ::NERAI,
CL c jec..;», L- zo ...O '1UL i1 :ICI; 1VOIL~L;( of the 

rqu2x:ex(n ~) - z *iYr.h < Yy, ,L_.rrdthe 

ifn=0orn= z 
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sequences into an interval with length N = 21 as even functions 

0 
x(n — M) 

xp(n) = < 0 
x(N — M — n) 
0 

and 

0 

ifn<M 
ifM<n≤M+Nl-1 
ifM+N1 ≤n ≤N -M -N 1
ifN-M-N 1 +1 <n ≤N-M 
ifN-M+1 ≤n ≤N-1 

(3) 

ifn<L 
h(n—L) ifL_<n≤L+N2 -1 

hp(fl)<O ifL+N2 <n≤N-L-N 2
h(N-M-n) ifN-L-N 2 +1<n≤N-L 
0 ifN-L+1<n<N-1 - - (4)

for some N, M and L. The proper values for the length N, M 
and L will be determined later. 

The cyclical convolution yp of xp with hp can be expressed as 

N-1 

y(k) = ~ hp(n)xp(k — n) 

n=0 
N-1 

=~[h(n—L)+h(N—L—n)] 

(5) 

n=0 

[x(k—n+M)+x(k—N+M+n)] 
N-1 

= h(n — L)x(k — n + M) (6) 

n-0 
N-1 

+ h(n — L)x(k — N + M +n) 

n-0 
N-1 

+ h(N — L — n)x(k — n + M) 

n=0 
N-1 

+~h(N—L—n)x(k—N+M+n) 

n=0 

As we can see from this expression, the cyclical convolution 
yp consists of four additive terms, where overlapping can be 
controlled by varying the parameters L, M and N. The first 
term in (5) represents the linear convolution of x(n) with h(n), 
spanned in the interval L + M < k < N1 + N2 + L + M — 2. 
The second term is the linear cross-correlation between h(n) 
and x(n), spanned in the interval L + 1 — N1 — M < k < 
N2 — M + L — 1. The third term is the linear cross-correlation 
between h(—n) and x(—n), spanned in the interval M — N2 —
L + 1 < k _< N1 + M — L — 1. The last term is the linear 
convolution of h(—n) with h(—n) and it is spanned in the interval 
N —M —N1 —L —N2 +2 _< k _< N —M—L.** 

By varying the parameters N, L and M, we can cyclically move 
the location of terms in (5) so that the term of interest is not 
overlapped with the others. To illustrate this let us see how to 
extract the first term, i.e. the linear convolution of x(n) with 
h(n). To do this, demand that the first term is not overlapped 
with the second and the third ones and that it is overlapped with 
the fourth term (which represents the mirror image of the same 
convolution) only in one end-point. Note that the overlapping 
end-value should be later scaled by 0.5 in order to obtain the 
correct result. These requirements can be formally written as 
follows: 

L+M>N2—M+L-1 
L+M>N 1 +M—L-1 

N1+N2+L + M -2=N —M —NI —L —N2 +2. 
(7) 

** Note that all the indexes throughout the paper are computed modulo 
N due to the cyclic nature of formula (5). 

The inequalities require that the first term in (5) must locate right 
from the second and the third ones. The equality says that the 
end-point of the first term is overlapped with the first sample of 
the fourth term. The system above is satisfied, for instance, if 

L+M=N2—M+L 
L+M=N1+M—L 

N1+N2+L + M -2=N —M —NI —L —N2+2. 
(8) 

For this particular choice, the cross-correlation sequences overlap 
totally with each other and their sum is located tightly left from 
the convolution term of interest. Solving with respect to L and 
M, we obtain 

M=~ 

Substitution to the third equation gives that the smallest possible 
length of extended sequences xp and hp is 

N = 3(Ni + N2) —4. 

(9) 

(10) 

The location of input and output terms for the case N = 16 
is shown in Fig. 1. With respect to the conditions (9) and (1) 
NI = N2 = 3 and L = M = 2. Observe that just the first 
9 samples of the extended sequences not all the 16 are used in 
actual computations because of the definition of DFCT (1). 

O O r(1) x(2) 0 0 0 0 0 0 0 x(2) x(1) x(0) 0 

a) signal 

0 0 h(0) h(1) h(2) O 0 0 0 0 O 0 h(2) h(1) h(n) n 

b) impulse response 

1 
lv 

c) result (terms I to IV) 

Fig. 1. Location of terms inside a) xp, b) hp and c) yp for 
N = 16. General case. 

3. FILTERING WITH TYPE 1 LINEAR PHASE FIR 
FILTERS 

The impulse response of the type 1 linear phase FIR filter [5] 
has even symmetry and its length N2 is an odd number. This 
symmetry fits the symmetry inherent in DFT, and consequently, 
we can expect existence of a more efficient technique compared 
to the general case. 

Redefine the extended impulse response of filter hp taking into 
account its symmetry as follows: 

h( 1 +n) if0<n< NZ-1

hp(n) = 0 if N2-1 < n <N z=1 

h(2+n—N) ifN—N2-1 <n<N-1. 
(11) 

Observe that we have placed h so that its center of symmetry is 
located at n = O. Find the cyclical convolution of hp with xp
defined in (3) 

N-1 

y(k) = ~ hp(n)x(n — k) 
n=0 

N-1 

= hp(n)x(k — n + M) + 
n=0 

N-1 

n=0 

(12) 

hp (n)x(k — N + M + n). 

M opposed to the general case, we have just two components 
here since hp is a cyclically shifted version of h. The first 
component is the linear convolution of h(n) with x(n) spanned in 
the interval M — N2-1 <k < M + N Z-1 

+ N1 —1. The second 
term represents the linear cross-correlation between x(n) and 

h(n) and it is spanned in the interval N — M — N1 + 1 N— < 
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k < 
N Z-1 M. We can observe that due to symmetry properties 

of h, the two terms are mirror images of each other. Hence, we 
can allow their overlapping in end-points 

{ M+ N22 1 +N1-1=N—M—N1+1

M — N2-1 = N2-1 M 2 2 (13) 

0 0 x(0) .r(1) x(2) .r(3) x(4) 0 0 0 x(4) x(3) x(2) x(1) r(0) 0 

a) signal 

h(2) h(3) h(4) 0 0 0 0 0 0 0 0 0 0 0 h(0) h(1) 

b) impulse response 

I 

—u II 

c) result (terms I and II) 

Fig. 2. Location of terms inside a) xp, b) by and c) yy for 
N = 16. FIR filter case. 

Solving for M and N, we obtain 

M= 
N2-1 

2 

N=2(N1+N2)-4. 

(14) 

(15) 

The convolution y(k) is spanned in the interval 0 <_ k < z which 
is precisely the interval where the computations using DFCT will 
be carried on. 

Note that for type 3 linear phase FIR filters (odd N2, odd 
symmetry), it is possible to find an algorithm involving Discrete 
Fourier Sine Transform in addition to the DFCT. The symmetry of 
the type 2 and 4 linear phase FIR filters does not fit the symmetry 
of DFT and no simplifications compared to the general case are 
available. 

The location of input and output terms for the case N = 16 is 
shown in Fig. 2. To satisfy the condition (15) N1 = N2 = 5 and 
M=2. 

4. COMPUTATION OF AUTOCORRELATION 

In the case of autocorrelation computations x(n) = h(n) 
and N1 = N2. Recall that the second and the third terms in 
(5) represent the cross-correlation between x(n) and h(n) and 
its mirror image. Since the autocorrelation function of a real 
sequence has an even symmetry, we can let these terms overlap 
totally 

N2 +M—L+1=—N1 —M+L+1 
N1+M—L-1=N2—M+L-1 

which results in L = M. Next, we require that the terms corre-
sponding to correlations must not overlap with these correspond-
ing to convolutions. Let the end-point of the correlation terms 
locate left from the convolution terms 

—M+L+N2 -1<L+M, 

we have 
N2 < 2M + 1. (16) 

We also require the starting point of the correlation terms to 
locate right from the convolution terms 

N=M—N1 +L+1 > N1+N2+L+M-2. 

Since N1 = N2, as stated earlier, the latter yields to 

N > 3 N 2 + 2M — 3. (17) 

Finally, combining (16) with (17) we have 

N>4N2-3. (18) 

The location of input and output terms for the case N = 16 is 
illustrated in Fig 3. 

0 0 x(0) x(1) x(2) x(3) 0 0 0 0 0 x(3) x(2) r,(1) z(0) 0 

a) signal 

I 

Iv 

b) result (terms I to IV) 

Fig. 3. Computation of autocorrelation. Location of terms inside a) 
x,andb)yy forN=16. 

5. COMPUTATIONAL COMPLEXITY 

In this section, we present the number of additions/subtractions 
and multiplications required to implement the algorithms pre-
sented in the previous sections. The use of the reduced com-
plexity algorithm to compute DFCT [2] is assumed. In Table 1, 
the numbers of real additions (ADD), multiplications (MULT) 
and total amount of computations per output sample (RSUM) are 
given versus the length of the computed convolution or correlation 
N. It is assumed that the DFCT of the impulse response can be 
pre-computed and the corresponding computational load is not 
taken into account. In Table 2, the computational complexity of 
filtering using DFT approach is presented for comparison. The 
use of the reduced complexity algorithm for DFT [1] is assumed. 

Table 1. Operation counts for DFCT filtering 

General FIR Autocor. 

MULT ADD N RSUM N RSUM N RSUM 

19 54 5 14.6 9 8.1 7 10.4 
51 144 10 19.5 17 11.5 15 13.0 

131 370 21 23.9 33 15.2 31 16.2 
323 916 42 29.5 65 19.1 63 19.7 
771 2198 85 34.9 129 23.0 127 23.4 

1795 5144 170 40.8 257 27.0 255 27.2 
4099 11802 341 46.6 513 31.0 511 31.1 

Table 2. Operation counts for filtering DFT 

N~ MULT ADD RSUM 

8 18 46 8.0 
16 50 134 11.5 
32 130 360 15.3 
64 322 902 19.1 
128 770 2182 23.1 
256 1794 5126 27.0 
512 4098 11782 31.0 

We can see that the computational load of the general DFCT 
approach is higher than that of the traditional DFT approach. 
However, the computational complexity in type 1 linear FIR 
filtering case is nearly equal to that of DFT approach. The same 
holds for the computation of an autocorrelation sequence. 
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A COMPARISON OF FIR AND IIR FILTER BANKS IN IMAGE SUBBAND CODING APPLICATIONS 
M. DOMANSKI and R. SWIERCZYNSKI 

POLITECHNIKA POZNANSKA, INSTYTUT ELEKTRONIKI I TELEKOMUNIKACJI, UL. PIOTROWO 3A, 60.965 POZNAN, POLAND 

1. INTRODUCTION 

Subband coding of images has shown itself a powerful tech-
nique for digital image data compression. Its implementation 
needs some filter banks which sometimes are the most compli-
cated parts of the system. Therefore a careful choice of the 
type of the filter bank as well as its optimum design are of great 
importance. 

Most of the papers on subband coding of image and video 
report the use of the finite impulse response (FIR) filters. The 
classical linear-phase quadrature-mirror filters (QMFs) [1] are 
willingly applied because of lack of any stability and phase prob-
lems. Nevertheless the references described a lot of nonlinear 
filter banks which are more efficient from the point of view of 
their implementations. Unfortunately they are not very willingly 
used in practice of subband coding of image and video. 

The aim of the paper is to show in the experimental way 
that subband coding of images does not need linear phase filters. 
The results of simulation experiments with real images prove that 
nonlinear-phase recursive filter banks can be used more efficiently 
than FIR filters as long as a full-frame buffer is available in the 
system. 

2. NONLINEAR-PHASE FILTER BANKS 

In order to avoid phase problems the reversive systems have 
been proposed. The basic idea of reversive SBC system is 
to use the opposite directions of data processing in the coder 
and in the decoder, thus compensating for shifts caused by the 
filters. For the sake of brevity we deal only with maximally 
decimated separable filter banks organized in a multi-level (tree-
like) structures. 

A two band analysis/synthesis system is the basic building block 
of such a system. Therefore we are going to consider only such 
systems. 
TYPE 

TYPE 11 

ANALYSIS SYNTHESIS 

Fig. 1. Two types of reversive systems 

For the IIR and FIR filters there exist two basic versions of the 
reversive structure shown in the figure below. The directions of 
processing are indicated schematically in Fig. 1. 

For IIR filters which are inherently nonlinear-phase, the struc-
ture of Type I supports very efficient polyphase implementations. 
Nevertheless the reversion of signal processing direction needs 
all the lines and columns to be stored somewhere in the system, 
i.e., a full-frame buffer is necessary. The nonlinear-phase FIR 
filters have been considered in the references first of all in the 
arrangements of Type II where perfect reconstruction is achieved 
with lattice filters [9]. 

3. COMPLEXITY CONSIDERATIONS 
Before presenting the experimental results of subband coding, 

we compare the complexities of basic filter bank solutions, 
similarly as it has been already done in the references (e.g., [9]). 

We compare recursive bireciprocal IIR filter banks in perfect-
reconstruction reversive systems [5], [6], [10], classic linear-
phase quadrature mirror FIR direct-form filter banks [1] and the 
nonlinear-phase lattice perfect-reconstruction FIR filter banks [3], 
[4], [9]. Compared are the numbers of arithmetic operations as 
well as the numbers of delay elements for separable polyphase 
tree-structured multilevel implementations. As an example, 
consider a common 10-band system (see the Fig. 2). Similar 
systems are predominantly used in subband coding of image and 
video [11]. 

level 1 

level 2 

level 3 

9 
8 
7 
8 
5 
4 

Analysis filter bank Synthesis filter bank 

Fig. 2. Tree-structured filter banks and the respective spectrum 
partition 

A two band analysis/synthesis system is the basic building block 
of such a system taken into further considerations (Table 1 and 2). 

The corollary is that IIR filter banks lead to substantially re-
duced numbers of arithmetic operations as well as delay elements. 
The reversive systems with IIR filter banks are an interesting so-
lution for the systems where a full-frame buffer is available. FIR 
filter banks (even nonlinear-phase) exhibit much higher numbers 
of multiplications, additions and delay elements. In particular the 
increased number of delay elements is related to high demand of 
silicon area. 

Some of the filters operate in lines while the others operate 
in columns. Therefore some delays correspond to RAMS storing 
whole lines or columns of an image. Of course it needs a lot of 
silicon surface and minimization of the number of delays is very 
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important. It is unlike many one-dimensional applications. 

Table 1. Comparison of the corresponding IIR 
and FIR filter banks 

IIR filter 
(direct) 

FIR QMF [1] 

Filter order 5 5 7 15 23 31 

Multiplications 
per input sample 

1 1 1.5 8 12 16 

Additions per 
input sample 

4 4 5.5 8 12 16 

Delay elements 2 2 3 14 22 30 

Full-frame buffer 
necessary 

yes yes yes no no no 

Table 2. Compassion of analysis falter banks corresponding 
to the filters of the type 32D proposed by Johnston [1 ] 

FIR IIR 

QMF [1] lattice 

Perfect reconstruction approx. yes yes 

Linear phase of a filter yes no no 

Filter order 31 31 7 

Multiplication per sample I6 17 1.5 

Additions per sample 16 16 5.5 

Delay elements 30 15 3 

There are also well-known lattice linear-phase perfect recon-
struction filters [7], [9]. We omit them because their complexity 
is usual higher as nonlinear-phase FIR lattices and we are going 
to show that linear-phase filters do not guarantee better perfor-
mance of subband coding. 

4. COMPARISON OF CODING EFFICIENCY 
Some experiments with test images have been done by the 

authors. There were compared the coding efficiencies of two 
systems: the first used FIR linear-phase quadrature-mirror filters 
while the second was equipped with recursive elliptic filters. 

In order to obtain fully comparable results, the same coding 
scheme has been used in both cases. It was based on partition 
of the whole two-dimensional spectrum of an image into 10 
subbands. The subband 0 was encoded using simple nonadaptive 
DPCM technique with a first-order predictor. The prediction 
error signal was compressed using standard Huffman coding. The 
technique used for high-frequency subbands [2], [12] exploited 
intersubband correlation. We lay a particular stress on the fact 
that the coding technique used exploited relations between pixels 
from different subbands produced by the analysis filtering being 
a nonlinear-phase IIR filtering. One could expect that such 
a situation should lead to much better results for linear-phase 
filters. The experimental results showed that it was not true. The 
experiments proved that the coding efficiency characteristics (i.e., 
quality versus compression) were very similar for linear-phase FIR 
QMFs and IIR filters. 

The experiments have been made for two well-known test 
images: "LENA" and "BOATS". For example we compared 5-
order IIR filter and 24-tap FIR QMF with similar amplitude 
characteristics (Fig. 3). 

The plots shown in Fig. 4 and 5 prove that IIR filters behave 
often even sightly better. 

70 

60 

50 

40 

30. 

20. 
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0 
0 

a [dB] 

f 

0.1 0.2 0.3 0.4 0.5 

Fig. 3 Attenuation of the 5-th order elliptic filter (continuos line) and 
the corresponding C24 [1] FIR filter (dashed line) 
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Fig. 4. Signal to noise ratio versus compression for the test images 
"LENA" and "BOATS" 
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Fig. 5. Opinion score versus compression for the test images "LENA" 
and "BOATS" 

5. CONCLUSIONS 

The experimental results prove that linear-phase filter banks 
offer no advantage from the point of view of the coding efficiency. 
It is the main result of this paper. This result have been obtained 
from simulation experiments performed for the two types of 
filter banks in the same repeatable conditions. The result is 
valid for still image and intraframe video coding. The authors 
hope that this clear result will increase interset in application 
of IIR in subband coding of image and video. Nevertheless 
the papers does not consider the phenomena which cnwrld arise 
when nonlinear-phase spar filters are combined with motion 
compensated pre lict:ve coding. 
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MOMENT-BASED IMAGE RECONSTRUCTION IN THE PRESENCE OF NOISE 
R. C. PAPADEMETRIOU 
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1. INTRODUCTION 

The mathematical concept of moments has been around for 
many years and has been utilized in many diverse fields ranging 
from mechanics and statistics to pattern recognition and image 
understanding. Very early, it was recognized that a truncated set 
of moment values could offer a more convenient and economical 
representation of an image segment than a pixel-format represen-
tation. 

Hu [1] first presented results on how to achieve fundamental 
image transformations (i.e., translation, rotation, scale change, 
etc.) with the image moment representation. Dudani et al [2] 
used moment invariants, defined by Hu, to represent the shape 
of aircraft images. Later, Teague [3] extended Hu's moment 
invariants and introduced the concept of orthogonal moment sets 
to reconstruct the image from moments. Because of the wide 
applicability of image moments as features there has been a lot 
of effort recently in designing fast computational algorithms [4], 
[5], [6] as well as VLSI implementations of moment-generating 
algorithms for real-time operation [7]. 

Going back to the basic problem of image compression/recons-
truction, it is well known that an image can be fully reconstructed 
from the infinite number of its moments (since they are related 
to the coefficients of the power expansion of its characteristic 
function). Clearly this is of little use, unless it can be shown that 
a finite, small set of moments usually available, can reconstruct 
the original image to within an adequate degree of accuracy. The 
interesting question, then, is how much information does a finite 
set of moments retain and what method (or methods) can be used 
to make a best reconstruction of the original image. An answer 
was given by Papademetriou [8], [9], [10], where the proposed 
Maximum Entropy (ME) method was compared to the Legendre 
Moments (LM) method proposed by Teague [3]. The superiority 
of the first, however, was demonstrated through several simulation 
examples mainly under noise-free conditions. In this paper the 
comparative study is extended to include noisy images and noisy 
moment vectors. 

In Section 2 of this paper the basics of moments are presented, 
while Sections 3 and 4 explain the philosophies of the two 
methods. Simulation experiments demonstrating the superiority 
of the ME method are given in Section 5. 

2. BASIC MOMENT CONCEPTS AND NOTATION 

The two-dimensional geometric moments (GM) of order (p + 
q) of the image intensity function f (x, y) are conventionally 
defined in terms of Riemann integrals as 

00 ~~ 

Mpq = x p yg.f (x, y)dxdy (p, q = 0, 1, 2, . . .). 

If f (x, y) is piecewise continuous with bounded support (i(e., 
has nonzero values only in the finite part of the x — y plane), 
then moments of all orders exist. The double moment sequence 
{Mpq} is uniquely determined by f (x, y) and conversely f (x, y) 
is uniquely determined by {M 1} [1]. 

When integrals are replaced by sums, Eq. (1) gives the 
moments of order (p + q) for a digitized image segment f (x, y), 

i.e. 

Mpg = 
xpygf(x, y), ( 2) 

x y 

where f (x, y) expresses the image gray-level. 
A complete moment set (CMS) of order n consists of the all 

the moments of order n and lower and can be represented by a 
triangular matrix of 

(n + 1)(n + 2) 1 2
Ntotai = 

2 = 
2 (n + 3n + 2)

moment values, as shown below 

Moo Mo i 
M10 
M20 

M02 . . . Mon 
• 

e 

(3) 

(4) 

M n 0 

Thus, if an L x L image segment is compressed by retaining 
only a CMS of order n, the compression ratio (CR) is given by 

CR L2 =  2L2
Ntotai (n + 1)(n + 

2) (5) 

3. THE LEGENDRE MOMENTS (LM) METHOD 

The definition of the geometric moment, as given by Eq. (1), 
has the form of the projection of the intensity function f (x, y) 
onto the monomial xpyq. However, the basis set {xpy4}, 
while complete (Weierstrass approximation theorem [11]), is not 
orthogonal. Orthogonal moment forms [3] may be defined by 
using Legendre polynomial basis functions P(x) rather than 
conventional monomials. 

The Legendre polynomials of degree n, defined [12] by 

n 

P(x) = 

j-0 

where 

Cn j x? _ 

[n/2] 

(-1)k  (2n — 2k)! xn-2k 

2nk!(n — k)!(n — 2k)! 
k-0 

n for n even n 2, 
for n odd 

(6) 

are a complete orthogonal basis set over the range —1 to +1, i.e., 

J1 Pm (x)Pn(x)dx — 
I 

2 

2m+l
ámn, (7) 

where őmn is the Kronecker delta. 
The Legendre moments (LM) of order (p -1- q) are defined by 

00 
(2p+1)(24+1) 

J í
00 

Lpq = 4 J Pp(x)Pq(y)f(x,y)dxdy 
0

(p, q = 0, 1, 2 .. .) (8) 

For the moments to be orthogonal, the image must be scaled to 
be within a 2 x 2 square centred at the origin. 
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Legendre moments may be obtained directly from geometric 
moments by 

because of the steadily increasing computing power available 
today and the development of fast algorithms [15], [16]. 

(2p ± 1)(2q + 1) _ 
~ 

Lpq 4

j-0 k-0 

C pj C gkMj k' (9) 

A given Legendre moment depends only on geometric mo-
ments of the same order and lower, and conversely. 

By using Legendre rather than geometric moments, an approx-
imate inverse transform — to obtain f (x, y) from {Lpq} — may 
be achieved by moment matching [3], i.e., 

N j 

fN(x,y) L7-k,kPj-k(x)Pk(y), ( 10) 

j=0 k=0 

which is a truncated series, with N the maximum order of 
Legendre moments available. In this method, obviously, all 
unknown moments (n > N) are assumed to be zero, which is 
not very legitimate, indeed. 

4. THE MAXIMUM ENTROPY 
(ME) RECONSTRUCTION 

The entropy maximisation approach to the solution of underde-
termined inverse problems (e.g., the classical moment problem) 
has roots in the works of Shannon [13] and Jaynes [14]. The max-
imum entropy formalism, exploiting the concept of the entropy of 
a random variable, casts the problem of determining a probability 
density function (pdf) into the form of an optimisation problem: 

"Suppose a set of constraints on a probability distribution is 
known, but the constraints do not completely determine the distribu-
tion and nothing more about the distribution is known. Then the least 
prejudiced or biased assignment is the pdf of maximal (Shannon) 
entropy satisfying the given constraints'. 

This principle can be easily applied to the image reconstruction 
problem from a finite set of moments. Any irradiance distribution 
f (x, y), being non-negative, can be considered as a pdf, because 
it can be, also, easily normalized to integrate to unity. 

The given moments are the constraints in our optimisation 
problem, which can be stated mathematically as: 

Maximize 

% 
H 
= — J J f(x,y)log[f(x,y)]dxdy (11) 

L~ —00 

subject to 
~ r~ 

J xpyq f (x, y)dxdy = Mpq (P -i- 4 = 1, 2, . .. , N) 
~ 

(12) 
and ~00 00

J_ 00 00 
f(x,y)dxdy = 1 = Map (13) 

(scale normalization). Solution of this standard variational prob-
lem yields 

fN(x, y) = exp —%~o — ~ ~pgxpyq I , (14) 

p.q 

where the a's are Lagrange multipliers determined from the 
constraint conditions. The notation fN(x, y) is used to point out 
that it is an estimate of the unknown intensity function f (x, y) 
based on moments up to order N (i.e., on a CMS of order n). 

The most important difference between the two methods 
is that, while the LM approach assumes all the unknown (or 
not given) moments to be zero, the ME method results in an 
estimate which is maximally non-committal with regard to missing 
information (i.e., unknown moments). 

The ME reconstruction of moment-compressed images may 
produce more accurate estimates than the LM method using 
appreciably fewer moments. The need for more computational 
time in the ME case becomes continuously less restrictive, 

- 

5. COMPUTER SIMULATIONS 

The two-dimensional, binary-valued capitalized letter A, de-
fined across a 21 x 21 pixel array, was chosen as the test im-
age for all simulation experiments. Fig. 1 summarizes the results 
for image reconstruction under noise-free conditions. Specifically, 
Figs. 1(a) and 1(b) show examples of reconstruction of the test 
image from different CMSs using both methods. Although the 
presented reconstructions are thresholded versions of the contin-
uous ones, all mean square error calculations were developed by 
comparing the original and the actual reconstructed image (not 
the threshold image). 

The normalized mean-square reconstruction error (NMSE) 
between an image f(x, y) — defined over a region D of the 
xy-plane — and its reconstructed version f(x, y) from a finite 
set of its moments (up to order N), defined by 

e2(N) = 
ID f [f(x, y) — '(x, y)]2 dxdy 

ID f[f(x,y)]2dxdy 

is considered as a good measure of the image reconstruction 
ability of the moments; so, it has been adopted here for comparing 
the performance of the two methods. Obviously, for discrete data 
processing integrations are replaced by summations in Eq. (15). 

aWwY^~F 

i~ 
Qh o.dc hh o,dn 

AA 
ad.o.d.. 1Rhodn lűha.d.. 
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(15) 

(a) Noise Free Reconstruction ofLetterA usingLMMethod 
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(b) Noise Free Reconstruction of Letter A using ME Method 
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Fig. 1. Noise free image reconstruction 

Fig. 1(c) presents this error as a function of N. The superiority 
of the entropy method is obvious; an ME reconstruction even with 
moments up to only the 18th order is much better than an LM 
reconstruction based on moments up to the 18th order. 

Figs. 2 and 3 show simulation results of the reconstruction 
of a noisy image (for different normal noise levels) by including 
increasingly higher-order moments. As measure of the amount 
of noise present on the image, the signal-to-noise ratio (SNR) is 
used, which is defined here as the ratio of the image energy per 
unit area to the noise variance, i.e., 

( 
SD f J [f(x,y)]2dxdy 

~n 

where S is the area of the region D. 
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Fig. 2. Reconstruction of a noisy irn.ige using the Z.M method 

The normalized reconstruction error, given in Figs. 2(d) and 
3(d) (for LM and ME, respectively) as a function of N (the order 
of the CMS used) with the SNR as a parameter, was calculated 
by averaging over ten noisy image realizations generated for each 
SNR value. Comparing these two plots, it turns out that, although 
the ME method appears to be affected by noise much more 
than the LM method, for reasonable noise levels the first is still 
superior to the second; the results from the two methods become 
very similar only for higher noise levels on the image, which is not 
of practical interest here. 
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The investigation of the effect of noise degradation in the image 
domain is followed by a study of the effect of noise degradation 
in the representation domain (i.e., noise on the moment vectors). 
Results for additive Gaussian noise on the moments are given in 
Figs. 4 and 5. From the NMSE curves (Figs. 4(b) and 5(b)) we 
come to a conclusion pertaining to both methods: For each SNR 
value, there is a certain optimal order of moments (different for 
the two methods), which leads to the best image reconstruction. 
Using moments of order higher than the optimal order will result 
in larger reconstruction errors. This is clear at high noise levels 
in both methods, but certainly more striking (for any noise level) 
in the LM method. Also, the reconstruction snapshots, shown 
in Figs. 4(a) and 5(a), visually demonstrate the superiority of 
the ME method, which, for example, gives quite an acceptable 
reconstruction with moments only up to the 6th order (for 60 dB 
noise level), while the LM method cannot provide something 
comparable even by using moments up to the 11th order. 

6. CONCLUSIONS 
The above comparative analysis shows that the ME method 

outperforms the LM approach even under noisy conditions. This 
efficiency of the entropic method does not come without any cost; 
and this is the computational cost. However, because of the 
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1. INTRODUCTION 

The problem addressed here is that of restoring `scratches' or 
`blotches' which are a major defect in archived motion pictures. 
These can be formed by abrasion removing some of the emulsion, 
causing a bright defect, or dirt becoming attached to the film, 
resulting in a dark defect. 

The common feature of these defects is that they can be 
characterized as a temporal discontinuity. In an image sequence, 
the scratches and blotches are obvious as areas for which there 
is no match in the previous or subsequent frames, taking motion 
between the frames into account. 

The heuristic for the detection of scratches and blotches is thus 
— a scratch is a connected area of a frame which is unpredictable 
from either the previous or following frames. The use of Markov 
Random Field (MRF) theory allows the spatial continuity to be 
included in the detection algorithm. 

The detection is reliant on the estimation of motion between 
the frames. A hierarchical blockmatching algorithm was used 
in this work — see [1], [2]. This algorithm has been found to 
be robust to the degradations and is able to estimate the large 
displacements often found in motion picture sequences. 
Once the scratches have been detected, the interpolation 

problem is a missing data problem. The observed data at the 
scratch locations bears no relation to the actual scene information. 
In Bayesian terminology, the likelihood is uniformly distributed 
over all the allowed values. Hence the interpolation problem is a 
signal modelling one. MRF models are used successfully for this 
problem. 

2. SCRATCH DETECTION USING MRFs 
Consider two adjacent frames from a sequence. Let S denote 

the pixel lattice of these two frames taken together, and X be 
the observed gray-levels at these lattice points. Let N; denote 
the neighbourhood of site i which is within the frame, and T 
denote the motion-compensated temporal neighbourhood in the 
other frame.of the pair. Define a discontinuity frame, D, between 
the two image frames, on a lattice S'. Let d; E (-1, +1}, where 
d; = 1 denotes a temporal discontinuity between the two frames, 
and where d; = —1 denotes no discontinuity. It is this frame D 
which is to be estimated. 

Bayes theorem states that 

p(D = dIX = x)op(X = zID = d)p(D = d). (1) 

This consists of two terms: a likelihood model for the observed 
frames, given the discontinuity locations, and a prior model for 
the discontinuity locations. It is this prior model which encodes 
the spatial continuity of the scratches. Using a simple spatio-
temporal likelihood function and an Ising prior to organise the 
discontinuities, we have 

p(D = dI X = x) = 
Z 

eXp (_u(d)) (2) 

U(d) = (3) 

~ f 1_ d) (x - xi 2 — Ol ~didj+Q2(1+di)I , 
iES' jET; jE.Ai; J 

where the pixels in the temporal term are at positions in S 
corresponding to position i in S' and its temporal neighbour, 
and terms not involving d have been neglected. Optimising 
this expression solves for the maximum a-posteriori (MAP) 
configuration of the discontinuity frame. Regions which have 
discontinuities in both the forwards and backwards directions are 
consistent with the heuristic for scratches and are classified as 
such. 

2.1. Parameter Estimation 
The above model depends on three parameters: a, j3 , 132 -

Estimates for the parameter values may be found as follows. 
The parameter Q1 determines the strength of the self-interaction 

of the discontinuity field. Ripley [3] gives arguments for a value 
around 1 by considering the conditional probability assigned to a 
pixel when surrounded by different numbers of pixels in the same 
sate. The parameter $2 `balances' the increase in probability due 
to introducing a discontinuity. Thus to balance a difference of e1 
requires 

oei ^ QZ. (4) 

Also, consider an isolated pixel with error e2. For this to be 
detected requires 

exp(-1132) > exp(—oeZ + 4/3i). (5) 
Thus by quantifying the heuristic the values of the parameters of 
the MRF used to detect them may be chosen in a consistent 
manner. 

The problem of finding the optimum configuration d for the 
discontinuity frame is now addressed. 

2.2. Stochastic Simulated Annealing (SSA) 

The variable T in Eq. (2) alters the `peakyness' of the 
distribution. SSA uses this as a control parameter to enable 
the MAP configuration to be found. For large values of T 
the distribution is essentially uniform; for T --+ 0 it becomes 
concentrated at the mode. SSA repeatedly samples from the 
distribution as the temperature is reduced. A logarithmic cooling 
schedule will cause convergence to the MAP configuration [4]. 
Practically the logarithmic cooling schedule is too slow, and the 
sub-optimal exponential schedule, T = Cak, a . 1, is often used 
[5]-

2.3. First-Order Mean Field Approximation (MFA) 

SSA finds the MAP configuration but is slow and computa-
tionally intensive. MFA is a deterministic optimisation technique 
which retains many of the features of SSA. The mean value of the 
field is 

d= dp(d) 

d 

which is the minimum variance estimate [6]. This summation 
is over all possible states of the field, and so some simpler 
approximation must be made. 
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Approximate the influence of dJ , j E N; on the calculation 
< d; > by the influence of < dJ >. This gives 

(6) 

d; exp —  [ (i_ 

i E T; 

d;<dJ>+Q2(1+di) . 

i E Af; 

This is an estimate formed by finding the mean value of each pixel, 
based on the current values of the pixels in its neighbourhood. 
This approximate mean value of d; can be computed easily on the 
basis of the values < dJ > in its neighbourhood. For small state-
spaces and small neighbourhoods especially, the sum involved in 
Eq. (6) incalculating < d; > is over a small number of terms, and 
is not computationally intensive to calculate. 

Typically for binary problems, such as the scratch detection 
problem, a zero initial field is chosen, and Eq. (6) is calculated 
for all i E S'. The temperature is reduced, and the iteration 
repeated. A similar cooling schedule as for SSA is usually 
used, but this mean field approximation often converges much 
more quickly, with possibly poorer results. The values of < 
d; > computed from Eq. (6) are continuous valued, and are 
thresholded to give the final detection field. 

— 

2.4. An Improved Mean Field Approximation 

In this section the probability distribution of Eq. (2) is ap-
proximated by some much simpler distribution, one for which the 
maximum probability state is trivial to find. For a binary system 
defined on {-1, +1}, the distribution 

po(d) = zo eXp (uo(d)) , Uo(d) = ~midi (7) 

is convenient. Clearly po (d) is maximized for d = m. The 
remaining problem is how to choose the parameters m; so that 
the distribution po (d) best approximates p(d) in Eq. (2) in some 
sense [7], [8]. Define 

Consider 

<A >m 

d1...dAr=f1 

Apo(d). 

Q = — T(U — Uo). 

From the binomial expansion 

< exp(Q) > m≥ exp(< Q >m) 

giving 
—T ln Z < —T in Zo + < U — Uo >m. 

In statistical mechanics terms this is the Gibbs-Bogoliubov-
Feynman bound [9], and clearly Uo best approximates U when 
the right hand side of Eq. (11) is minimized, such that the tightest 
bound is obtained. That is 
Vm [—T 1n Z0+ < U — Uo >m] = 0. 

In Eq. (3) define h; = 132 — (Y ~J ET; 
(x; — x) 2, and 

remove constant terms. The summations involved in forming 
—Tin Zo+ < U — Uo >m can be performed resulting in 

a (—T1nZo+<U—Uo>m)= 
am; 

(12) 

_~[1 — tanh2( 
T

 

 
)] I h; -}- m; — 

21 ~ 
tanh( T) I . 

J E.V;

The optimum parameters of the approximation can be found 
by gradient descent using these gradients. Again Eq. (12) 

is used to minimize the bound in Eq. (11) at a series of 
temperatures associated with an annealing schedule. At each 
reduced temperature the converged result of the minimisation at 
the previous temperature is used as the starting point. Again, the 
final result is thresholded to give the detection field. 

3. MISSING REGION INTERPOLATION 
USING MRFs 

As outlined earlier, the problem of interpolating into the 
detected scratch regions is a missing data problem. If the 
likelihood function for the frame, given the observed frame and 
the detection field is examined, it is 

p(X = xID = d) = 
JJ 

{i:d;--1} 

ő(x;) (13) 

so that the undergraded areas of the image are left unmodified, 
but in the areas marked as scratches, the observed data does not 
influence the restoration. This is due to the replacement nature of 
the degradation. 

An image sequence model, conditioned on the image at 
locations not marked as scratches must be constructed, and used 
for the interpolation. In this section a simple model based on 
a spatio-temporal MRF will be introduced for this problem, and 
details of its application via the Gibbs sampler and the mean field 
approximations presented. 

Again using a first-order neighbourhood, pair cliques and 
the quadratic potential function, the local conditional probability 
distribution may be written as 

p(Xi = xi) = (14) 

Z. 
exp T (x; — xJ)2 — 

T 
~ (x; — xJ)2 , 

X; 
i EN; JET; 

where the temporal neighbourhood 7 now includes pixels from 
frames both sides of the current frame. The restriction to 
a small neighbourhood and simple cliques, whilst not suitable 
for general modelling of complex images, is suitable for this 
purpose as the scratch regions tend to be fairly small, and the 
temporal neighbourhood provides much information about the 
true sequence. Thus the energy function for this problem is 

U(x) = 

(i:d;=1 

(x; — xJ)2 + 

JEN; JET; 

(15) 

The quadratic potential function is used to give a smooth interpo-
lation. 

3.1. Interpolation by Gibbs Sampling 

The Gibbs sampler can be used to draw a representative sam-
ple from a distribution such as that described by the energy func-
tion in Eq. (15). This sample is then used as the interpolation. 
Specifically, samples are drawn from p(Xk IXs\{k}), where k 

indexes successive elements from the set {d; = 1}. Information 
from the edges of the scratch and from the temporal neighbour-
hood will propagate into the scratch regions. The restoration will, 
however, still be a sample from P(X = x), and as such may 
show unnecessary variations, for example, texture may appear in 
a uniform region of the image. To overcome this, annealing may 
be introduced into the Gibbs sampler, to cause the interpolation 
to converge to the maximum probability solution. 

3.2. Interpolation by First-Order Mean 
Field Approximation 

The mean field approximation may also be used with the energy 
function of Eq. (15) to provide an interpolation of the missing 
regions. 

As before, the influence of x;, j E N; in the calculation of 
<x > is approximated by the influence of < xJ >. This results 
in the mean field energy function becoming 
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am; 

iTh 

U; (xi) _ (xi — < xi >) 2 + ~ 

i E N;
and the estimate of < x; > is given by 

1 

i —  (16) 

i E T; 

1 

ZmJ L~ x ' eXP T 
(xi))

. (17)

This iterated over all {i : d; = 1}, and the converged results 
the interpolation. When x; takes discrete values, the values 
generated must be rounded to the nearest discrete value at the 
end of the iterative procedure. 

3.3. An Improved Mean Field Interpolator 

As above the energy function of Eq. (15) is approximated by 
some simpler energy function. For MRFs defined over a large 
number of gray-levels, which may conveniently be approximated 
as a continuous state-space, the energy function 

Uo(x) = (xi —m)2 (18) 

{i:d;-1} 

is useful approximation. Again the problem is to select the 
parameters m; to minimize the error caused by using Uo(x) 
in place of U(s). Again the `best' approximation is when 
Vm [—T 1n Zo + < U — Uo >m ] = 0. 

In the calculation of < U — Uo >m care must be taken when 
performing the integrals (the summations in Eq. (8) are replaced 
by integrals now that the variables are continuous) to distinguish 
between values of x; i E N; which are within the scratch region, 
and hence variable, and those outside the scratch region which 
are fixed, known values (see Fig. 1). The symmetry of the 
neighbourhood structure, and the use of the quadratic potential 
function enables the integral to be evaluated. 

ii 

Fig. 1. Some neighbours of x; may be within the scratch area, 
denoted by the bold line (i.e. j2, j3i j4) others may not (i.e. j1). 

Performing the integrals gives 

a 
(—TlnZo+<U—Uo>,,,)= 

+ ~ 2(m;—xj)+)~ 

4(mi —m)+ 

iEN;nd;-1 

2(m; — xi). (19) 

iEN;nd;--1 iET; 

Again these gradients are used to find the optimum m;'s to 
minimize the errors in the approximation. Once the optimum 
m;'s have been found, the optimum interpolator is that given by 
x; = m; at the scratch locations. 

4. DETECTION RESULTS 

To quantify the action of the detector under the three opti-
misation schemes, the algorithms were applied to an artificially 
degraded sequence. Fig. 2 shows a frame fru,n the seat cece, with 
artificial scratches added. 

Fig. 2. Degraded forme from sequence 

Fig. 3. Detection frame 

Fig. 4 shows a plot of Correct Detection rate vs. False Alarm 
rate for the three detectors, averaged over twelve frames. For 
this problem the two approximate optimisation schemes provide 
accurate approximations, their responses being very close to that 
of the SSA optimisation. The solid curve on the graph indicates 
the characteristic of the detector which operates by thresholding 
the motion-compensated frame differences [10]. 

The new detector produces some improvement, but the im-
provement is limited. Examination of Eq. (2) reveals why this is 
the case. If the term —$i i EN; d;di is neglected then the 

distribution becomes a simple product of terms, one for each 
pixel, and depending on the values of a and $Z each term will be 
maximized by a particular value of d; — this corresponds exactly 
to thresholding the motion compensated frame difference. 
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Fig. 4. Detector operating characteristics 

The additional term in Eq. (2) will only become important if the 
other two terms are very closely balanced. This will happen for 
scratches of small gray-level difference. Clearly these will only 
make up a small proportion of the total number of scratches, and 
so the improvement gained by the incorporation of the spatial 
continuity will be small. 

Fig. 3 shows the action of the detector on the artificially 
degraded frame shown in Fig. 2, for parameters corresponding 
to el = 24, e2 = 30. The detector identifies almost all visible 
blotches. Most of the false alarms are at the edges of moving 
objects, where motion estimation errors affect the action of the 
detector. The other main source of errors is where the lining of 
the actor's coat briefly enters the scene. This type of false alarm 
is unavoidable on the present heuristic. 

5. INTERPOLATION RESULTS 

To test the action of the interpolator under the three optimisa-
tion schemes, the same twelve frames as were used in the detec-
tion section were used here. To judge the action of the interpola-
tor only, the interpolators were used to reconstruct the frames at 
the known scratch locations. Fig. 5 shows how the mean squared 
error varies with the optimisation scheme, with a simple frame 
average interpolator as a benchmark for comparison. The results 
in this graph are for a = 1. The strength of the temporal link 
is a compromize between the desire to include good information 
from the neighbouring frame, and the possibility of introducing 
erroneous information due to errors in the motion estimation. 
The results on this diagram need some comment. 
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5.1. Gibbs sampler interpolation 

The Gibbs sampler restoration is a sample from the distribution 
describing the reconstructed frame. This will show some variation 
each time the sample is drawn. The mean squared error will 
therefore be different each time the restoration is performed. 
Visual comparison of the restored frames with those restored 
by the simple frame averager showed a definite improvement in 
image quality. 

5.2. First-order mean field approximation interpolator 

The results for the first-order mean field approximation inter-
polator were not satisfactory. Their visual quality was poor. This 
is a result of the approximations not allowing spatial information 
to propagate into the centre of scratch regions. The large state-
space also causes the reconstruction to be badly biased by the 
initialization. 

5.3. Improved mean field interpolator 

Because the potential function used was quadratic, the gradi-
ents allow the algorithm to converge very closely to the optimum. 
This is the cause of the very low mean squared errors shown on 
Fig. 5. The use of gradient based optimisation also allowed this 
algorithm to converge much more quickly than the other two. The 
visual quality of the restored frames was also very good. 

Fig. 6 is the restored frame from the artificially degraded 
sequence, where SSA has been used to detect the scratches, and 
the improved mean field interpolator has been used to interpolate 
into these regions. The artefacts due to the false alarm regions, 
for example in the actor's hair, are not distracting and the overall 
visual quality is very good. 

Fig. 6. Interpolated frame, scratch locations from SSA detector 

6. CONCLUSIONS 

The use of Markov Random Fields in the detection and in-
terpolation of scratches in archived motion pictures has been de-
scribed. Both stochastic and deterministic optimisation schemes 
have been discussed. A hybrid algorithm has been found to give 
the best results for the overall restoration problem. The limi-
ting factor in the accuracy of the restoration was found to be 
the motion estimates, and work on developing motion estimation 
algorithms matched to this problem is needed. 
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1. INTRODUCTION 

A consequence of dam construction in rivers is the gradual dis-
appearance, since the beginning of the century, of migratory fish. 
To avoid this, devices called fish passes have been constructed to 
help them to get over obstacles. There, window panes are used to 
observe and count by species the fish which cross. At the present 
time, a video camera is placed in front of the window pane and is 
connected to a video tape recorder to record fish crossings. Then, 
someone has to view the video tapes to recognize and count the 
fish. Since it is a very tedious job, our objective is to automate it 
by using a vision system. In this article, we focus on the automatic 
recognition problem. Species to be recognized are : shad, eel, 
barbel, bream, salmonids (salmon and sea trout), and river trout. 

2. IMAGE ACQUISITION CONDITIONS 

The images used to accomplish the recognition are taken by 
a video camera fitted with electronic shutter (shuttering time : 
2 ms) in a backlit fish pass (Fig. 1) [6]. A watertight caisson is 
placed at the back of the pass. It contains several neon lightings 
and is closed by a translucent material which diffuses light. This 
arrangement provides good contrast and very sharp fish outlines in 
spite of their rapid movements. Fig. 2 is an example of the images 
taken under these conditions while Fig. 3 represents its gray-level 
histogram. 

Watertight caisson Neon Lighting 

///X/////////// 

~ 
OOOOO 

f 

OO 

Diffuser 

~ 
f— Convergent 
Current 

Viewing windo 

Video 
Camera 

Fig. 1. 

Fig. 2. 

Fig. 3. 
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INTENSITY Previous histogram is bi-modal and a median threshold permits 
to accurately isolate the fish from the back of the fish pass (Fig. 4). 

Fig. 4. 

Fig. 5. 

Fig. 6. 

256 

Fig. 7. 

INTE7J~ITY 

0 
Fig. 8. 

POINT

255 

However, a problem can appear when water becomes turbid. 
Image's contrast decreases and then it is not so easier to isolate 
the fish from the back of the pass. Fig. 5 has been taken while 
water was clear whereas water was turbid in Fig. 6. Fig. 7 and 
Fig. 8 show the two corresponding intensity profiles. 

The fish is clearly better isolated from the back of the pass 
in Fig. 5. In Fig. 6 it is more difficult to separate them. If 
this situation comes to appear frequently, it will be necessary to 
avoid binarization and use another method to extract fish to be 
recognized. 

3. SPECIES RECOGNITION 

Fish species recognition consists in extracting parameters from 
the fish to be identified and sending them to a classification 
process. Parameters are to be chosen in order to distinguish at 
best the 6 species previously mentioned. The classifier is designed 
by means of a supervized learning using discriminant analysis 
method and a bayesian decision rule permits to classify unknown 
fish. 

3.1. Parameter selection 

We consider thirteen geometric shape descriptors [4], [5], [8]: 
area, perimeter, compactness, Hu's two first invariant moments, 
length and height taken in the inertia axis system, ratio of the 
minimum frame rectangle area to the area, number of vertex of 
the ex-inscribed polygon, convex hull area, convex hull perimeter, 
convex hull compactness and concavity rate. 

To evaluate parameter performances, each one has been used 
separately to classify the six species. This work has been done 
upon a classifier design data base including about 2000 images. 
Obtained results are presented in Fig. 9. 
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Shad Eel Barbel Bream Salmonids River trout 

Arca (pl) 17,29 100 31,67 13,07 72,29 54,97 

Perimeter 
(P2) 

10,53 79,52 40 56,97 61,71 48,34 

Compactn. 
(p3) 

62,78 100 45,28 44,08 70,65 17,22 

Flu's first 
moment 

(P4) 

73,68 100 10 98,26 26,09 53,64 

Hu's second 
moment 

(p5) 

72,18 100 6,39 99,65 26,32 45,03 

Lenght (p6) 24,81 53,01 36,67 59,23 64,36 60,26 

Height (p7) 21,41 93,98 20,28 19,34 56,3 67,55 

Obj. area 
/min. Rect. 
area (p8) 

54,89 2,41 35,83 35,89 25,44 79,47 

Vertex 
number (p9) 

37,97 100 58,89 29,79 9,45 73,51 

Convex hull 
area (p10) 

14,29 100 36,11 17,25 60,96 59,6 

Convex hull 
perimeter 

(pit) 

24,81 63,86 41,39 58,89 63,48 53,64 

Convex hull 
compactn. 

(p12) 

48,12 93,98 38,61 89,9 5,79 1,32 

Concavity 
rate (p13) 

69,92 9,64 41,11 30,31 26,32 80,79 

Fig. 9. 

Best parameters, for each species, are boldfaced in previous 
array. All of them (pi, p3, p4, p5, p6, p7, p8, p9, pll, p12, 
p13) could be processed for each fish to recognize but, as species 
recognition is included in a tracking process [2], it is necessary 
to reduce its processing time as much as possible. For that, two 
points are to be considered: 
• some parameters are correlated; 
• the schedule introduces different levels of constraints: error 

rates must be lower than 5 % for salmonids, 15 % for shad, eel 
and river trout and 25 % for bream and barbel. 
Fig. 10 represents the parameter correlation matrix. 

Pl p2 p3 p4 p5 p6 p7 p8 p9 p10 ph l p12 p13 

Pl 1 0,96 -0,13 -0,1 -0,22 0,95 0,89 0,04 0,7 0,98 0,96 -0,11 0,02 

p2 I 0,03 -0,01 -0,16 0,98 0,9 0,19 0,73 0,98 0,99 -0,05 0,21 

p3 1 0,9 0,87 0,06 -0,2 0,51 -0,15 -0,06 0,02 0,81 0,59 

p4 1 0,96 0,07 -0,3 0,25 -0,33 -0,08 0,03 0,94 0,32 

p5 I -0,07 -0,39 0,2 -0,4 -0,2 -0,12 0,91 0,26 

p6 1 0,83 0.15 0,64 0,95 0,99 0,05 0,15 

p7 .I 0,3 0,81 0,92 0,86 -0,35 0,22 

P8 I 0,23 0,15 0,15 0,04 0,88 

p9 1 0,74 0,67 -0,39 0,22 

pl0 I 0,97 -0,12 0,16 

p11 I 0 0,16 

p12 1 0,07 

p13 I 

Fig. 10. 

Keeping p1 (area), p3 (compactness), p4 (Hu's first moment), 
p6 (length), p7 (height), p9 (number of vertex of the ex-
inscribed polygon) and p13 (concavity rate) appear to be a 
good compromize between a good discrimination (included in the 
schedule) and a reduced processing time. 

Let's notice that, even if p6 is very correlated with p1, it is 
useful to better classify Salmonids, which is the highest constraint. 

3.2. Classification principle 

The learning stage uses the multiple discriminant analysis 
method. Its principle consist in setting up an axis system as 
linear combinations of parameters allowing to separate at best the 
different classes by projections [3]. These so called discriminant 
axis, are the eigen vectors of the T-1 B matrix, where T is the 
total covariance matrix and B the interclass covariance matrix. 
One axis descrimination performance is given by the associated 
eigen value. 

Once the learning is accomplished, a new fish is classified using 
a bayesian decision rule [3]: 

Let p be the number of classes, x the fish parameter vector 
and P(wj/x) the conditional probability that class wj is correct 
knowing x. 

Let the cost function cij to classify a fish in the class wi 

whereas it belongs to the class wj be: 

o ifi=j 
= 1 - = 

1 ifi j 

Then, a fish is assigned to the class w, which corresponds to 
the maximum probability P(wj/x), where j varies from 1 to p. 

Let p(x/wj) be the probability density function for x given 
that the state of nature is wj, P(w) be the a priori probability 

P 

of class wj and p(x) = p(x/wj)P(wj ). 
j=1 

Using Bayes' rule: 

P(wj /x) = 
p(x/wj)P(wj) 

p(x) 

and supposing our problem is gaussian, the decision rule can be 
written as follows: 

fd(x) = wi t- gi (x) = max(gj (x)); 7 = 1, . . . , P , 

where fd is the decision function and gi (i = 1, . . . ‚p) are the p 
discriminant functions. 

All classes are supposed equiprobable and, since they have got 
close covariance matrix, the discriminant functions can be written 
as: 

1 1 
gi(x) = 72i ~ x - 1/2(721 ~ 72i), 

where ni is the wi class mean vector and is the average 
covariance matrix. 

4. REJECTION CRITERION 

It can happen that leaves, tree branches of fish of other species 
than the six previosly mentioned circulate in the pass. To avoid 
wrong classifications in these cases, a rejection criterion is used 
[7]. It is based upon the calculation of Mahalanobis distance to 
the nearest class center: 

d2(x, rni) = (x — r2i 

A statistical analysis has been carried on to determine a 
rejection threshold for each class. It has been done from the di to 
base used to accomplish the classifier design. Fig. 11 represents 
an example of calculation of Mahalanobis distance for each fish 
of bream class' data base. The rejection threshold is set to 3o, 
where o is the class standard deviation. In Fig. 12 an ‚ Ci i as been 
introduced among bleanls and is clearly rejected. 
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Fig. 13. 
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1. INTRODUCTION 

Optical character recognition can be achieved in the pattern 
domain [1]. Geometrical or structural features are extracted and 
processed by different techniques that often involves high dimen-
sionality vectors. The implementation of pattern transformations 
has been introduced as an alternative for character recognition 
[2]. They allow the definition of lower dimensionality represen-

tations, but they have to propose significant features in order to 
reduce the loss of information. 

Various transformations have been suggested as a solution of 
the problem of high dimensionability of the feature vector and 
long computation time: Fourier, Walsh-Hadamard and Hough 
Transform [3]. In this paper, we explore the application of rapid 
and modified rapid transform [4], [6], to extract features used in 
the recognition of printed Berber characters. 
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The rapid transform (RT) is a fast shift invariant transform 
[4]. The RT is useful for pattern recognition, if the position 
of the pattern is unknown or the pattern is moving [5]. In 
some applications (recognition of characters), it is required that 
the transform be non invariant under reflection however, RT is 
invariant under reflection. The modified rapid transform (MRT) 
was presented to break undesired invariances of the RT [6], which 
leads to a loss of information about the original pattern. This is 
achieved by combining the RT with preprocessing steps using a 
neighbour operator. If the neighbour operator is asymmetric, the 
undesired invariance under reflection can be overcome with only 
one preprocessing step. Thus the MRT can distinguish many more 
patterns from one another than the original RT can. 

A new method of recognition of printed Berber characters 
using MRT is presented in this paper. We apply the MRT in 
feature extraction stage of character recognition process. In 
the following, some properties of the RT and MRT are first 
reviewed; then the new method of recognition of printed Berber 
characters is presented. Finally, the experimental results are 
given in applying of the proposed character recognition method 
to recognition of printed Berber characters including dependence 
of recognition efficiency on number of selected features. 

2. MODIFIED RAPID TRANSFORM 

Transform methods can be used to obtain alternative descrip-
tions of signals. These alternative descriptions have many uses 
such as classification, redundancy reduction, coding, etc., because 
some of these tasks can be better performed in the transform 
domain. However, nonlinear or even noninvertible transforms can 
be useful for applications such as classification and pattern recog-
nition. As most of these applications are based on the exploitation 
of the fact that transform is a way for changing of statistical and 
spectral characteristics of the signal. Transforms which do not 
change with cyclic shifts in the sequence are called translation 
invariant. Fast translation invariant transforms are valuable tool 
for pure shape-specific feature extraction in pattern recognition 
problems. The transforms may be used to extract features of one-
or two-dimensional patterns, which are invariant under cyclic per-
mutations to characterize objects independent of their position. 
In the field of pattern recognition and also scene analysis is well 
known the class of fast translation invariant transforms — certain 
transforms (CT) [7] based on the fast signal graph (Fig. 1) of the 
original rapid transform (RT) [4] but with choosing of other pairs 
of simple commutative operators. The RT results from a minor 
modification of the Walsh-Hadamard transform (WI-IT) [8]. 

x , xl0) ~(1) j2)

t=(x)i), x(J) ) 

x)J ) 

Fig. 1. Signal /low graph of the rapid transform (RT) with eight 
input components (fl (a, b) = a + band f2 = (a, b) = Ia — bI) 

The signal flow graph for the RT is identical to that of the WHT, 
except that the absolute value of the output of each stage of 
the iteration is taken before feeding it to the next stage. This 
is not an orthogonal transform, as no inverse exists. With the 
help of additional data, however, the signal can be recovered 
from the transform sequence, i.e. inverse rapid transform can be 

defined [9], [10], [11]. RT has some interesting properties such 
as invariance to cyclic shift, reflection of the data sequence, and 
the slight rotation of a two-dimensional pattern. It is applicable to 
both binary and analogue inputs and it can be extended to multiple 
dimensions. Various properties of RT have been developed in [7], 
[12]. RT was used in the recognition of alphanumeric characters 
[4], [13], [16], robotics [5] and scene analysis [13], [17]. 

More recently was introduced the modified rapid transform 
(MRT) [6] which can distinguish many more patterns from one 
another that the original RT can. The MRT was presented to 
break undesired invariances of the RT which leads to a loss 
of information about the original pattern. This is achieved by 
combining the RT with preprocessing steps using a asymmetric 
neighbour operator a. This operator is used to break undesirable 
invariances but keep the shift invariance of the MRT. Using the 
symbolic notation we can introduce MRT as follows: Fig. 1 is a 
eight-point signal flow graph of the RT. The RT requires N = 2" 
input pixels, where n is a positive integer. Each columns in 
Fig. 1 corresponds to a particular computational step; n steps are 
required. In general the variables x(r)  in any column (r) are 
calculated from variables x(r-1)  in the preceding column (r — 1) 
by 

+ 2js) = f1(x~r-1) (i + 2js), 
x
(r-1) (i + (2j + 1)s)) 

x(r) (1+(27+1)3) = f2(x~r-1)(i+2j3), 
x(r 

1)(i+(2j+1)s)), 
(1) 

where operators f l , f 2 for RT are 

fi(a,b) = a + b; f2(a,b) = Ia — bI (2) 

and s = 2n-r ; t = 2r-1; i = 0, ... , s — 1; j = 1, .. . , t — 1 
and x E x(°) are input data (pixels) and ar<n> E z = RT{x} are 
spectral coefficients of RT. Signal graph of MRT (Fig. 2) results 
from signal graph of RT with adding in general k processing steps 
x' = ax. This maps the element x(i) of input vector x to element 
x'(i) of vector x' by working on the elements x(i), x(i + 1) and 
x(i + 2) 

x'(i) = fo(x(i), x(i + 1, x(i + 2)) (3) 

It is important that the operator fo be asymmetric because we 
want to destroy the invariance of RT under reflection. Operator 
fo may be realized in the following simple manner [6] 

x' (i) = fo(x(i), x(i+1), x(i+ 2)) = x(i)+I x(i+1) — x(i+ 2)I 
(4) 

For 2D patterns one can use either 1D RTs in sequence, for the 
horizontal (x) and vertical (y) directions, or one 2D RT. Than we 
can choose the following symmetries of the neighbour operators: 

fó : x' (=,?) = x(1,7) + Ix(i + 1,j) — x(i + 2, 7)I (5a) 

fó : x'(i,7) = x(1,7) + I x(1,7 + 1) — x(1,7 + 2)1 (5b) 
fo ±Y : 

x'(i,7) = x(1,7) + I x(t + 1,j) — x(i + 2,7)I+ 
+I x(1,7 + 1) — x(i, j + 2)I (5c) 

fo ' : x' (1,7) = x(i,7) + I x(i + 1,7) — x(1,7 + 1)1, (5d) 

where x'(i, j) and x(i, j), i, j = 0, .. . ‚N — 1 are pixels of 
the desired preprocessed and input 2D pattern (image). From 
theoretical considerations and computer simulations the following 
results was delivered: 

1. The MRT utilising f',  resp. fo break the invariance under 
reflection only in one direction x, resp. y. 

2. Operators f'±'  and fá 1' break the invariance under 
reflection in both directions. Because of its simplicity the operator 
fó r' is superior to the operator f±'.  In the following only the 
operator fó v will be used as a neighbour operator for 2D MRT 

3. The concept of modification can be used for all transforms 
from the class CT [7] based on two commutative operators. The 
efficiency of the modification may be different for each transform. 

4. Selecting a specific symmetry of the neighbour operator one 
can keep specific invariances and destroy undesired invariances of 
some transform member of the class CT 

5. MRT can be applied in all areas where the RT (or 
any transform from class CT) can be used. Some undesired 
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invariances of RT can be destroy applying only one preprocessing 
step. 

6. Experiments from use of MRT [6] in character recognition 
showed, that MRT can distinguish many more patterns from one 
another than the RT or the Fourier power spectrum. 

7. The computational cost of the MRT is not much greater than 
that of the RT. In fact, one preprocessing step needs N additions 
and subtractions (Fig. 2), while each layer of the signal flow graph 
of the RT (Fig. 1) needs N/2 additions and subtractions. In total 
RT needs N loge N additions and subtractions, whereas the MRT 
with k processing steps need N/2[log2 (N) + 2k]. 
x _ XI01 ,StOi i ' X10!' ~(tl'  x111f x131_~q 

x9o: 

Fig. 2. Signal flow graph of the modified rapid transform (MRT) 
with eight input components and k preprocessing steps 

(fi(a,b)=a+b, f 2(a,b)=~a—bland fo(a,b,c) = a+lb — cl) 

3. RECOGNITION SYSTEM MODEL 

The recognition system (Fig. 3) is simulated in digital com-
puter. It contains the following sub-systems: 
e Original digital picture preprocessing system CSPO-II [18] was 
used to accepts the physical input picture and then transducer 
it into a measurable matrix. CSPO-II divides a visual pattern 
into small elements and after suitable preprocessing produces 
an N x N matrix over the binary field; the element becomes 1 
or 0 depending upon whether it is black or white. 

e The MRT processor according to its function may be also 
called a feature extractor. A 2D RT or MRT of all binary 
prototypes is taken in this stage. Than feature selection is 
carried out in the RT or MRT "spectral" domain on various 
basis (maximum value of spectral coefficients, variance zonal 
sampling and interclass standard deviation). 

e The selected MRT (or RT) features of binary pictures (char-
acters) are in the teaching process feeded into the memory. 
Thus the memory unit learn the a priori knowledge of each 
class before the system can be used to make any decision. In 
the recognition process the selected MRT (or RT) features 
are feeded into the classifier, which discriminates each pattern 
(character) and assigns a category (a class) to it by some deci-
sion rule. We use a simple classifier based on cross responses 
dk1 between two different patterns from class k and 1 defined 
in the next section. 

lout 
'attem CSPO-II RT processor 

Aj Digital picture Binary 
RT features 
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Fig. 3. Basic block scheme of the recognition system 

4. RECOGNITION OF PRINTED BERBER 
CHARACTERS 
The modern Berber alphabet [3] consists of 29 independent 

characters, with 25 consonants and 4 vowels (Fig. 4). Each 
character is separated from the others. We implemented feature 
extraction by RT and MRT at the set of 29 Berber characters. In 
general, the efficiency of feature extraction can be assessed by the 
system confusion matrix D = {dk1; k, I = 1, . . . , M} where dki 
are cross responses (or the distances between any two different 
characters k, 1 in the feature space) and M is the number of 
classes or number of different characters. The confusion matrix 
can be calculated in two steps shown as follows: 
1. All M = 29 prototypes of Berber characters, each represented 

by a binary N x N matrix (x k (i, i)  with i, j = 1, . . . , N; 
k = 1, .. . , M and N = 16) are transformed to the RT or 
MRT transform domain 

xk(2,7) = r{xk( 2,7)}, (6) 

where r E {RT, MRT}. 

2. The cross response dk>> between two different characters from 
class k and l is defined as follows: 

N 

dkll  = ~ I xk(z,7) — x1(2,7) I (7) 
íj=1 

with k, l = 1, . . . ‚29. Here, dki is similar to as a simple 
distance measure between classes k and 1. 
To further reduce the computational cost in the classification 

process we selected only a couple of elements xk(i, j) of 
the feature matrix as the feature vector Fk (where Fk(p) E 
{x k (i,j)}; p = 1, . . . ,P and P « M, in on experiments 

P = 6). The cross response d  can be now defined as follows: 

P 

I Fk(p) — F,(p) I (8) 
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Fig. 4. Berber alphabet 

The results of experiments of dependence of recognition 
efficiency on number of selected features and influence of noise 
are as follows: 
1. The simple RT as feature extractor is not sufficient. There are 

some groups of Berber characters which cannot be separated 
even if we use all 16 x 16 features in the RT spectral 
domain. Difficulties occurs in separation of characters from the 
following groups ({D, DH}; {A, OU}; {CH, M, Y}; {B, H}; 
{L, N} and {G, DJ,TH, X, Z}). 
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2. MRT is able to separate all the Berber characters. A real 
100 % character recognition can be obtained with selecting 
only couple (P = 6) of features in the MRT spectral domain 
even in the presention of some noise (up to 5 %). 

5. CONCLUSION 
We apply the MRT in feature extraction stage of character 

recognition system. Only one preprocessing step in MRT signal 
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PATTERN RECOGNITON METHOD BASED ON k NEAREST NEIGHBOUR RULE 
A. JÓZWIK 

INSTITUTE OF BIOCYBERNETICS AND BOMEDICAL ENGINEERING 
02.109 WARSAW, TROJDENA 4. 

1. THE k NEAREST NEIGHBOUR RULE 

The most effective classification methods are based on the 
k nearest neighbour rules (k-NN). The number k is a fixed 
natural number not greater than a numerical force of reference 
set (training set). To classify the new point by the k-NN rule, it 
is necessary to find k nearest points in the reference set and to 
assign the class which is most frequently represented among the 
k "nearest neighbours". The number k should be selected in such 
a way that minimizes the misclassification probability. 

2. FEATURE SELECTION PROBLEM 

Some of the features used to describe objects may have no 
relation with the considered classification problem. They act as a 
noise and very often decrease the classification quality. Thus, the 
feature selection procedure should be included to the process of 
developing the classification rule. From the all features that are in 
our disposition, the feature set which offers minimum probability 
of misclassification ought to be selected. 

It should be noted that the criterion for determination the 
optimum number k of nearest neighbours as well as the feature 
selection criterion are the same. Let us consider the way of it's 
estimation. 

3. MISCLASSIFICATION RATE ESTIMATION 

To estimate a probability of wrong classification from the 
reference set, we will use the "leave one out" method. In this 
method, each point from the reference set is classified by a 
decision rule derived from the reference set decreased by this 
classified point. The number of misclassified points divided by the 
number of points in the reference set estimates the probability of 
misclassification (error rate). 

4. FINDING THE OPTIMUM NUMBER 
OF NEAREST NEIGHBOURS 

The number "k" of nearest neighbours can assume the values 
not greater then the number "n" of objects in the reference set. 
In the case when k = in all objects would be assigned to the class 
that has a maximum number of objects in the reference set. Ties 
can be broken by k-NN rule with k = m — 1 and sequentially by 
k = m — 2 and so on until k = 1. By use of the "leave one out" 
method the error rates may be calculated for all possible k-NN 
rules, i.e. for k = 1, 2, . . . , m. The value of k that corresponds to 
the smallest misclassification rate is the selected number k. The 
optimum value of "k" very rarely is equal to "m" or is close to "m". 
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In that case all or nearly all objects are assigned to the class is 
the largest in the reference set. Thus, the classification is of poor 
quality. Therefore, it is sufficient to review some smaller numbers 
of "k". Our experience implies that it may be sufficient to take 
into account the values of "k" between 1 and an integer part of 
square root of "m". 

5. FEATURE SELECTION STRATEGY 

It was very easy to find the optimum number of nearest 
neighbours. The full review of all possible feature sets is possible 
only when the number of features is very small, say less than 10. 
For ten features, it would be necessary to review 1023 feature 
combinations (i.e. 210 — 1). The number of possible feature 
combinations grows rapidly with number of features. Because of 
this, the so called backward strategy is recommended. It operates 
in the following way. In the first step, an error rate for all "n" 
features is computed. Then "n" combinations by (n — 1) features 
is reviewed and the set of (n - i) features is selected. In the third 
step, the (n — 1) combinations by (n — 2) features are reviewed 
and the best set of (n — 2) features is found. We stop when 
all combinations by single features will be evaluated. From all 
combinations, reviewed in the above way, we select combination 
which offers minimum value of error rate. Error rates computed 
for each reviewed feature combination refers to the optimum 
value "k" of nearest neighbours. When some combinations give 
minimum error rate, we select the one which corresponds to 
smaller optimum value "k". 

6. DATA STANDARDIZATION PROBLEM 

All features used to describe an object can be expressed in 
different units. These units may be of the same type or different 
types. The units problem could be very easily removed, for 
instance, by dividing each feature by its mean value. However, 
the different feature value units do not disturb us. The problem 
is whether the classification quality depends on units. 

Let us assume that we use two features only. When we use the 
first one, we obtain certain misclassification rate greater than zero. 
The second feature is used to improve the quality. Furthermore, 
let us assume that the values of the first feature varies between 0 
and 10000 while the values of the second feature varies between 
0.000001 and 0.00001. The second feature will have no influence 
on classification quality because all distances calculated for k-NN 
rule will depend on the first feature even the second feature 
used as a single could be sufficient for perfect classification. This 
disadvantage can be removed by data standardization done by the 
following formula: f [i, j]: = (f [i, j] - f [j] )Is (j], where f [i, j] is the 
value of j-th feature, f U] and s (j] are its mean value and standard 
deviation respectively. Mean values of all features will be then 
equal to zero and standard deviation equal to 1. So, all features 
will have the same "chance". The data standardization can force 
the bad as well the good features. If it will force the bad feature, 
then such a feature will be removed during the feature selection 
process. 

7. THE PARALLEL k-NN RULE 

We can imagine the parallel net of two-decision k-NN classi-
fiers. Thus, the classified point is simultaneously send to each of 
these component classifiers. The final decision may be obtained by 
voting of the component classifiers. The classification rule that is 
realized by the presented above parallel net of k-NN classifiers we 
will call the parallel k-NN rule. For each of the component clas-
sifier, a separate feature selection as well as the optimum number 
of nearest neighbours can be found. The presented work will 
show, on artificial data, that the parallel network of two-decision 
classifiers offers usually significantly better classification quality. 
It was noticed that this improvement is obtained mainly because 
a separate feature selection for each component classifier. We 
decided to use the artificial data set since only for such data the 
Bayes' risk can be known a priori and it is possible to establish 
which classification rule is closer to that one realized by Bayes' 
classifier. 

8. EXPERIMENTS WITH AN ARTIFICIAL 
DATA SET 

We consider the three class decision problem in two dimen-
sional feature space. The first class occupies the square with 
vertices: [0, 0], [100, 0], [100, 100] and [0, 100]; second class: 
[0, 100], [100, 100], [100, 200] and [0, 200] and the third class: 
[0, 100], [200, 0], [200, 100] and [100, 100]. The random numbers 
are generated by function rn = random (10000) which exists 
in standard version of Turbo Pascal v.6 package. The function 
random (10000) returns a random natural number from the 
interval [0, 10000]. Thus, the first class contains points: xi = 
rnl/100, x2 = rn2/100, second class: xl = rn3/100, x2 = 
100 + rn4/100 and the third class points: x = 100 + rn5/100, 
x2 = rn6/100. As a distance the Euclidean measure is assumed. 

The tables given below show the obtained results for two data 
sizes and different classifiers. The three types of classifiers were 
considered: 

Simple 

Par. no fs. 

Par. with fs. 

=k-NN rule (it is a priori known that feature 
selection is useless, so two features were used) 
=parallel k-NN rule without feature selection 
for all the three component classifiers. 
=parallel k-NN rule without feature selection 

Table]. Results for data set size equal to 3000 points. 
Each class is represented by 1000 points. 

Experiment Simple Par., no f.s. Par. with f.s. 
1. 0.0067 0.0057 0.0000 
2. 0.0030 0.0027 0.0000 
3. 0.0047 0.0043 0.0000 
4. 0.0017 0.0000 0.0000 
5. 0.0053 0.0027 0.0000 
6. 0.0043 0.0000 0.0000 
7. 0.0057 0.0000 0.0000 
8. 0.0030 0.0000 0.0000 
9. 0.0027 0.0007 0.0003 

10. 0.0043 0.0000 0.0000 

Table 2. Results for data set size egual too 300 points. 
Each class is represented by 100 points. 

Experiment Simple Par., no f.s. Par. with f.s. 
1. 0.0033 0.0043 0.0000 
2. 0.0100 0.0033 0.0000 
3. 0.0133 0.0100 0.0000 
4. 0.0167 0.0100 0.0000 
5. 0.0100 0.0100 0.0000 
6. 0.0033 0.0000 0.0000 
7. 0.0000 0.0000 0.0000 
8. 0.0167 0.0133 0.0000 
9. 0.0100 0.0043 0.0000 

10. 0.0167 0.0100 0.0000 

The optimum number k of NN for the simple classifier varied 
between 1900 and 2100 for the data size contained 3000 points 
and between 9 and 30 if each of the classes were represented by 
100 points. In the case of the parallel k-NN rule the optimum 
numbers k of NN varied between 1 and 230 for the larger data 
size and between 1 and 20 for the smaller of the two considered 
data sizes. 

9. CONCLUDING REMARKS 

The results presented in the above tables show that the parallel 
£NN rule can offer better performance than the simple rule. 
Furthermore, this difference is more significant for smaller data 
sets. 

The parallel k-NN rule do not ensure the better result because 
features selection made for the component classifier does not 
always improve their performances. 
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The examples of data sets (when the parallel k-NN rule do not 
give better results) can be obtained from the same data sets by 
rotating all points in these sets by 45 degrees. 

It may happen that the parallel k-NN offers a somewhat worse 
result than the simple k-NN rule (see table 2, experiment 1), 
but this does not happen frequently. Furthermore, the parallel 
classifier does not require more computations. The optimum 

numbers k of NN are much more smaller and, because of feature 
selection, the distances are calculated in smaller dimensions since 
for pairs of classes less features are usually selected than in the 
case of full reference set. 

The considerations presented above prove that the parallel k-
NN rule is worth of recommendations. 
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1. INTRODUCTION 

The objective of this paper is to measure the effect of 
oothecae stimulation in order to characterize their response 
to various hormones, which are given in order to provoke 
ovulation and enhance fertilization. These measurements are 
usually taken in ultrasound images by manual delineation of the 
ootheca and ovisacs or a simple estimation based on experience 
[2]. This approach suffers from subjectivity, which limits its 
clinical usefulness for quantitative analysis. In this paper we 
describe a semiautomatic technique using morphological filters for 
isolating the oothecae in an uterus ultrasound image, in order 
to take the appropriate measurements (histogram, diameters, 
counting). There exist related works by Thomas et al [5] to 
automate the measurement of femur length in fetal ultrasound 
images and by Klinger et al [6] to automate the segmentation 
of echocardiographic images. Specifically, the evaluation in the 
proposed technique is based on three factors: 

(a) The amount of liquid and solid parts, 
(b) The number of ovisacs and 
(c) The max diameter of the ovisacs. 

The overall procedure consists of three separate stages: (i) 
Formation, digitalization and preprocessing of images, (ii) Seg-
mentation and (iii) Measurement. 

2. THEORY: MORPHOLOGICAL OPERATORS 

2.1. Binary case 

Dilation, Erosion, Opening Closing 
In the theory of mathematical morphology, each signal is 

viewed as a set, and its geometrical features such as peaks and 
valleys are modified by morphologically probing the signal X with 
a structuring element A. The fundamental operations are [1]: 

The dilation of X by A is defined as 

XEA"=UX_a 
a 

where U stands for the set union with respect to all a E A, 
A" =[—a : a E A] is the symmetric set of A and X _ a  = [x — a : 
x E X, a E A] the translated set of X by a. 

The erosion of X by A is defined as 

XeA°= I I X_a 
a 

where I I stands for the set intersection with repect to all 
aEA. 

In addition to dilation and erosion, there are two transfor-
mations, the opening and closing. Often treated as fundamental 
transformations, they can be constructed directly from dilation 
and erosion. Mathematically, we use the following expressions 

Opening: X o A= (X e A°) E A 
Closing: X. A= (X E A°) e A 

Hit-Miss Transformation, Thinning. Pruning 

The Hit-Miss (HM) transformation of X by a disjoint pair 
(A, B) of a structuring element is defined [1] as the set trans-
formation X ® (A, B) = (X 

e 

A) n(X` 
e 

B) where A is the 
"hit" structuring element and B is the "miss" structuring element. 
By "hits" we mean intersection with the foreground of X, whereas 

the "misses" will refer to intersection with the background of X, 
namely the set complement X°. Thus the HM transformation is 
the intersection of a foreground erosion and a background ero-
sion. It should be also noted that the elements A, B are both 
defined with repeat to the same center position. By definition, we 
thin X by (A, B) when we subtract X ® (A, B) from X, and we 
thicken X by (A, B) when we add X ® (A, B) to X: denoting 
these transformations by X❑(A, B) and X•(A, B) respectively, 
we can write 

Thinning: X❑(A, B) = X/X ® (A, B) 
Theckening: X•(A, B) = X U X ® (A, B) 

Following a thinning operation we usually apply an operation 
which cuts the undesired parasitic branches when they appear. In 
our discussed problem we need the extraction of the end points 
and we implement this extraction by a pruning-like operation, 
which is a thinning operation with the sequential probing of the 
S-E structuring element (Fig. 1). 
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Fig. 1. S-E element rotated by 45° 

2.2. Gray-level case 

Morphological transformations have also been extended from 
binary to grayscale images by Sternberg [8] and Serra [1]. If 
f (x, y) is a finite support graytone image function on Z2, and 
g(x, y) is a fixed graytone pattern of size one that represents the 
structuring element. 

Then the erosion of f by g is the function: 

(f 

e 

g)(x, 

y) 

= 

min{f(x + 

i, y 

± 

j) - 

g(i, 

j)} 

+,) 

while the dilation of f by g is the function: 

(f 

® 

g)(x, 

y) 

= 

max{f(x - 

i, 

y - 

)) 

+g(:,7)} 

',) 

The opening and the closing of f by g are constructed by 
combining the functions of erosion and dilation, as follows: 

Opening: X o g= (X e g°) ® g 
Closing: X . g = (X ® g') 

e g 

3. EXPERIMENTAL METHODS 

3.1. Procedure of formation, digitalization and 
preprocessing of the images 

Ultrasound images are acquired with a commercially available 
curved linear array, real time ultrasound system. A preprocessing 
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of the digital images is done before the application of the main 
morphological processing, in order to eliminate the degradation 
associated with video-tape recording of the ultrasound signal. 
Two main types of degradation are observed: (i) high frequency 
impulses (maximum gray-level) and (ii) abrupt movements of local 
parts of the image. 

To eliminate it, we propose a type of filtering with the opening-
closing (OC) morphological filter by a rhombus 3 x 3 structuring 
element to clean and smooth the blurred image [3]. 

3.2. The proposed segmentation algorithm 

An opening operation consists of two successive operations 
(erosion-dilation) with a symmetric structuring element, having a 
particular size. In the considered case we cannot estimate the 
size of the structuring element. In order to face this difficulty, 
we propose a classical Opening Transformation with a user guided 
approach, which will be called Interactive Gray-level Opening 
(IGLO). This IGLO may be implemented by applying a manual 
erosion operation, which is used to erode the image until we are 
satisfied by the kind of information which has disappeared. The 
end of the erosion operation assigns the size of the structuring 
element and the beginning of the dilation, as the last part of 
the opening operation. The basic morphological operations are 
defined in the Theory part. 

After the IGLO, we apply a thresholding operation by which 
every gray-level above zero goes to white. Although we have 
succeeded acceptable edge definition, the resulting contours are 
incomplete in some regions. Therefore, a method is required 
to produce a closed contour. This is achieved by applying 
iteratively the binary dilation, until the connection occurs among 
independent regions. After we have obtained the connected 
regions by the binary dilation, we continue the process by applying 
to the image a thinning operation, in order to reconstruct the 
image after IGLO. Then we obtain an image with connected 
regions. The thinning operation is applied by an S-L structuring 
element (Fig. 2), which is rotated each time by 45° and each 
rotation cycle is repeated a number of times equal to the number 
of iterations in the binary dilation. 

0 0 0 0 0 t 0 t t 
R O 1 ~ 0 t O 0 t O a 

t 1 1 t 1 R . 0 R 0 0 

0' 45' 90' 135' 

1 1 * 1 1 0 . 1 0 0 R 

O 
R 0 O 1 0 0 1 0 O 1 

0 0 0 0 0 R 0 1 R 1 t 

180' 225' 270' 315' 

Fig. 2. S-L element rotated by 45° 

The pruning operation follows the thinning operation in order 
to discard the parasites dendrites, which are produced by the 
thinning operation. We use an S-E structuring element (Fig. 1), 
which is rotated by 45° as many times as the thinning operation 
is applied. 

The result from the pruning operation can be seen as a body 
with a cavity inside. This cavity is the area of interest (AROI) 
and we need to extract the boundary of this area. The boundary 
extraction consists of two sequential phases: 
• In the first phase we dilate the pruned image and subtract the 

pruned image from its dilation. This results in two contours. 
Using the contour-following algorithm, which is represented in 
the sequel, the external contour will disappear. 

• In the second phase we dilate the internal contour which 
remains and subtract the internal contour from its dilation. 
Again, an outer and inner contour result. The external contour 
corresponds to the boundary of the AROI. Therefore, the 
inner contour is removed. The contour which remains is the 
outline of the segmented region. 

3.3. Contour-following algorithm 

The underlying idea of this algorithm is based on the probing 
of a structuring element S-F, which operates as a controller of 
an area of the same size. Note that, the width of the contour 
is one pixel. The S-F checks the area by a logical ANDing 
operation between the structuring element and the elements of 
the respective neighborhood, which is under control. A graphical 
representation of our contour-following approach is shown in 
Fig. 3. 

Fig. 3. Contour following algorithm 

Fig. 4. Original image 

4. MEASUREMENT STAGE 

After we have obtained the segmented area, we are able 
to take the appropriate measurements (histogram, diameters, 
counting). 

4.1. Histogram measurement to determine the 
amount of the liquid and the solid parts 

The first measurement under consideration determines the 
amount of the liquid and solid parts of the ootheca. The liquid 
part is considered as the minimum gray-level (absolute Hack), 
whit„ the solid 3 is are rep; esc lzir.d by the rest of tb=. gr'y-levels. 
To derive an histogram we make use of simple Image pr cessing 
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methods and graphics management. The result is also translated 
to a per cent (%) representation (Fig. 6). 

Fig. 5. Segmented image 

Fig 6. Histogram of liquid-solid parts 

Á'.2. Measurement of the number of the ovisacs 
The second demand to the semiautomatic system is the ability 

to count the ovisacs in the ootheca. This procedure is integrated 
in the next steps. 

At first a thresholding operation is applied to the segmented 
gray-level region, which leads to a separation between the textures 
or subregions of the parts, within the ootheca. Those subregions 
represent the ovisacs and their separation looks like a fuzzy image 
due to various dropouts (an ultrasonic characteristic), which are 
viewed as artifacts. 

To get rid of these artifacts we use an Opening transformation 
with a disk structuring element, which is repeated 5 times for both 
the Erosion and the Dilation operation that an Opening consists 
of. This repetition factor has resulted from experimental efforts in 
various images. This factor assigns also the minimum size of the 
ovisac and finally describes it in a more circular form because any 
narrow isthmuses are rejected by the Opening transformation. 

After the above preprocessing operation, the counting method 
starts with an erosion operation. The erosion is needed in order 
to obtain the difference operation between the original and the 
eroded set, resulting to a number of closed contours. These 
contours represent the contours of the ovisacs. The counting is 

realized by a hit operation, which signals the beginning of the 
contour-following algorithm following the respective contour. At 
the end of the closed contour we add an ovisac to the total 
number (Fig. 7). 

Fig. 7. Automatic delineation and counting of ovisacs 

. .3. Measurement of the max diameter of an ovisac 
In this measurement we make use once again of the very 

useful contour-following algorithm in order to "walk" over the 
contour and check every contour pixel in relation to the others. 
The checking procedure is a comparative action of the Euclidean 

distance, which is expressed as d = ‚/(X2 — xI)2 + (y2 — VI)2

among the contour pixels. It is pointed out that we do not 
consider each pixel in the distance comparison. As an example, if 
N is the total amount of contour pixels, we need N — k distance 
comparisons for a contour pixel at the k site (Fig. 8). 

~ 

Fig. 8. Result of the max diameter measurement 
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5. DISCUSSION 
The objective of the presented methodology is to reduce the 

dependency on the experience level of the sonographer and 
to provide a consistent, objective method for determining the 
response of the ootheca to various hormones. The results 
of the process are shown in Figs. 4-8. The semi-automated 
procedure has worked succesfully in segmenting the ootheca in 
all the ultrasound images that have been examined. We note 
that when ovisacs are represented with narrow isthmuses the 
processing results in cutting those isthmuses. This fact does 
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not affect the validation of our results because in practice the 
physicians consider the ovisac as a convex body and for example 
the measurement of the maximum diameter is limited to the 
borders of the convex area. 
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1. INTRODUCTION 

An edge is completely characterized by its position, foreground 
value, background value, orientation and edge profile. Reliable 
estimates of edge parameters are essential for many applications 
in computer vision. Estimates of edge parameters also have 
applications in image coding, such as coding using oriented 
edges [1], coding using the local dimensionality of the image 
[7], etc. Many authors have developed methods to estimate 
the parameters of step edges [2], [3]. However, edges that 
occur in real images are blurred. There are many applications 
that need an estimate of edge blur or image blur parameters: 
image deblurring, depth estimation from camera defocus [4]. We 
developed an estimation algorithm as part of a study into objective 
measures for image quality. Previous work on estimation of 
edge blur parameters has been mainly aimed at depth estimation 
[4], [5]. The main disadvantage of those methods is that they 
require an accurate and separate estimate of at least another edge 
parameter, either the edge orientation or the position. 

To be able to effectively describe and use edge features it is 
essential to estimate all parameters of the edge. In this paper, a 
method is presented for simultaneously estimating all parameters 
of a step edge that is blurred by a Gaussian kernel. The algorithm 
uses polynomial transforms. A polynomial transform is a local 
image description technique [6] that incorporates many properties 
of the early stages of the human visual system. 

In this paper, a brief review of polynomial transforms is 
presented and the polynomial coefficients of a blurred edge are 
derived. We show how the parameters of a blurred edge can be 
estimated from the polynomial coefficients. The problem of blur 
parameter estimation is studied further. An algorithm to estimate 
the spread of a Gaussian image blurring kernel is presented. 
This algorithm combines the estimates of edge blur parameters 
at different edge locations in the image. Finally, some results of 
image blur estimation are presented. 

2. POLYNOMIAL TRANSFORMS 
Image analysis using polynomial transforms involves two steps. 

First, the image is localized by multiplying with a window function 
w(z, y). This windowing takes place at several positions over the 
entire image. Second, the image within every window is described 
as a sum of weighted polynomials. The polynomials that are 
orthogonal with respect to the window function are used as the 

basis functions for the polynomial expansion [6]. For example, 
when the Gaussian window is used, the Hermite polynomials are 
used for the expansion. The mapping from the input image 
to the coefficients of the polynomials, referred to as polynomial 
coefficients, is called a forward polynomial transform. 

The forward polynomial transform of an image can be inter-
preted as a multirate filterbank with filters am,n _m(—x,—y) 
[6]. The analysis functions are given by am,n _m(x,y) = 
‚pm,n-m(x, y) • w2(x, y), where m,n_m  (x, y) are the bases 
polynomials orthogonal with respect to w2 (x, y). We use a Gaus-
sian window function for polynomial analysis, mainly because the 
resulting analysis functions have many properties in common with 
the receptive field profiles found in the human visual system. An 
important prperty being that the analysis functions are equal to 
derivatives of as Gaussian [6]. Hence the n th order polynomial 
coefficient is equal to the n th order local derivative. A Gaussian 
window w(x,y) _ (1/,/iia)exp(—(x2 + y2 )/2o2 ) is specified 
by its spread parameter a. 

3. POLYNOMIAL COEFFICIENTS OF AN EDGE 
Gaussian blur is one the most commonly encountered descrip-

tions of blur; for example, optical blur is approximately Gaussian 
[4]. We use the following (Gaussian) edge model 

edge(x, y; Le , OL, ab, d, 8) _ 

=L e + ~Lerf 
{xcos8+Ysin9_dl 

' 

(1)

2 ab 

for a blurred edge with mean value Le, height OL, blur 
parameter ob, distance from the origin (i.e., the center of the 
window w(x, y)) d, and orientation 8. In the limit ab 0, the 
above model reduces to a steps edge. 

The relation between the polynomial coefficients of a blurred 
and unblurred image can be easily derived using the expressions 
for the Fourier transform of the analysis functions. Using that 
relation, the polynomial coefficients of a blurred edge are derived 
from those of the unblurred (step) edge [8]. The polynomial 
coefficient fm,n—m of order n (order m in x and order n — m 
in y) of a blurred edge is given by 

i 
fm,n-m = fn  

n 
COSm 

m!(n — m)! 
eslnn_m 0, (2) 
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where f„ is a function of L e, OL, d, ob and the spread of the 
Gaussian window v. The f0 can be obtained from the polynomial 
coefficients of order n. The coefficients f„ up to order 3 for an 
edge of 1L = 100, ob = 0.5 as a function of d are shown in 
Fig. 1. 

4. ESTIMATION OF EDGE PARAMETERS 

Polynomial coefficients (i.e. derivatives) up to order three are 
required to solve for all the five edge parameters: Lei OL, d, 9 
and Qb. Using the expressions for the polynomial coefficients of 
the blurred edge given in Eq. (2), the following estimates for the 
edge parameters are obtained 
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(4) 
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Fig. 1. The coefficents f1 (solid), f2 (dotted) and f3 (dashed) of 
an edge of OL = 100 and O = 0.5. The spread of analysis 

window o = 1.0 

C  2 ~f31OL = fl 2~ 2f2 
J f1 fi 

—(1/2) 

exp 
f 2 2f2 C V of3l 1 (5) 
fl fl f / 

The mean value Le is obtained by subst tuting the above 
parameter values in fo,o. The edge orientation B can be obtained 
from the ratio fo,i/fi,o = tan B. 

The effect of additive noise on the estimates of edge param-
eters has been studied using simulations. The estimate of B is 
unbiased. Simulations show that the estimates of OL and d do 
not have much bias even at low SNR. The estimate of ob is unbi-
ased at high SNRs but becomes increasingly biased at low SNRs. 
It was found that the bias in the o estimate is proportional to 

(a„/ f1)2, where o is the input noise variance [8]. The bias can 
be corrected if the noise variance is known. 

5. BLUR ESTIMATION ALGORITHM 

The blur estimation algorithm contains two steps: 1) detection 
of locally one-dimensional (1D) edge regions and 2) estimation of 
ob at each of the detected locations. Locally 1D edge regions are 
detected by: 1) locating local extrema in the first derivative image, 
2) discarding edge points that are not locally 1D, by thresholding 
the 2D energy, and 3) thresholding f 1. The 2D energy indicates 
the extent to which a pattern is locally two dimensional. 

For example e2D up to order two is given by e2D = 
0.5([(f2,o — fo,2)2 + 2f 1]° '5 — If2,o + fo,21)• Since reliable 

estimates of ab are provided by edges with high f1, reliable edges 
are selected from the image by thresholding f1. At each detected 
edge location ab is estimated using Eq. (3). 

When the blur is uniform over the image (i.e., ob is space 
invariant), the estimates of vb at all edge locations are combined 
to obtain an estimate of the image blur. We assume that there are 
at least locations in the undistorted image where the image is locally 
a one-dimensional edge. This assumption is true for most natural 
scenes. If the noise variance is constant over the image, then the 
estimate ó and the bias factor K can be derived simultaneously 
by minimizing the weighted error 

I
f 

(ri± )] 2 wű *mI~ ~ —
2  1 b { 

(6) 

over all edge locations, where r; is the raw estimate of o' at edge 
location i and wt expresses the confidence in this estimate. The 
current implementation has w; = (fi) t • 

When using a single-scale algorithm described above, the 
window size a has to be chosen a priori. Using the single-scale 
algorithm (at one value of a), reliable estimates of O6 can be 
made only within a limited range for the parameter ob. To 
increase this range, the image can be analyzed with multiple 
window sizes and the appropriate window size can be chosen a 
posteriori. The single-scale algorithm can be easily extended to a 
multi-scale algorithm [8]. 

6. RESULTS 

The blur estimation algorithm has been tested by applying it 
to natural and synthetic images with different amounts of blur. 
Images with different amounts of blur were generated from the 
'original image' by convolving with filters of known mob. Results 
of applying the algorithm on two different scenes (a synthetic 
image: RAND, an image of randomly positioned rectangular and 
triangular blocks of different gray-levels, and a natural image: 
LENA or the lady with a hat) are shown in Fig. 2. In both 
the plots, the first 6 estimates were obtained using a window of 
o = 2.0 and the next 7 estimates using a window of o = 2.83. 

The dotted line in Fig. 2a corresponds to a = o. The 
estimates show that the original image LENA is already blurred 
and has ob of about 0.87 pixels. The dotted line in Fig. 2b 
corresponds to the expected total blur of the image, assuming 
that the blur in the original image is Gaussian with ob = 0.87. 

The total blur is given by 06 = Jabot + *7bi2 where Qbo is the 
blur of the original image and o is the additional input blur. 
The length of the errorbars equals twice the standard error of the 
mean. The standard errors of the estimates for LENA are higher 
than those for the synthetic image, mainly because the natural 
image contains edges that have undergone different amounts of 
blur. The results in Fig. 2 show that the blur estimation algorithm 
is sensitive to even small amounts of blur (i.e., subpixel accuracy) 
and gives a reliable estimate of blur over a wide range. 

The blur estimation algorithm has also been tested by applying 
it to images with noise. Images with different amounts of blur 
and noise were generated from the blurred images by adding 
zero-mean Gaussian distributed noise of known an . Results of 
applying the algorithm on the same two scenes are shown in Fig. 3. 
All estimates are obtained by using a polynomial transform with 
window spread a = 2. The length of the errorbars equals twice 
the standard error of the mean. Points joined by a line correspond 
to images that have the same amount of blur, but contain different 
amounts of input noise. The parallel curves demonstrate that the 
algorithm gives reliable estimates of blur parameter even at low 
SNRa. 
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Fig. 2. Results of image blur estimation for a) a synthetic image 
RAND and b) a natural image LENA. 
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7. CONCLUSIONS 
A new method for estimating important parameters of a 

blurred edge has been presented. The estimation method is based 
on the local derivatives of the image. It has been shown that 
derivatives up to order 3 are needed to estimate all parameters of 
a blurred edge: the position, height, background value, orientation 
and spread of the blurring kernel. An algorithm to estimate image 
blur based on the edge blur estimates has also been presented. 
The algorithm provides reliable estimates of the spread of the 
Gaussian blurring kernel even at low SNRs when it is applied to 
natural images with different amounts of blur and noise. 
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1. INTRODUCTION 

The inspection of products by hand is an intensive labor and 
subjective task. Human inspection involves viewing and assigning 
quality scores for defective terms. This method is costly and highly 
variable. Decisions are not always consistent between human 
inspectors or from day to day. Also, the fact that inspection is 
a tedious task for personal, increases the demand of automatic 
inspection systems. 

For all these reasons, automatic quality control for foodstuff 
has become more popular [1], [2], [3], [4]. 

The automatic inspection system developed, extracts size infor-
mation from a sort of chocolates. A study about standard devia-
tions from their expected sizes, has also been carried out. 

When a chocolate doesn't present its expected size attributes, 
it does not fit into his reserved plastic hole. As a consequence, 
the customer finds loose-fitting chocolates, scattered about into 
the box. For this reason, the company rejects all these chocolates 
which do not pass the fixed standards. 

The objective of our inspection system is to develop a dimen-
sional statistic for every different kind of chocolate (Fig. 1), that 
indicates the percentage of production suitable to be sold. 

Even though real-time is not a very important constraint in this 
concrete application, the vision system that we present in detail 
in this paper, has also been used in other applications where 
real time was a critical factor. One of the applications was a 
real time quality control of RGB television screens. The aim 
of the application was to detect defects on the color phosphorus 
emulsions, due to malformations during the fabrication process 

Vin 
OPI CONVI 

A 

-) OP2 

[5]. Another application was the vision system for the guidance of 
a mobile vehicle [6]. 

Fig. 1. Shapes of different types of chocolates 

~ CONV2 

A 

OPJ 

CLK~ 
x,Y 

GENERATOR STORE 

Fig. 2. Vision System Architecture 

2. ARCHITECTURE OF THE VISION SYSTEM 

The vision system used consists of the following parts (Fig. 2): 

• Signal conditioning and digitalization of input video signal. 
• Two cascaded stages of digital signal processors. They perform 

multilevel convolutions with 22 bits of resolution. These 
processors work in real time. 

• Three operation modules. 
• Conversion and conditioning of output video signal. 

STORE 

• Generation of X, Y coordinates. 
• Storage of X, Y coordinates. 
• Microcomputer. 

V out 

MICRO 

COMPUTER 

Next, we make a brief description of this pipe-lined architecture: 

Input video signal is conditioned to be digitized with 8 bits of 
resolution. Digital video is re-histogramed using OPl. Next, the 
first convolution stage (CONV1) performs the programmed con-
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volutions on the data coming from OP1, using the programmed 
operators. With the results so obtained, more complex operations 
can be performed in OP2. This result is convoluted again by the 
second stage (CONV2), this means that a second convolution is 
performed on the results coming from the first one. This output 
can be also transformed using the OP3 stage. All these operations 
are performed at video-rate. 

If the data coming out from CONV2 satisfies a desired 
condition, the module OP3 is programmed to set the Load signal. 
This means that an expected local feature is present, so, the 
coordinates of the current pixel are stored in the X and Y 
STORES. 

All this process is developed inside an attention window. The 
size and situation of this window are programmable. Every time 
that the result of a new pixel is obtained from the pipe-line, its 
coordinates are actualized. 

A description of different subsystems is now presented: 

INPUT STAGE: It consists on the signal conditioning, the A/D 
conversion, and the extraction of Vsync and Hsync. It is useful to 
condition the input signal to achieve the highest resolution when 
it is digitized. A Hash A/D converter is used. 

OP1: Re-histograms the digitized image to enhance the 
system's performance. The gray-levels of the input data are 
modified according to the programmed transformation. It has 
been implemented with a fast dual-ported memory. 

FIRST CONVOLUTION: Performs the extraction of the edges 
of the image. Module OP2 is used to operate the two components 
of the gradient obtained by CONVi. The input is the multilevel 
image of the current chocolate. The output is the binary contour 
image [7], [8]. 

SECOND CONVOLUTION: Performs the thinning of the 
edges obtained by preceding stage. The use of CONV2 together 
with the module OP3, allows to implement morphologic opera-
tions, such as skeletonization. Load signal is activated when a 
contour pixel is present. 

X, Y STORE: These are high speed 9-bit wide memories. 
Each memory is organized such that the data is read in the 
same sequential order that it was written (FIFO). Stores the edge 
coordinates. The rate at which the microprocessor reads these 
coordinates is 2000 pairs of coordinates per frame. 

X, Y GENERATOR: This module continually gives the x, y 
coordinates of the pixel being inspected. Each coordinate is 
represented by two words of 9 bits. These coordinates are always 
relative to the attention window. The attention window is the 
part of the image where the inspection will take place. The size 
and location of this window are programmable. This window is 
generated from the syncronisms obtained in the input stage, and 
the pixel clock. 

Out of the working window, all operations in the pipe-line are 
inhibited. At the end of the window, an interruption signal is 
generated indicating that all the stored information can be read. 

OUTPUT STAGE: It consists of the conversion to analog 
signal and the conditioning to its monitorization. The Load signal 
can also be overlapped on the outgoing image. 

MICRO COMPUTER: Programs the different convolvers and 
operation memories, and controls the data path. When all 
the contour coordinates are stored in the X-Y memories, the 
computer reads all this data and empties the FIFOS. Then, using 
the developed algorithms, coordinates are examined for extraction 
of shape characteristics. 

3. INSPECTION PROCEDURE 

The complete inspection scene consists of the figure of the 
chocolate, and some calibration marks (Fig. 3). These marks are 
required for the periodical calibration of the system. Calibration 
marks do not affect the vision procedure, thus the attention 
window is positioned just over the chocolate. So, the vision system 
only processes the image of the product, but changes the size and 
position of the attention window every time it needs feedback for 
calibration. 

The first restriction we must look at, is that we can register 
2000 pairs of coordinates per frame as a maximum rate. This 
means that the amount of information to be stored has to be 

Fig. 3. Inspection Scene 

optimized. We want to reduce the number of pixel coordinates 
to be processed, without losing the main characteristics of the 
chocolate. For this reason the edges of the image are extracted 
and thinned afterwards. 

Calibration :Ia;rk~ 

The edges are obtained using a Sobel classic algorithm. Other 
algorithms could also be used [9], [10], but their use would involve 
a very costly implementation. Furthermore, the chocolate is so 
contrasted, that using a simpler method [11] the results of edge 
extraction are optimum. 

Once the edges have been obtained, they must be thinned, 
because each edge pixel means a new storage of coordinates in 
the X, Y STORAGE module. The thinning process reduces 
the amount of information to be stored. Besides, in order to 
apply further algorithms for extracting perimeters and relevant 
information about the product shapes, one-pixel contours are 
indispensable. 

The deletion or retention of a pixel p depends on the config-
uration of the pixels in a local neighborhood containing p. To 
ensure connectedness, the pixel p is deleted if its removal does 
not change the 8-connectivity of the contour image [12]. Image 
points are examined for deletion in a raster scan order. It is 
understood that a pixel p examined for deletion is a white pixel, 
and the pixels in its 3 X 3 window are labeled as shown if Fig. 4. 

P X1 X2 

X3 X4 X5 

X6 X7 X8 

Fig. 4. Local neighborhood containing p 

A sequence of points P1, P2,. . . , PN is called an 8-path if 
P;}1 is an 8-neighbor of P;, i = 1, 2, . . . , N — 1 [13]. The pixel 
p considered for deletion is cleared (set to black) if: 

1. p is a white pixel. 
2. There exists a white 8-path from one of the rest of the pixels 

of the west column (X3, Xs) o one of the rest of the pixels to 
the north row (Xi, X2 ). 

When the inspection process reaches the end of the attention 
window, the microprocessor reads the coordinates of the contour 
of the chocolate, and empties the X, Y STORAGE module. With 
this amount of data, calculates the following features : area, 
perimeter, area/perimeter2, radius of the inscript circumference, 
radius of the circumscript circumference, and the difference 
between these two radii. These six parameters update the data 
base corresponding to the concrete type of chocolate. 
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The algorithm developed to extract desired features from the 
contour coordinates is based on a Chain Code structure [14]. 
Coordinates are examined in a contour following order. The 
perimeter is incremented by one every time that a new coordinate 
is examined. Area is incremented or decremented by the value of 
the y coordinate, depending on if the contour is followed east or 
west direction. Even though we are working with square pixels, a 
width correction factor is applied to every pixel in order to avoid 
distortions. As our grid is 8-connected, another correction factor 
is applied to the pixels belonging to a diagonal segment. 

4. FINAL RESULTS 

Let us denote the measurement vector as C = (CI , C2 , C3, 
C4, C5i Cs), where CI ..C6 are the six mentioned measurements 
of desired features stored in the database. Every time that a 
new chocolate of a concrete type is measured, a new vector Ci 
is added to the data base. Since our hardware works in real time, 
time between two consecutive inspections is large enough to make 
several measures of the same piece of chocolate. So, the vector 
Ci is obtained from an average of 10 different measures of the 
same chocolate to avoid measurement errors. 

For every different type of chocolate, we get a set of measure-
ment vectors CI (j = 1..N; ), where N; is the number of choco-
lates inspected of type i (i = 1..11). A mean vector X(i) and a 
deviation vector a(i) are obtained for every kind of chocolate. 

The mean resolution the system works with is 0.25 mm/pixel. 
Fig. 5 shows probability density functions of two different param-
eters for two classes of chocolate. The results are shown for the 
circle shaped and the clover shaped chocolates. The parameters 
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1. INTRODUCTION 

Crowding evaluation in complex environments is a 
currently addressed in the research field of surveillance 
it is useful for two main purposes: 
a) detection of overcrowded situations; 

problem 
systems; 

b) statistical temporal evaluation of the number of people to plan 
traffic activities. 
The specific application considered in this paper is crowding 

estimation in an underground station. 

The system has the following characteristics: 
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1) Multisensor input: images are acquired by using several 
physical optical sensors, and then processed by different virtual 
sensors (i.e., nodes that apply feature-extraction algorithms). 

The following features have been selected [1] in order to 
minimize computational load and to obtain estimation accuracy: 
• number of edge points; 
• number of edge-point histogram maxima; 
• sum of the amplitudes of edge-point histogram maxima; 
• number of edge points / rectangle y-dim; 
• rectangle x-dim. 
Feature values are extracted from each rectangular area oc-

cupied by people and localized in the image plane by means of 
change detection and focus of attention algorithms. 

2) Distributed Extended Kalman Filter (DEKF) system: crowding 
estimation is performed according to a distributed philosophy by 
a hierarchical network of nodes (virtual sensors), each of which 
is locally devoted to people evaluation on the basis of static 
(current) and temporal (previous) information. Each node is 
implemented as a Kalman Filter having the number of people as 
the local status variable to estimate and predict. 

3) Multiple-model approach: different models of the virtual 
sensors are locally used in accordance with the positions and 
dimensions of the rectangular areas selected by the focus-of-
attention algorithm. 

2. CROWDING-ESTIMATION SYSTEM 
DESCRIPTION 

From experimental statistical analysis [1], [5] it is possible to 
deduce that in public environments, such as railway or under-
ground stations, stadiums, supermarkets, etc., the number of peo-
ple present in a specific monitored area is temporally correlated 
(at average, it significantly changes only after about 20 seconds). 
In order to employ this temporal correlation in estimating the 
number of people present in an image of the monitored zone, an 
inference system based on Kalman Filtering has been designed. 
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Fig. 1. Fragment of DEKF architecture for a single camera 

Each network node is ruled by the following dynamic system 

x(k + 1) = f(x(k)) + v(k) 

y(k) = h(x(k)) + w(k), 

where x is the status vector, y is the observed variable, v and 
w are Gaussian white noise having null mean value and known 
variance, h(•) is a linear function and f(•) is the transition 
function.. 

The basic scheme of the system architecture for a single 
camera is presented in Fig. 1. The lowest hierarchical level 
presents n Extended Kalman Filters (n = 5 in the present 
application), one for each feature type extracted from an acquired 
image. At this level y is the number of people associated to 
the extracted feature value by the pre-processing block; f(•) 
is nonlinear (so that the filters a e EKF), having the following 

expression in order to model the behaviour of the number of 
people p (increasing, decreasing and being steady), as time varies: 

f (x) = p* (a — b* exp(—c*p)), where x = [p, a, b, c]. 

The EKF local estimates are propagated towards the upper 
level where a fusion node provides the resulting estimate of 
the people number present in the scene area monitored by the 
correspondent camera. Since at this level f(•) is linear, then the 
node is a standard KF and the status variable is scalar (x = p). 
The multi-model approach is at the basis of the pre-processing 
mechanism for mapping the feature values with the correlated 
number of people. 

3. VIRTUAL SENSOR MODELLING 

Virtual sensor modelling consists in creating a mapping be-
tween the feature values and the number of people present in a 
given rectangle. 

The innovative idea presented in this paper is to stress the 
importance of the position and dimensions of the rectangle 
considered. A training set of images are processed by Low-Level 
algorithms (based on the Sobel filter) in order to create edge-
images. A Focus-of-Attention algorithm (based on the application 
of a change-detection algorithm to the current image versus 
the background image) detects minimum bounding rectangles 
of occupied areas. Each rectangle is characterized by four 
parameters: the horizontal and vertical dimensions and the two 
co-ordinates of the center of gravity. The selected features are 
extracted from each rectangular area of the edge-images, and 
their measures are saved during a training phase. 

A simple clustering (i.e., ISODATA [2]) of the rectangular 
areas is performed by using the four parameters previously 
computed and saved. At the end of this phase, we can classify 
each rectangle by associating it with a cluster. 

Finally, a model for each cluster of rectangles is computed by 
means of Dynamic Programming (Bellman Principle [3]). Model 
building is considered as the problem of searching for the optimal 
trajectory between two fixed points (initial and final points of 
the model), in a piece-wise linear way, in order to minimize a 
suitable quadratic cost [4]. The cost function is defined in such a 
way that it penalizes the distance of the optimal current tracking 
point from the current measures and from the optimal successive 
tracking point. Such a cost allows for model continuity and favours 
the presence of at most one mode. A further modelling phase 
involves using a simple interpolation algorithm that is able to 
smooth peaks and fill holes, and that gives the model a monotone 
or, at least, unimodal shape. 
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Fig. 2. Inference process on-line phase for crowding evaluation. 

The on-line phase is illustrated in Fig 2. 
Each image acquired with a camera is processed by the Low-

Level and Focus-of-Attention algorithms to extract measures 
of the selected features. Each rectangle extracted from an 
image is classified according to the off line clustering and the 
corresponding model is used to determine the number of people. 
ache number of people uresent to an image is simply computed by 
Siltn'~~Í:~ü p  t rc'wdt:~g v +sues of all rectt`:ttgles. 
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Fig. 3. Single model (continuous line) and multiple models (dashed 
lines) of the feature:number of edge points (the shapes are in the 

plane "number of people vs. feature value") 

In Fig. 3 one can compare the present approach with the single-

Table 1. Note: Hit = 0 — 20% error, Grazed = 20 

model one, which computes only one model for all rectangles, 
without performing the clustering step. One can notice that the 
multiple-model approach is more accurate than the one based 
on a single model. For particular ranges of feature values, the 
number of people is underestimated, whereas for others it is 
overestimated. 

4. RESULTS 

By means of the multiple-model approach, we can improve the 
performance of a crowding-evaluation system. 

We used the models themselves as evaluators of the number 
of people present in an area; this number corresponded to the 
number associated with the feature values obtained by the Low-
and Middle-Level algorithms. As shown in Table 1, the multiple-
model approach makes it possible to obtain percent increases in 
the performances of the selected features. 

In Table 2 percentage results referring to some test image 
sequences are presented at the Low and fusion levels. Fusion 
mechanism allows to largely increase the number of cases in which 
estimation error is very low. 

— 30% error, Missed => 30% error (data in %) 

' Single Model Multiple Models 

Feature Hit Grazed Missed Hit Grazed Missed 

num. of edge points 32.91 15.40 51.70 46.93 14.30 38.77 

num. of hist.-maxima 31.62 13.02 55.36 40.05 11.73 48.21 

sum. amplit. hist.-maxima 30.80 10.45 58.75 40.88 12.01 47.11 

num. of edge points/rect y_ dim 51.51 17.14 31.35 53.16 16.22 30.61 

rectangle x_dim 31.81 10.08 58.11 39.69 11.73 48.58 

Table 2. Only the Hit percentage has been reported here (0 - 20% error) 

Sequence 

# 

EKF 1-Hit 

% 

EKF 2-Hit 

% 

EKF 3-Hit 

% 

EKF 4-Hit 

% 

EKF 5-Hit 

% 

KF-Hit 

% 

1 65.00 69.00 67.00 65.00 57.00 90.00 

2 67.11 53.95 56.58 73.68 39.47 80.26 

3 54.00 46.00 54.00 72.00 36.00 66.00 

4 70.30 55.45 71.29 78.22 46.53 71.29 

5 60.58 59.62 58.65 63.46 45.19 72.12 

6 68.75 64.06 62.50 62.50 40.62 78.12 

5. CONCLUSIONS AND FUTURE WORKS 

The paper presents a method for modelling virtual sensors 
in a system able to provide an accurate quantitative estimate 
of the number of people present in a monitored scene. The 
multiple-model approach presented in the paper is based on a 
simple clustering of crowded areas according to their dimensions 
and positions in the image. This method results in a notable 
improvement over the performances of a single-model approach. 
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TEXTURE ANALYSIS 

IMAGE PROCESSING SYSTEM FOR DETECTION OF WEAVING DEFECTS 
T. THOMAS and M. CATTOEN 
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D'INFORMATIQUE ET D'HYDRAULIQUE DE TOULOUSE 
2, RUE CAMICHEL, 31071 TOLOUSE, CEDEX, FRANCE 

1. INTRODUCTION 

Quality control is a great part of the manufacturing process 
used to improve the quality of the finished product and to ensure 
the efficiency of the manufacturing process. The inspection of 
products for quality control is an important example of costly 
process that, if successfully completely automated, will improve 
efficiency and competitiveness. 

In many industries, quality inspection is carried out manually, 
but the inspection of their products relies on the subjective 
judgement of individual inspectors. So the automation of this 
process is the subject of more research. In the textile industry, 
the automatic inspection allows the continuity of the quality 
of material manufacturing, and the optimization of the pinking 
according to the situation of the defects. 

Our work follows a study led in the laboratory [2], which 
permits in a given experimental environment the defect detection 
on material. 

In this paper, our method of defect detection [7] is explained. 
Then the system configuration and some results are presented. 
In this part, the difference between two kinds of filter for the 
periodic texture suppression, is accentuated. On the other hand a 
discussion is made on the contribution of the geometrical analysis 
and the characterization of the defects. 

2. DETECTION METHOD 

It is diliicult to memorize the characteristics of every fault 
because there is a great diversity of defects. The detection must 
be only made from the information contained in the material 
image analysed. 

2.1. Method description 

Simply patterned material is made up by a network of chain 
and frame threads, which explains that the densitometrical profile 
of a defectless material (in row and column) is periodic [5]. 
The detection method exploits the periodicity breaking of the 
densitometrical profile when a defect appears. The periodic 
characteristic of the material is deleted by filtering, so the defects 
— characterized by an aperiodic component — are more easily 
detected. The processing line is shown on the Fig. 1. 

SENSOR 

MATERIAL 

l
PREPROCESSING OPERATIONS 

~ 
TEXTURE SUPPRESSION (FILTERING) 

AND DEFECT DETECTION (THRESHOLDINGI 

DEFECT CHARACTERIZATION] 

RESULTS 

Fig. 1. Treatment chain 

2.2. Method analysis 

2.2.1. Texture suppression 

The texture periodicity deletion was initially performed by a 
moving average filter. We have endeavoured to improve the 
filtering by a raised cosine filter (Turkey filter). 

2.2.2. Profile thresholding 

The row and column filtered profile of a defectless material 
image, present some amplitude variations caused by differents fac-
tors. We have to take this variations into account by introducing 
two thresholds defined by T_ = M — ko and T+ = M + ko 
(M and o 2 are the mean and the variance of the profile and k a 
constant experimentally established). Above them, the material is 
regarded as defective. 

2.23. Image block size 

Due to the fact that the profile is an integration operation, the 
variation — brought about a small defect in comparison with the 
of the images blocks — is trivial. So we need to fit the size of the 
image blocks to the size of the small defect. 

2.2.4. Geometrical analysis and characterization 

The detection allows the obtaining of an image having zones 
where both densitometrical profiles (in rows and columns) exceed 
the tolerance threshold. Such zones are called "objects". The 
detection is not made in a continuous way. In most cases, one 
defect is constituted by several objects. The last steps of the 
processing are 
• the geometrical analysis of the objects which goal is their 

joining (defect reconstruction). This analysis is divided in three 
steps 
• object labelling, 
• object merging, 
• small object deletion; 

• the defect characterization. 

3. METHOD IMPLEMENTATION 

3.1. Learning procedure 

The last step of the learning phase is made on a defectless 
sample of material. It is composed by some measurements for 
the preprocessing operations and the computation of the material 
modelling parameters (row period, column period). 

3.2. Continuous stage 

The continuous stage corresponds to the stationary response 
of the system where the detection is made at the same speed 
as the image lines are acquired. This stage uses the parameters 
previously determined. 

Four operations are made in sequence 
• image line acquisition and correction, 
• profile computation, 
• filtering, 
• profile analysis. 

3.3. System. configuration 

The development structure used is based on a PC compatible 
computer. It is built around INTEL® 386DX microprocessor 
clocked at 33 MHz. The computer is connected to the image 
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acquisition and visualization system by an input-output board built 
around two parallel interface adapters. The system is made up 
• an image acquisition board (B/W or color), 
• an image visualization board. 

4. PERFORMANCES 

4.1. Definitions 

Before the characterization, to evaluate the detection viability, 
the no detection rate is defined as the ratio of the number of 
blocks where the defect has not been detected, to the number of 
blocks containing a defect, and the false detection rate as the ratio 
of the number of blocks where the defect has been detected, to 
the number of blocks which does not contain a defect. 

.¢.2. Example of detection 

The Fig. 2 is an example of defect detection. A defect is 
perceptible on the line densitometrical profile. In the column 
densitometrical profile before the treatments, the defect cannot 
be seen. However after the treatments, the defect is detected. 

Fig. 2. Frample of profile of the Fig. 3a 

Fig. 3. Frample of defect detection 

In Fig. 3a, we can notice a shift between the position of the 
defect and the detection is noticed on the row and the column 
detection. This shift results from the filtering computed by 

N 

m1(t✓)f ilter = 
N 

~ h(k)m/(y + k) 

k-1 

(the nth sample of the filtered profile is computed from the N 
samples following n of the profile) 

4.3. Detection rate 

The two detection rates according to k are shown on the Fig. 4. 
The experimental results have confirmed that k = 3 is the best 

compromise between no detections and false detections. 
By using the profile of gray-level mean and a raised cosine 

filter, a no detection rate of 2 % and a false detection rate of 6 % 

were obtained. 
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Fig. 4. Detection criterion 
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% No 
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Fig. 5. Detection with moving average filter 

In the Fig. 5, there are some false detections. They are due to 
the fact that with the moving average filter, the high frequencies 
are not well filtered. So there are residual components, and the 
detection is harder. The raised cosine filter leads to a more 
reliable detection (Fig. 6). In the two previous figures, the 
detection parameters are the same, but only different filters are 
used. 

Fig. 6. Detection with raised cosine filter 
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4.5. Geometrical characterization 

Fig. 7. Results of geometrical analysis 

Fig. 7 shows the results of the geometrical analysis in the same 
conditions as in Fig. 3. 

To evaluate the contribution of the characterization, the global 
no detection rate is defined as the ratio of the number of the 
present but not detected defects, to the number of present 
defects in the image. The global false detection rate is the ratio 
of the number of the detected but not present defects in the 
image, to the number of present defects in the image. In the same 
conditions as in the first evaluation, a global false detection rate 
of 1 % and a global no detection rate of 0.5 % were obtained. 

The decrease of the false detection rate is the consequence of 
the characterization. 
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5. CONCLUSION 
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hand, the false detection rate has been decreased by the defect 
characterization. 

However we have limited our investigations to plain or simple 
pattern materials. 

The extension of this work is the defect classification. In this 
case, the number of periods will be an important parameter. 
When a faithful description of the defect is needed, a small image 
block size will be chosen. So a multiple step detection will be 
considered 
• defect detection with an image block size about 7 periods, 
• defect classification with an image block size about 2 or 3 

periods. 
The other extension of this work is the detection on complexly 

patterned material. Here a new work will be made on pattern 
recognition and the modelling will be more difficult (several 
periods characterize the material) and the existing algorithm will 
have to be fitted or new one will be developed to allow the 
operations of detection. 

[6] T. Thomas, M. Cattoen: "System for defect detection on ma-
terial", 7th Annual European Computer Conference, COM-
PEURO 93, Paris/Evry, France, May 24-27,1993. 

[7] T. Thomas, M. Cattoen: "Automatic inspection of simply pat-
terned material in the textile industry", IS&T/SPIE's Elec-
tronic Symposium on Electronic Imaging: Science & Technol-
ogy, San Jose California, USA, February 6-10, 1994. 

[8] E M. Vilnrotter, R. Nevatia, K Price: "Structural analysis of 
natural textures", IEEE Trans. Pattern Anal. Mach. IntelL, Vol. 
PAMI8, Janvier 1986. 

[9] P. Vollet: Analyse et synthése d'images de textures structurées, 
Thése de doctorat, EPFL, Lsusanne, 1987. 

ANALYZING TEXTURE ANISOTROPY VIA GRAY-LEVEL DIFFERENCE FEATURES 
D. CHETVERIKOV 
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1. INTRODUCTION 

Since the publication of the recent stimulating paper by 
Kass and Witkin [1], there has been growing interest in the 
investigation of oriented patterns such as texture images originating 
from flow-like processes. Directionality has become a popular 
topic of texture research (see e.g. [2]-[5]). Directionality can be 
viewed as local anisotropy that stems from dominating orientation 
of elongated texture elements. Computer analysis of this textural 
property usually involves orientation-sensitive filtering followed by 
local orientation coherence evaluation [1], [2]. This can be done 
at variable scale. 

Julesz' pioneering work on preattentive (spontaneous) human 
texture perception (e.g. [6]) convinced the image analysis com-
munity that the second order statistics of texture images play a 
dominant role in spontaneous texture discrimination. This con-
jecture was supported by the impressive performance of the co-
occurrence features in the computer analysis of texture patterns 

[7]. In many cases, similar features based on a simplified and 
faster version of the co-occurrence probability matrix (CPM) —
the gray-level difference histogram (GLDH) — were found [8], 
[9] to yield as good results as the co-occurrence based features. 

Later the Julesz' conjecture was criticised as being applicable 
to limited classes of patterns. The interest of the researches 
has started to gradually shift towards attentive perception which 
is responsible for evaluation of such fundamental properties 
as texture symmetry, directionality, regularity and structural 
complexity. In a recent pape: [4], Rao and Lohse reported 
on the results of a study of human texture perception aimed at 
identifying those high level texture features that account for most 
of the attentive texture discrimination capability of the human 
vision system. They conclude that directionality and regularity are 
among those very few high level texture features that guide the 
process of perceptual grouping (taxonomy) of textural patterns. 

Directionality is a special although perceptually important case 
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of anisotropy. While this special case received considerable 
attention, anisotropy in general was studied in just a few early 
works on texture analysis. Davis [10] introduced the notion of 
co-occurrence based polarogram. We used a more general term 
of anisotropy indicatrix (directional polar diagram) [11] and studied 
texture anisotropy via indicatrices depicting linear edge density 
and edge orientation distribution of texture edge map. Later, the 
anisotropy features introduced in [11] were successfully applied to 
rotation-invariant texture discrimination [12]. 

As it was pointed out in [11], the relevance of anisotropy 
analysis is to a large extent related to the crucial role played 
by symmetry in natural sciences in general and in human and 
computer vision in particular. Basic conservation laws of physics 
follow from the symmetry properties of the space-time. Analysis 
of a physical phenomenon (flow, field, etc.) is considerably 
simplified if a proper coordinate system is selected that complies 
with the symmetry (and anisotropy) of the phenomenon. The 
same observation applies to texture patterns as well. Julesz 
[6] concluded that the presence of symmetry facilitates human 
perception of texture. (For a recent short survey on the role 
of symmetry in vision, see [13].) Kass and Witkin [1] correctly 
emphasise that directionality evaluation of oriented patterns is 
indispensable to properly set up the coordinate system for further 
detailed analysis. Unfortunately, in many works on texture the 
patterns studied are manually pre-oriented so as to simplify the 
task in question. A more realistic case of arbitrary orientation 
and the problem of orientation sensitivity (compare to edge 
detection!) are rarely addressed. To approach these problems, 
one has to define axes of anisotropy (or, locally, axes of prevailing 
directionality [1]). We will show how the symmetry analysis of an 
anisotropy indicatrix yields axes that can be used for this purpose. 

The increasing number of studies on symmetry of planar 
and 3D shapes and local gray-value patterns (see e.g. [14], 
[15]) indicate the recognition of the role of symmetry in vision. 
Recently, a local symmetry operator has been applied to texture 
discrimination [16]. Motivated by this recognition as well as by the 
discovery of the importance of directionality for high level texture 
perception, we reconsidered our previous research on anisotropy 
[11], [12] in an attempt to use co-occurrence for detailed 
anisotropy analysis. In this paper we present the initial results of 
our study aimed at texture anisotropy and symmetry analysis via 
the GLDH extended to arbitrary angles. (We preferred GLDH to 
CPM because of its simplicity and comparable performance. The 
same analysis can be done via CPM features in the same way.) 

In section 2, we introduce the notion of extended GLDH and 
define the GLDH features used to indicate anisotropy. Examples 
of GLDH based anisotropy indicatrices for random and regular 
textures are demonstrated and their stability under rotation is 
shown. Section 3 is devoted to symmetry analysis of texture via 
anisotropy indicatrix and to definition of anisotropy axes. Also, 
it is experimentally shown how indicatrices of a regular pattern 
vary with spacing magnitude. In section 4, we comment on 
image resolution aspects of anisotropy. Finally, the computational 
efficiency of the approach, its limits and directions of further 
research are discussed in section 5. 

2. CO-OCCURRENCE FOR ARBITRARY SPACING 

It is generally believed (see, for example, [4]) that co-
occurrence features are not suitable for anisotropy analysis be-
cause in digital images the magnitude and the angle of the spac-
ing vector are interrelated. The Davis' co-occurrence based po-
larogram [10] was only computed for the multiples of it/4. At 
small interpixel distances, a very limited number of angles can 
be investigated which is not sufficient for anisotropy analysis. On 
the other hand, small spacings were shown to be very useful for 
texture discrimination and segmentation [9]. They carry important 
information on density of texture elements, or texture coarseness. 
Small spacings are better suited for segmentation as well since for 
them the features can be evaluated in a small window while large 
spacings require larger windows. 

The CPM and GLDH can easily be extended to arbitrary 
spacing. One can estimate the gray-value in an arbitrary (non-
integer) location by interpolating the values of the neighbouring 
pixels. Such interpolation is a standard operation in image 

processing (see e.g. [17]). By using the linear interpolation 
followed by requantisation, we obtain the required value using 
five integer multiplications/divisions per pixel. (We estimate 
the CPM/GLDH in each digital raster position of the origin of 
the spacing vector; the operation can be extended to arbitrary 
locations of the origin as well.) 

The interpolated gray-value and the gray-value of the origin 
are to increment the corresponding entry of the co-occurrence 
matrix. In our initial experiments described in this paper, we 
used the symmetric gray-level difference histogram whose bits are 
the frequencies of absolute gray-value differences. This means 
that the histogram needs only be computed in the angle range 
a E [0, a). In some cases it may be desirable to distinguish 
between x and s -1- n and use the non-symmetric GLDH, but we 
do not do this now. 

For a given spacing magnitude d, GLDH is evaluated for a 
sequence of angle values. A set of normalized features are 
computed for each "oriented" histogram and depicted in polar co-
coordinates as anisotropy diagrams indicating texture anisotropy 
with respect to these features. In this study, standard GLDH 
features [7] were applied. 

A GLDH based anisotropy indicatrix is a polar diagram 
representing one of the above GLDH features computed for a 
series of angle values from [0, 2ir]. Fig. 1 shows examples of 
indicatrices for a variety of patterns from the Brodatz' album [18]. 
All Brodatz images in this study, including rotated versions of the 
same texture, were acquired using a CCD camera and a frame 
grabber and digitized to 256 x 256 x 8 bits. The indicatrices were 
computed for angles of = 0, 5, 10, ... ,175 degrees which results 
in reasonably smooth curves. The curves were then extended 
to [180, 355], scaled to separate them for better visibility and 
overlaid on the corresponding texture images. Computation of 
the extended GLDH features for a 256 x 256 pixel size image 
takes about 0.5 sec per angle on a PC AT (486) computer. At the 
angle resolution used in this study, this means 18 sec per image 
which is sufficiently fast for extensive testing of the proposed 
approach. The GLDH based indicatrices shown in Fig. 1 reflect 
the anisotropy of the texture patterns. 

. . 

Fig. 1. Frnmples of anisotropy indicatrices for textures of different 
regularity: (a) sand d = 1; (b) straw, d = 1; (c) woven wire, 

d = 13 (close to the period). 7e indicatrices are zoomed in the 
descending order.: MEAN, DEJ ASM. 

An important problem of anisotropy analysis is the stability of 
an indicatrix shape under image rotation. 'This general problem 
is related to the intrinsic anisotropy of algorithms operating on 
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a digital raster which has its own anisotropy. A similar problem 
is addressed in edge detection when one tries to develop an 
orientation insensitive operator. Fig. 2 demonstrates the stability 
of the GLDH based indicatrices computed for a number of 
pattern orientations. 

Fig. 2. The MEAN and DEV indicatrices of a regular pattern (cane) 
computed for dijferent image rotations with d = 28 (close to the 

period) 

3. TEXTURE SYMMETRY 

It was already mentioned that regularity had been also found to 
be one of the basic high level features of texture perception. At 
present, texture regularity can be evaluated by a limited number 
of methods (see e.g. [19].) The regularity manifests itself in the 
periodicity of a CPM/GLDH feature computed as a function of 
spacing magnitude. The degree of regularity depends on direction 
within the pattern. We have made initial experiments to study how 
the indicatrix of a regular texture varies with spacing magnitude. 
Since regularity is related to symmetry, let us first introduce a 
measure of reflectional texture symmetry. 

Fig. 3. Computing symmetry measure REFSYM(1) of an elliptical 
indicatrix R 

Given an anisotropy indicatrix, we evaluate texture symmetry 
in direction a as the reflectional symmetry of the indicatrix with 
respect to the axis having orientation a and passing through the 
indicatrix origin. For each angle s match the two halves of the 
indicatrix that are defined by the axis oriented x (see Fig. 3.). 
The matching rate is used as a measure of reflectional texture 
symmetry in a given direction. This measure is defined as follows: 

M/2 

REFSYM(1) =

t=1 

R(1-}• t) — R(1— t) 

R(1 + t) -}• R(1— t) 

In (3), t, I = 0, 1, ..., M/2, where M is the number of angles. 
R(s) is the value of the indicatrix at angle a, and s is defined 
modulo M. Power -y is used to make the symmetry measure more 
sensitive. 

The value of the symmetry measure varies between 0 and 1. 
Large REFSYM(1) indicates the presence of symmetry in direction 
~1. REFSYM(1) can be viewed as an anisotropy indicatrix for 
texture symmetry. Since we consider indicatrices with two-fold 
rotational symmetry, it is easy to see that such a symmetry 
indicatrix will have two times more symmetry axes than the 
original indicatrix. 

In our early work [11], we defined the main axis of anisotropy 
as the major axis of inertia of the indicatrix. The orientation 
of the major axis of a planar star-shaped polygon can be easily 
computed via the second order moments of the polygon [11]. The 
two rotation-invariant combinations of the moments were shown 
to be useful in anisotropy evaluation and rotation-invariant texture 
discrimination [12]. However, for highly symmetric polygons (e.g. 
for highly regular textures) the major axis of inertia cannot be 
used. A more general definition of an axis of anisotropy we will 
use here is that of an axis corresponding to a high, prominent 
peak of a symmetry indicatrix. We call a peak P of a symmetry 
indicatrix an axis of anisotropy if the following two conditions are 
satisfied: 

P> HEIGHT and 
max{P , V2} Z FLATNESS, 

where V1, V2 are the heights of the valleys surrounding the peak 
P, HEIGHT and FLATNESS the two threshold parameters 
characterizing the peaks. In this study, we used HEIGHT = 0.5 
and FLATNESS = 0.75. Other parameters were -y = 5 and 
M=72. 

Fig. 4. MEAN indicatrix of a regular pattern (brick wall) computed 
for dif jerent spacing magnitudes: (a) d = 1; (b) d = 9; (c) d = 17. 

The symmetry indicatrix and the detected axes of anisotropy are 
shown in dark. 

Fig. 4 shows examples of the MEAN indicatrix and its symmetry 
counterpart for the same regular pattern and varying spacing. As 
the spacing approaches the characteristic value — the texture 
period — the indicatrix becomes more symmetric. In addition 
to the two basic axis of anisotttpy, two weaker axes appear that 
indicate other specific directions within the pattern. 
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Fig. 5. MEAN indicatrix of a hierarchical texture (woven matting) 
computed for d = 1 at three resolution levels. The symmetry 

indicatrix and the detected axes of anisotropy are shown in dark. 

4. TEXTURE ANISOTROPY AND IMAGE 
RESOLUTION 

Although the need for multiresolution analysis of textures 
was recognized in pioneering works on multiresolution image 
processing, research in multiscale texture processing was in fact 
limited to the fractal model which is not applicable to regular 
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patterns. It is clear that the fundamental properties of textures 
— anisotropy, regularity, symmetry, complexity — may depend 
on image resolution. A systematic study of the behaviour of 
these properties at multiple resolutions or varying scale would be 
desirable and instructive. Here we will only show some results 
indicating that this research area is worth putting efforts in. 

Fig. 5 shows MEAN indicatrices and their symmetry curves 
obtained at three consecutive levels of resolution. A Gaussian 
resolution pyramid was built for a hierarchical texture using the 
procedure described in [22]. The two higher levels of the pyramid 
were expanded to the original image size as proposed in [22] 
producing interpolated images with less details. As the fine 
texture is smoothed out, the indicatrix changes, its symmetry 
peaks become more prominent and the anisotropy axes rotate to 
approach the visually perceived characteristic directions. 

5. CONCLUSION 

We have extended the notion of co-occurrence to arbitrary 
spacing vector in order to make the CPM and GLDH suitable 
for analysis of texture anisotropy and symmetry. Also, we have 
experimentally demonstrated that the extended GLDH features 
can be efficiently used for this purpose. The results of the pilot 
study presented will hopefully stimulate further interest in texture 
anisotropy and symmetry. We intend to continue research and 
application of the proposed method in the following directions: 
• Evaluating anisotropy via the degree of texture regularity 

measured in varying direction. 
• Using GLDH based anisotropy features for rotation-invariant 

texture discrimination and segmentation. 
• Applying the proposed method to non-symmetric GLDH or 

CPM in order to estimate orientation of tilted textured surfaces 
via texture gradient (skewed symmetry of indicatrix). 
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1. INTRODUCTION 

Textures provide important characteristics for surface and 
object identification from aerial or satellite images, biomedical 
imagery and many other types of images. Their analysis is 
fundamental to many applications such as quality control in 
different fields of industry and medical diagnosis. 

The process of texture discrimination can be divided into 
three phases, such as feature extraction, feature selection and 
classification/segmentation. Extraction of texture features deals 
with the computation of features from the image data, which 
completely embody information on the spatial distribution of gray-
level variation in the texture. Generally, a set of features is 
used for texture discrimination, however, there is no definite 
conclusion concerning the set of features, which has the best 
overall performance. 

The subject of feature selection in texture analysis is concerned 
with mathematical tools to create on optimal feature set suffi-
ciently characterizing the distinguishing properties of the different 
texture classes 

For each texture classification/segmentation problem feature 
extraction is a crucial task. Most existing texture features and the 
texture analysis itself can be divided into two categories, namely 
structural and statistical one. The former approach is based on 
the view that textures are made up of primitives appearing in 
more or less regular repetitive spatial arrangements. Statistical 
feature extraction techniques are mainly of three types: spatial 
gray-level dependence methods [1], [2], stochastic model-based 
features [3], [4], and transform/filtering methods [5]-[7]. 

Recent developments in multiresolution signal analysis such as 
Gabor and wavelet transforms helped to overcome one of the 
main difficulties of traditional texture analysis, that is the lack of 
appropriate tool to characterize effectively different resolutions of 
texture. Theoretical and experimental investigation showed, that 
multichannel texture analysis is an efficient tool and has several 
advantages concerning the traditional feature extraction methods. 
In this paper an idea is proposed for wavelet based texture 
discrimination. The theory of wavelet transform is discussed in 
Section 2. In Section 3 the transform-based methods for texture 
analysis are presented. The new feature quadruplet method is 
discussed in Section 4. Finally, the conclusion and the main topics 
of the future research are given. 

2. PRINCIPLES OF WAVELET TRANSFORM 

The Fourier transform has been the most useful technique for 
the frequency analysis of signals for a long time. Due to the 
fact that sinusoids have an infinite support, such an approach has 
undesirable effects if one deals with signals which are localized in 
time and/or space. The wavelet representation 

where 

f(x) = 

~ 00 
m 

m-0 n-0 

Pm n(x) = 2_m/2 'IY(2 mx — n) 

has some important applications in image processing. 

To construct function 'Y, first we determine a scaling 
4í(x) which satisfies 

(x) = hk 4í(2x — k). 

k 

Then, function 'I'(x) will be 

9 (2x — k), 

where 

9k = ( -1 ) k h1-k• 

The forms of 4í(x) and "Y(x) are not required to perform 
the wavelet transform, which depends only on ht. A J level 
decomposition 

function 

f(x) = ~(cj+1,k 1 J+l,k(x) + ~ 
k j=0 

dj,k`Yj+l,k(x)~ 

can be given recursively. 
The coefficients c0 k are given and for coefficients cj+1,n and 

dj+1,n the following relations are held: 

cj+l,n = cj,khk-2n 

k 

dj+l,n = ej,kgk-2n• 

k 

The coefficients ht can be found in [8]. 
This multiresolution wavelet transform results in a "compact" 

nonredundant image representation in contrast to the traditional 
methods, such as low-pass filtering and Laplace pyramid transform 
[9]• 

For example, image decomposition by a 2D wavelet transform 
can be done as follows. The image is split into a low resolution 
part and the difference signal which describes the difference 
between the low resolution image and the actual one. Due to 
the correlation which exists in the original image, the difference 
signal will have a histogram which is peaked around zero. The low 
resolution image still contains spatial correlation. Therefore, this 
decomposition can be repeated several times, so that a pyramidal 
image decomposition is created [10]. 

The size of a low level image SLL is a quarter of the size of 
the original image. There are three different signals: SHL, SLH 

and SHH. The SHL indicates scale variations in the x-direction, 
and its high value indicates the presence of a vertical edge. Large 
values of SLH and SHH indicate the presence of a horizontal 
edge and a corner point, respectively (see Fig. 1). 

The traditional pyramid-type wavelet transform recursively 
decomposes subsignals in the low frequency channels. However, 
the most significant information of a texture often appears in the 
middle frequency channels. Further decomposition only in the 
lower frequency region, may not help much for the purpose of 
classification. This concept can illustrated in Fig. 2 and Fig. 3 
where the pyramid-structured wavelet transform is applied to two 
different kinds of images. 
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SLL SHL 

SL1t St1N 

Fig. 1. Traditional one level wavelet decomposition 

Fig. 2. Mickey image and its wavelet decomposition 

Fig. 3. Sackcloth texture and its wavelet decomposition 

The Mickey image as an ordinary image and its pyramid-
structured wavelet transform is shown in Fig. 2. We can recognize 
the Mickey image clearly from its low frequency channel. 

In contrast, we are not able to recognize a similar texture 
pattern in the low frequency channel for Fig. 3. Instead, we 
observe some vertical and horizontal patterns in the middle 
frequency region. 

3. FEATURE EXTRACTION BASED ON WAVELET 
DECOMPOSITION 

Feature extraction based on wavelet transform has been stud-
ied by several authors. For texture analysis S. G. Mallat [S] pro-
posed a texture discrimination scheme based on discrete wavelet 
decomposition of textured images in order to obtain the fractal 
dimension of the particular textures. However, it is well known, 
that the single fractal dimension is not sufficient to unique classi-
fication of different textures. 

Another approach to feature extraction was developed by A. 
Kundu [7]. In this algorithm a QMF filter bank was used 
to decompose the texture into several subbands, and special 
features e.g. "zero-crossing" features were calculated for the high-
subbands. 

T. Chang and C.-C. J. Kuo proposed an efficient method re-
cently [6]. Its main principle is presented below. The idea of 
this approach leads to a new type of wavelet decomposition called 
tree-structured wavelet transform. The conventional multireso-
lution image representation based on wavelet transform decom-
poses subimages of the low frequency channels recursively. It can 
be seen that, this decomposition is not very useful for a large 
class of natural textures, because their most significant informa-
tion appears in the middle frequency channels. The key difference 
between this algorithm and the traditional pyramid wavelet repre-
sentation is that the decomposition is no longer applied to the low 
frequency subsignals recursively. Instead, it can be applied to the 
different signals of each pyramid level. 

At first, a given texture image is decomposed into 4 subimages 
by a 2D wavelet transform. For all subimages an energy 
measure is calculated and compared with each other. If the 
energy of a subimage is significantly smaller than the others, 
we stop the decomposition in this region since it contains less 
information. The subimage containing higher energy will be 
decomposed further. This recursive and adaptive procedure can 
be represented by a quadtree structure or energy map. For 
texture classification the feature set will be chosen from the 
energy map as the most dominant channel-energy values (see 
Fig. 4). 

A (LL) 1ABB 

B (HL) 

D (LH) I C (NH) 

Fig. 4. Quadtree structure, or energy map 

It is important to note, that the tree-structured wavelet 
transform is effective for textures which have dominant middle 
frequency channels. 

Our attempt is to bridge the gap between the traditional fea-
ture extraction and feature extraction based on wavelet trans-
form. According to the above information the one-level wavelet 
transform decomposes the original picture into four subimages. 
The transformation produces four texture patterns, which are not 
similar to the original image however they characterize it. There-
fore, features that can identify the texture have to be found and 
extracted from the subimages. 

If we compute the one-level wavelet transform,. one feature 
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can be extracted from each subimage, thus we can get a feature 
quadruplet. These four features define a point in the four-
dimensional field, typical for adequate texture 

In the learning phase of texture classification this method re-
sults in a point for every typical texture. In the classification phase 
the decomposed unknown texture gives its feature quadruplet, 
which also corresponds to a point in the above field. These vectors 
are then compared, and the unknown texture can be classified 
based on an appropriate distance measure in 4D space. 

4. TEXTURE ANALYSIS USING FEATURE 
QUADRUPLET 

Steps of feature extraction 
1. Decomposition of texture into 4 subimages using 2D wavelet 

transform. 
2. Calculation of the traditional features (e. g. run-length matrix) 

for every subimage. 
3. These four features ELL, ELH, EHL, EHH, define a point 
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1. INTRODUCTION 

Most of the algorithms of image and signal processing are very 
computationally intensive, i.e. they require vast processing power. 
It applies also to other computations where massive data-handling 
is involved. To provide highly efficient solutions for these areas: 
• processing architectures and algorithms must be designed and 

selected in accordance to their mutual interdependence, i.e. 
they must conform to each other, 

• architectures should be adaptive and their configuration dy-
namic, 

• the processing requirements can only be met by the integrated 
use of special purpose processors and migrating appropriate 
tasks to these processors. 
Development of efficient massively parallel systems requires 

methodologies for matching parallelized algorithms to processor 
array based architectures. On the other hand, the deeper under-
standing of this two-way matching process requires methodologies 
for the design of parallel algorithms, for the modification of exist-
ing algorithms and their mapping onto parallel processing archi-
tectures, and also for the adaptive (and dynamic) reorganization 
of the processor arrangement. For these methodologies, software 
tools are required to support implementation. This involves work 
in development environments, notations for expressing algorithms 
and their transformations. 

2. PROBLEM STATEMENT 

The `Mapping Problem' is commonly referred to as finding 
the best suited processor architecture or, in the case of a given 
architecture, the optimal load distribution and scheduling scheme 
for the parallelized subtasks of the initial problem, using an 
objective function based on minimal communication overhead and 
maximal processor utilization. More globally, the mapping process 
can be considered as a generalized technique, extendible for the 
coverage of configurable architectures as well. From the mapping 
efficiency point of view, algorithms can be classified as shown in 
Fig. 1. 

Structured 

Local 
Dependences 

Algorithms 

Unstructured 

Global 

Dependences 

Fig. 1. Algorithm classes 

The branch of unstructured algorithms stands for ordinary 
programs. Some parts of such problems may efficiently be 
parallelized at a fine granularity level (e.g. nested loops operating 
on non-interdependent variables) but the overall structure of the 
parallel code remains largely unstructured i.e. non-repetitive. 
This implies that the mapping is to be solved at the task level 

(load balancing, task scheduling and migration algorithms) on an 
existing host architecture rather than on an algorithm-specialized 
one. 

Most pixel level image processing algorithms possess three 
common properties: regularity, recursiveness, and locality [1]. 
They belong to the class of structured algorithms with local data 
dependencies which is characterized by a repetitive structure, and 
they can easily be decomposed into uniform sub-structures. The 
local nature of an algorithm results in localized communication 
among the processing elements (PEs) in the VLSI array processor 
realization. Some examples of the many important digital signal 
and image processing algorithms falling into this category are 
convolution, matrix multiplication and decomposition algorithms, 
IIR filters, image enhancement, edge detection, etc. 

On the contrary, a well-known example for global dependencies 
is the FFT or the Viterbi decoding algorithm which requires global 
data exchange after each iteration step. 

3. CONCEPTS OF FORMAL MAPPING METHODS 
FOR STRUCTURED AND LOCALIZED 
ALGORITHMS 

The basic mapping methodology involves the application of 
various transforms on some representations of the algorithm and 
the derivation of a formal description for the proper PE array. 
The original dimensionality of the algorithm is usually reduced 
during the mapping process to decrease the number of necessary 
PEs. Among many formal approaches the most widely used is 
perhaps the method of projections [2], which employs a graph 
representation of data dependencies. The data dependence graph 
(DG) is an acyclic graph, which can be derived either from the 
algorithm's single assignment code form or its recursive equations. 
Then a sequence of projections is applied defined by projection 
vectors d; over the index space of the algorithm. This leads to a 
signal flow graph (SFG) version from which the processor array 
can be designed directly. The projections reduce the number 
of graph nodes and, consequently, the number of PEs in the 
resulting array. This is equivalent to the transposition of the 
projected index dimension into the time domain. For example, 
the N x N matrix-vector multiplication algorithm has a 2D DG, 
each node representing one multiplication and one addition, see 
Fig. 2. When this graph is projected onto a 1D SFG along the 
projection vector [1 0]T, one array processor well execute one row 
multiplication, lasting N times longer. 

The scheduling of the PEs n the SFG is determined by a 
suitably chosen scheduling vector s, somewhat constrained by 
the previous choice on d. Then the I/O timing and the design 
verification can be performed automatically. 

The projection is therefore defined by the two selected vectors 
s and d. The optimal values of s and d have already been derived 
for the most important signal processing algorithms in a number of 
case studies [3], [4]. The aim of the research on formal methods 
is, nevertheless, the full automation of the mapping process in 
a future CAD tool. The automated solution could perhaps use 
an optimized algorithm-architecture library as a knowledge base, 
start the mapping from the optimized architecture of a similar 
algorithm and fulfill the optimization with the help of the formal 
methods aided with some heuristics. 
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Fig. 2. The projection mapping method 

4. THE TARGET ARCHITECTURE 

As it was emphasized above, the hardware characteristics of the 
target architecture should be kept in mind during the whole of the 
mapping process. The design of the target architecture depends 
largely on the applied VLSI technology. 

4.1. Hardware implementation background 

Recent developments in VLSI technology and processor arrays 
have considerably increased the processing capability at various 
hardware levels. 

Parallel computers using arrays of processors. Inexpensive mas-
sively parallel computers are becoming a reality. Their effective 
use requires parallel algorithms and methods for mapping them 
onto arrays of processors. This is not an easy task. Massively 
parallel computers may be classified into a number of various cat-
egories based on the granularity (size) of assigned tasks or oper-
ations. Some of the typical massively parallel systems are realized 
as networks of transputers, network of DSPs, RISCs, etc. [5]-[7]. 
Here the operation of the system is fundamentally affected by the 
design of the parallel software. 

Algorithmically dedicated components. Characteristic applica-
tions, algorithms, or protocols may be implemented by the use of 
off-the shelf VLSI processing components, e.g. convolvers, con-
tour tracers, dedicated transform chips, etc. Though these circuits 
are not flexible, the system design methodology must be flexible 
enough to allow their use in a convenient way. 

Application Specific Integrated Circuits (ASICs). Current VLSI 
technology offers high-level design aids and methodologies as full 
custom components to implement ASICs for selected applications. 

Programmable Logic Devices (PLDs). PLDs provide hardware 
parts for the semi-custom design philosophy. For special applica-
tions requiring unique systems they may provide an economically 
feasible hardware solution. Their use however may impose a 
further mapping step in the realization of the individual PEs at 
'deep logic' level (e.g. bit-level) [8]. The possibility to build re-
programmable 'coprocessors' and modules using PLDs (e.g. Xil-
inx LogicCells) attached to high-speed hosts opens new vistas to 
this design approach. This means to design 'soft' architectures 
that can be redefined and reconfigured dynamically (as the need 
arises) and adaptively during execution time, thus providing adap-
tive architectures. 

4.2. The optimal strategy 

The projection technique and the other formal methods suc-
cessfully find the optimal array architecture and reduce the DG 
dimensionality. However, the enlarged grain size (amount of com-
putation between two synchronizations of adjacent PEs) means 
more algorithm-specific operation, which in many cases may en-
danger the versatile use of the array architecture. It is proba-
bly more advantageous to choose a 'slightly configurable' or 'soft' 
processor array as the target architecture even at the expense of 
sub-optimality. In other words, it would be desirable to find a 
minimal set of hardware features that enable a PE array to execute 
a maximal set of similar algorithms in a nearly optimal way, see 
Fig. 3. 

Ophmal Topology 

Jr 
Operatlon set 

sin(x), cos(x), + 

+, •, sIn(x), cos(x) 

Jr 
Fig. 3. A feasible mapping strategy 

The most important hardware characteristics of a configurable 
PE array can be summarized as follows: 
• order of magnitude of the number of connected PEs, subject 

to grow as technology advances 
• overall topology of the array i.e. the number and organization 

of communication links 
• organization of communication in terms of wavefront vs. sys-

tolic scheduling 
• PE hardware features: operation set, size of communication 

link buffers and register bank 
• control of the array: the methods for programming local 

computations and I/O scheduling for the individual PEs. 
The complexity of the PEs and the interconnection network 

should be kept as low as possible to allow feasible VLSI imple-
mentation of reasonably sized PE arrays. For example, the follow-
ing relatively small operation set satisfies most image processing 
needs: addition, multiplication, division, Euclidean norm, circular 
and hyperbolic functions. A realization proposal for a similar op-
eration set can be found in [4]. As for the supported topology, a 
bi-directional mesh-based topology seems to cover the majority of 
optimally projected array structures. 

The 'minimal set' of the necessary hardware features can be 
determined by simulating the processor array for different image 
processing algorithms and in each case comparing the perfor-
mance with the best reached so far on a dedicated array optimized 
for the respective algorithm. The resulting array should be a good 
trade-off between the algorithm scope covered (configurability) 
and the performance of the array. Then, the standard mapping 
method must be modified to take into consideration both the 
algorithm's properties and the configurability of the array — this 
means that the principles of the task allocation methods and the 
formal (regular) mapping methods must be composed. 

5. SUMMARY 

The paper discusses some aspects of the fine grain size formal 
mapping methods aided with some heuristics. The use of a 
'slightly configurable' PE array is proposed that seems to suffice 
for a wide range of image processing problems and simultaneously 
offers a feasible VLSI realization. Further research is needed 
on the desirable hardware characteristics of such arrays. Also 
the available VLSI components' impact on the mapping process 
should be thoroughly investigated. 
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1. INTRODUCTION 

The economical situation of nowadays justifies all efforts of 
improving the efficiency, flexibility, quality and reliability of 
production. In this context the growing importance of flexible 
cells is evident, as this conception provides the highly automated 
production of different products in a varying number due to the 
ever changing demands. There are estimations that in leading 
industrialized countries the biggest part of new machines will be 
installed in flexible cells by the end of this decade [1]. 

On the other hand highly automated new approaches of Com-
puter Integrated Manufacturing call attention on new problems 
which are partly not foreseen by users: 

CIM installations often imply too complex machines of diver-
sified technologies packed in the working area in a very con-
densed way resulting in after all a long and expensive realization 
and finally a reduced rentability and reliability. Paradoxically the 
high level of automation demands the presence of specially skilled 
operators to survey the system and handle all kinds of generally 
very delicate perturbations. Due to this fact some authors tend 
to reconsider a little bit the optimal balance between automation 
and human presence, concluding in the surprising fact that man 
regains some domain against robots [2]. 

One aspect of this problem is the lack of appropriate models 
for the interpretation of breakdowns and defective production in-
cluding the problem of intervention and preventive maintenance. 
One part customers and vendors of new flexible cell equipment 
equally deny to give detailed statistics about their breakdowns and 
defects considered to be too confidential information. 

On the other hand the initial troubles in new flexible cell 
installations are often regarded as infantile disorders and not as 
consequences of basic design mistakes. 

Though there are many factors of this question, the following 
paper will discuss only two of them: 
• Flexible cell needs flexible instrumentation to interact effi-

ciently with the environment during operation. Integration of 
vision into the flexible cells seemed to be extremely useful to 
solve various tasks related to increased flexibility. The paper 
will briefly present the results of our research in this field. 

• Installation of vision into industrial environment claims for 
modular and standard system design, which can reduce the 
cost, time and risk of such realizations and provides easy update 
or replacement in the future [3]. In fact industrial people would 
have more confidence toward this approach rather general in 
conventional instrumentation. 
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The basic configuration of the flexible cell we used is a 
commercialized one and was installed at INSA de Rennes in 1992. 
This part gives only a general summary of this flexible cell, further 
details can be found in [4]. We examine here rather the extension 
possibilities of the cell with intelligent sensors aiming to increase 
overall functionality. Fig. 1. shows the general structure of the 
system indicating only the key elements. 
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A vision based input object recognition post (P13) was developed 
for real time localization and classification purposes. Near to the 
output post a high resolution linear camera based real-time vision 
system realizes 100 % on-line quality control of macro properties 
measured on the output products thus creating a separate quality 
control post (P14). 

Now we summarize some new possibilities provided by the 
integration of vision into the flexible cell: 

1.1. 2D localization and classification of input pieces 

A matrix camera based vision system localizes and classifies 
input objects on a plate, in real time with mechanics (Fig. 2.). 
Robust algorithms provide functioning under varying ambient light 
conditions without using additional light source or modification of 
background-object contrast. The recognition of industrial parts is 
based on parallel implementation of statistical test (Kolmogorov-
Smirnov) type region growing and gray-scale morphological trans-
formations by means of a transputer network and a low level 
DT2858 preprocessor utilising the inherent data parallelism of 
these algorithms. 
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Fig. 2. 

1.2. On-line quality control of macro properties 

A linear camera based vision system completed by infrared 
lighting is the heart of the on-line quality control post (Fig. 3.). 
The measurement of critical dimensions on more axes would 
demand special positioning mechanics. In our case the robot 
of the output post makes this task. The precision of robot 
movement doesn't affect the accuracy of measurement as it 
is based on the interpretation of the whole object. Owing 
to this fact the resolution of measurement is relatively small, 
but 100 % video inspection has evident advantages opposed to 
conventional contact methods for dimensional measurement in 
industrial environment. 

Resolution: 50 pm /pmel 

Fig. 3. 

1.3. Off-line quality control of micro properties 

Inspecting surface quality has a growing interest in manufac-
turing. Measurement of engineered surfaces by noncontact video 
methods has many advantages compared with conventional me-

chanical or optoelectronical setups. With complex evaluation of 
surface textures it is possible to detect defects as well as to local-
ize the source of them throughout the process. We made prelim-
inary experiments using elements of the our vision system. The 
method is based on the texture evaluation of laser illuminated sur-
faces using second order statistics, fractal description and global 
geometrical properties. Fig. 4, shows the principle of measure-
ment and the sensor head layout of an industrial application. 
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2. TEXTURE ANALYSIS OF MACHINE FINISHED 
SURFACES 

The texture of a surface can be characterized by the repetition 
of basic elements which consist of several pixels arranged in a 
periodic, quasi-periodic or random way. During this analysis one 
can distinguish the following general steps: 
• defining a set of basic texture elements which can characterize 

different type of surfaces 
• execution of an efficient image preprocessing 
• finding correlation between image properties and basic texture 

elements 
• finding correlation between texture properties and the quality 

of machining 
The realization of these steps might change case by case. 

For instance in the production he textures of machine finished 
surfaces to be analysed are rather random without repetition 
or orientation significative or — contrary — quite periodical. 
In other applications we may seek mainly the size, distribution, 
orientation and distance of regions of different textures. 

2.1. Representation with probability methods 

For the digitized image of surfaces we calculated a concurrence 
matrix based on second order statistiques. A set of well known 
useful parameters like entropy, contrast, variance measures of 

53 VOLUME XLV. JULY-AUGUST 1994. 



correlation, etc. were derived from these calculations. Experi-
ments have shown that homogene textures can be well described 
by second order statistiques and this approach is still valid for 
slightly structured textures. A practical problem is the need of big 
computational power to execute these calculations in real-time. 

2.2. Representation with fractal dimensions 

As surface irregularities have also very often invariant struc-
tures for scale of observation, we found this representation useful 
especially as a parameter for roughness. A smooth surface tends 
to have fractal dimension near to 2, a rough machine finished 
surface will be closer to the dimension of 3. 

The initial results of experiments have shown the usefulness of 
statistical and fractal approach in surface characterization but a 
single parameter like contrast or fractal dimension cant describe 
well a real surface. We propose to calculate these values for each 
pixel realising such way an image transformation which emphasises 
the differences of various textures. Afterwards the segmentation 
of different regions can be made easier by means of simple 
algorithms. For the moment the main drawback of this approach 
is the huge amount of calculations needed to validate our results 
of experience in practice. 

2.3. Extraction of global geometrical—topological 
properties of surfaces 

For real-time image preprocessing we realized a video-rate 
hardwired "convolution type" image processor, which can calculate 
textural descriptors based on the evaluation of the statistiques 
of different topologies found by the convolution window. These 
parameters give useful information on the shape, size, distribution 
and orientation of basic elements found on binary images. The 
calculations are executed real-time with scanning. Multiplication 
of hardware makes possible extensions for gray-scale images. 

3. 2D LOCALISATION AND CLASSIFICATION OF 
INPUT PIECES USING STATISTICAL 
MORPHOLOGICAL OPERATIONS 
In Fig. 5. we introduce the chain of algorithms used for the 

localization and classification of input objects at the entry post 
of the flexible cell. The vision task was implemented on a fast 
multiprocessor system containing TRAMS and a Data Translation 
acquisition-preprocessing module (Fig. 6.). 

4. CONCLUSIONS 
The paper shortly presented a modular vision system used in a 

flexible cell. Evaluation of operation has shown us that efficiency 
and flexibility of production lines might be increased substantially 
with additional external sensors, especially with visual ones. We 
enumerated and classified several possibilities of integration vision 
into the flexible cell pointing out the immediate results as well as 
some future benefits. We developed a modular industrial vision 
system capable to cover all examined tasks. General hardware 
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B. VÁRKONYI 

TECHNICAL UNIVERSITY OF BUDAPEST, DEPARTMENT OF PROCESS CONTROL 
MUEGYETEM REP. 9., H-1111 BUDAPEST, HUNGARY 

1. INTRODUCTION 

In the last decades the progress in computers and imaging de-
vices lead to the emerging need for image processing equipments. 
Every project in this field faces a very difficult problem at the 
start, how to develop the necessary software. Most of the time 
only general purpose systems are available at the first stages, and 
thus a lot of effort is wasted for creating a convenient software de-
velopment environment specially suited for the image processing 
tasks. Some companies offer solutions, but these programs are 
rather expensive, many times not portable, sticked to a certain 
hardware (like [1], [2], [4], [6]), or they cover just partially the 
problems to be solved, and unfortunately they cannot meet all the 
requirements. 

What we would really like to get is a special image processing 
oriented development frame. The pictures should be handled 
independently from their size, format and the imaging devices. We 
would like to port our source code to different machines without 
modifications! The application programmer wants to think in 
high-level abstractions (it is not efficient if he must know about all 
the details). Ás he has to manage very big data sets, he needs also 
some computer assistance for their administration. It would be 
also nice to get a "backplane" for combining simple tools into more 
sophisticated ones in a fast and reliable way. These requirements 
are very natural, but none of the commercially available systems 
can satisfy these conditions, it is almost impossible to build up 
such an environment from different already existing sources. 

In the following sections we will introduce the data-flow ap-
proach of a software development frame called "RAster PIcture 
Laboratory" (RAPIL). The RAPIL is not a complete solution for 
all the above problems, but it fits far better to the needs of a 
research setup than any other available product, and it is run-
ning on our existing equipment (not just a faint promise). Ás it 
supports modular and incremental specification, design and imple-
mentation, the future extension paths are rather straightforward 
(for more details see [15] and [10]). 

We hope that other projects can get some benefits from 
the methodologies discussed here. The data-flow support of 
RAPIL is motivated by the basic philosophy of providing easy 
access to image processing systems in a system independent 
way. It is intended to serve as the basic building block for 
advanced graphical user interaction to image processing systems 
and system independent optimizing compilers. The choice of 
the data-flow paradigm was guided by the observation that image 
processing as a discipline in signal processing relates very well 
to functional formulations of the processing task. Functional 
languages are known to have no artificial dependencies of control 
besides pure data dependencies. Such languages suit very well 
for compiler optimizations of various resources, from memory 
space on single processor machines to communication paths on 
multi-processors. Even complex systems composed of different 
specialized processors can be dealt with. 

The present stage supports an intermediate representation of 
flow graphs based on the OPE-object of the MSS package (see 
also [16]) and an interpreter for the processing of such flow graphs 
on the currently supported RAPIL systems. Several processing 
modules in the IMP library have been equipped with data-flow 
interfaces and can be used with this interpreter and the number 
of such modules will steadily increase in the future. 

2. THE BASIC PRINCIPLE OF DATA-FLOW 
PROGRAMMING 

The data-flow paradigm lives from the observation that every 
functional expression directly relates to a directed graph in which 
the nodes represent the function operator and the arcs stand 

for the flow of results. Each of these results is produced by 
the application of a functional operator on the actual operands 
where the operands are represented by inbound, or incident, 
arcs and the result is shown by the outbound, or adjacent, ones. 
In the case of non-recursive expressions these rules lead to an 
acyclic directed graph as the representation of a corresponding 
functional expression. For our current purpose this restriction to 
non-recursive functional expressions is powerful enough to denote 
most of the common image processing tasks. The extension to 
some kind of recursive function: is possible and can be learned 
from literature. 

Graphical representations of functional expressions can easily 
be interpreted as the machine language of a data processing 
system. The nodes translate to processing instructions and the 
arcs denote the data dependencies of the individual instructions. 
The problem how to do the interpretation of these graphs in a 
certain data processing system has been subject to twenty years 
of research. 

A data-flow program is represented as a directed graph 
consisting of named nodes, which represent instructions, and arcs 
which represent data dependencies among nodes. Operands are 
propagated along the arcs in the form of data packets, called 
tokens. The execution of an instruction is called the firing of a 
node. The basic instruction firing rule common to all data-flow 
systems is as follows: A node is enabled as soon as tokens are 
present at all its input arcs. 

When a node fires, a token from each input arc is removed and 
a result token is placed on each of its output arcs. At the machine 
level, a data-flow graph is represented as a collection of activity 
templates, each containing the following components: 
• opcode of the represented instruction, 
• operand slots for holding operand values, and 
• destination address fields, referring to the operand slots of 

subsequent activity templates that need to receive the result 
value. 

3. DATA-FLOW IMAGE PROCESSING SUPPORT 
PACKAGE IN RAPIL 

The Data-Flow Image Processing Support Package in RAPIL 
consists of three major components, the program representation 
by means of MSS chains, the data-flow interpreter, and the data-
flow interface modules of the processing libraries IMP, FEE and 
SAN. (For details on RAPIL parts you should refer first to [15] 
and [16]). 

The application programmer generates, by means of some kind 
of translator program, an MSS representation of the data-flow 
graph. In this MSS representation the nodes are given by OPE 
objects whereas the arcs are denoted by some other MSS object 
(an SAP in most cases) which describes the data-token on the arc. 
The interpreter is a program module which controls the execution 
of this data-flow program representation and does the memory 
allocation for the created data objects. 

Data-flow interfaces to the processing library modules allow for 
the execution of these module functions by the data-flow inter-
preter. These interfaces have to be supplied by the system pro-
grammer who developed the module as the semantical knowledge 
about the function is to be coded herein. 

8.1. Program Representation and Semantics 

Data-flow programs are formed by a MSS chain consisting of 
OPE objects and data objects (SAPS in general). The OPEs 
represent the individual nodes of the program and the data objects 
contain the results/operands they exchange during execution and, 
therefore, represent the arcs. 
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Table 1. MSS link identifiers for data-flow programs 

/* link id field values */ 
/* hiword==0 is reserved for RAPIL for the following purposes: 
/* bytei==1 : data-flow graphs */ 
*define MSSL_OPE Ox00000101L 
*define MSSL_PER 
*define MSSL_TMP 
*define MSSL_SRC 
*define MSSL_DST 

Ox00000102L 

Ox000001O3L 
Ox00000104L 
Ox00000105L 

*/ 

/* object processing elements 
/* permanent objects 

/* temporary objects 
/* source objects 
/* destination objects 

The objects of the MSS chain are grouped by four relational 
links. MSS has four predefined link identifiers reserved for that 
purpose (Table 1). MSSL-OPE links all OPE objects of the 
chain and, thereby, grouping all nodes of the data-flow program 
for traversal by the interpreter. MSSL-PER comprises all data 
objects that will hold valid data at the termination of the data-flow 
program. MSSL TMP links all data objects that are only valid for 
a short period of time during the execution. MSSL-SRC groups 
the data objects that have to be provided before the start of the 
program, e.g. the input data of the program graph. MSSL-DST, 
on the other hand, comprises all data objects that represent the 
output of the program. 

3.1.1. The Object Processing Element Class 

In the OPE class four slots of the main extension field mext 
contain control information for the data flow interpreter (see 
Table 2). The extension field ext is used to pass parameters and 
pointers to the data objects, a certain operation has to work on. 

Table 2. OPE main extension field 

stru
f
ct ope_mext 

i 

long id; /* 8: tool identifier */ 
long stat; /* 9: tool status */ 
long ioctl; /* A: I/O control mask */ 

long iosta; /* B: I/O status */ 
long extC; /* C: extension slot */ 

long extD; /* D: extension slot */ 
long extE; /* E: extension slot */ 

long extF; /* F: extension slot */ 

• tool.id is an identifier that gives a reference to the executable 
function 

• tool.stat controls the execution and represents the status of the 
OPE 
• 0 means no execution 
• pos means the number of repeated execution 
• neg means the termination of the function is controlled 

externally 
• tool.ioctl represents the I/O control mask. It consists of 16 

fields of two bits corresponding to the 16 extension slots. Refer 
to Table 3. 
• 0 in a field means that the extension slot carries no 

dynamically created data object (it might be used for 
parameter passing) 

• 1 means that this slot refers to an input object 
• 2 means that this slot refers to an output object 

• tooLiosta contains also 16 fields of two bits which code for the 
status of the data object. The data flow interpreter marks 
the corresponding field with a 1 if it found the object core to 
be present (see Table 4). This saves considerable time. The 
presence of object cores need not be tested twice to enable 
the execution of the processing function 

Table 3. OPE I/O control masks 

/* I/O control mask - 16 channels x 2 bits */ 
*define OPE_IO_ HONE 0 /* channel is not used 
*define OPE_IO_INP 1 /* input channel */ 
*define OPE_IO_ OUT 2 /* output channel */ 

Each OPE object contains slots to pass up to 16 parameters 
whose meaning is completely left to the data-flow interface of the 
specified function. The slots can contain operands and results 
in form of pointers to data objects in the program MSS chain 
as well as literals in form of long integers. The literals may be 
used in any way the system programmer writing the corresponding 
data-flow interface might choose. It might even contain packed 
information as the data-flow interpreter does no manipulations on 
the parameter slots. 

Table 4. OPE I/O status values 

/* I/O status - 16 channels x 2 bits */ 
*define OPE_IO_ EMPTY 0 /* data object is empty */ 
*define OPE_10_ RDY 1 /* data object is ready */ 

Corresponding with the 16 slots are 16 descriptors and status 
flags in the OPE slots mext.tool.ioctl and mext.tool.iosta, the 
descriptor codes for the type of the operand slot. They must 
always have the order of input (operand), output (result) and 
static, where static comprises literals and unused slots as well. The 
status flag is set when a certain cperand has been detected by the 
interpreter but the node is not yet enabled. The role of these 
slots, therefore, is analogous to the tokens in a classical data-flow 
machine. As the data objects in the MSS chain stand for the 
arcs of the data-flow program the input object slots code for the 
incidence relation and the output object slots give the adjacency 
relation of the graph. 

3.1.2. Data Objects 

Data objects in the program chain reserve space for the 
results/operands that are created and consumed during execution 
of the program. The type of the object and its parametrization 
is determined by the processing function and must be set before 
execution. Especially the size of the object core must be known in 
advance. The current version of the Data-Flow Support Package 
will detect an error if the size of the object does not match the 
need of the specified function. It is left to the compiler to derive 
the proper parameters from the given program and its input data. 

The data-flow program format in RAPIL uses data objects to 
represent arcs in the graph. However, for sake of efficiency this 
implementation stretches the term arc and implements muhi-arcs 
with one source and multiple destinations. This makes the copying 
of data tokens obsolete in case of multiple use of a result in more 
than one node. The data objects must reflect this change by 
carrying a reference counter in t} a upper word of slot chain.st. A 
negative entry is used to code fcr permanent objects. A non-zero 
number stands for the number of adjacent nodes referring to the 
data of this object. 
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Input objects are given before execution and are the only 
objects to contain actual data at that moment. All other objects 
are empty which is denoted by a NULL in the core pointer slot 
main.cmema. At the end of the execution only the permanent 
objects (e.g. the destination objects) contain core data and may 
be handed out in a result MSS chain. Some programmers might 
see the need for permanently available data objects not being 
destination type result data but some kind of constants (not 
literals), for instance reference pictures or convolution kernels. 
The OPE class links, therefore, make a distinction between 
permanent and destination objects. 

4. THE RAPIL DATA-FLOW INTERPRETER 
The data-flow interpreter DFI is designed to provide a memory 

efficient implementation on classical single processor machines. 
Some restrictions of current operating systems make it not very 
suitable for systems without demand-paging virtual memory. The 
problem arises from the lack of dynamical binding of function calls 
in a portable way. All functions accessible to the interpreter have 
to be permanently linked to the executable image leading to a 
quite big program image. 

A data-flow operation is always associated with the library func-

Table 5. Data-Flow Operator Descriptor 

tion implementing it, although a library function may implement 
more than one data-flow operation. The distinction is then made 
by literals controlling the function in the library module. The 
transfer is made through a function pointer in a descriptor table 
composed of df_function_struct descriptors. Table 5 shows the 
structure of such a descriptor and an example of a definition for 
the Sobel library module is given in Table 6. 

The interpreter starts by fetching the root object of the MSSL-
OPE link and then repeatedly traversing the chain of this re-
lational link. The input channels are checked for tokens and 
in the negative case the input object is checked for the pres-
ence of a data core which then is marked by a token flag (see 
Section Data Objects above). If all input objects are found 
to be present the function is enabled and executed by trans-
ferring control to the function in *DF_FUNCTIONS[open—* 
mext.tool.id].df_function. The reference counters of the input ob-
jects are decremented and in case of zero (all tokens consumed) 
the core memory space is freed. After execution of a fired node 
the OPE is marked as processed by setting mext.tool.iosta to —1. 
This OPE will be discarded in the next scan. The scanning ends if 
no node fired in the last scan. In this case a MSS chain containing 
the permanent objects is returned. 

struct df_Yunction_struct 

{ 

char 

OPE _ FUNC _ PTR 

int 

char 
int 

char 

*df_function_name; 

df _ funct ion; 

number_ of _ inputs; 
*coded_ input; 
number_ of_outputs; 

*coded_ output; 

/* 

/* 

/* 
/* 

/* 

Name of the data flow function 

Pointer to the data flow function 

Number of inputs of the function 
String with coded input types 

Number of outputs of the function 
String with coded output types 

*/ 

*/ 

*/ 

*/ 

}; 

Table 6. SOBEL Function Example 

{ "sobel", im0_ sobel, 3, "DF_ DF_PAR_LONG/FIX:1 DF_PAR_LONG/DEF:16", 

2, "DF_ DF_SAP" } 

{ "sobel_sgr", im0_ sobel, 3, "DF_ DF_PAR_LONG/FIX:2 DF_PAR_LONG/DEF:16", 

2, "DF_ DF_SAP" } 

{ "prewitt", im0_ sobel, 3, "DF_ DF_PAR_LONG/FIX:3 DF_PAR_LONG/DEF:16", 

2, "DF_ DF_SAP" } 

{ "prewitt_sgr", im0_ sobel, 3, "DF_ DF_PAR_LONG/FIX:4 DF_PAR_LONG/DEF:16", 

2, "DF_ DF_SAP" } 

5. DATA-FLOW FUNCTIONS AND IMAGE 
PROCESSING MODULES 

The library modules in the libraries IMP, FEE and SAN must 
be prepared to be used by the data-flow support modules. Every 
processing function must provide a data-flow interface which is 
contained in module imüfunction.c, fe0function.c, or sa0function.c 
respectively. Contrary to library core functions they only get 
a pointer to the OPE object describing the node they shall 
implement. The operands and results as well as the literals must 
be checked or at least the relevant information must be passed 
to the core function after creation of the destination core and the 
setup of the destination descriptor fields (according to the object 
type of the result). The result must then be checked and the 
output must be discarded in case of error. In case of success 
the input data tokens must be consumed by decrementing the 
reference count of the input data objects. 

The following source code fragment demonstrates the interfac-
ing principle: 

int im0_convol(ope_poi) 
mssobj _ poi ope_ poi; 

{ 

mssobj_poi s_poi,d_ poi,aux_ poi; 
int flag,ind; 

char *adr; 
/* init */ 

s_ poi = (mssobj_poi)ope_poi->ext.mss.ext0; 
d_ poi = (mssobj _ poi)ope_ poi->ext.mss.extl; 

/* if the destination's core does not exist, then create it */ 
if (d_ poi->main.cmema= =(long)NULL) 

{ 

adr = mss_crco(d_poi); 
if (adr==NULL) return(-1); 

} 

/* setup destination fields */ 
memcpy(&:d _ poi- >mext.pic, 

&s_poi->mext.pic,sizeof(struct sap_mext)); 
memcpy(&d_ poi->ext.trf, 

&s_poi->ext.trf,sizeof(struct sap_ext)); 
/* invoke the appropriate processing routine */ 

switch((int)s_ poi->mext.pic.psize) 
{ 

case 1 
flag = imb_convol((char *)s_poi->main.cmema, 

(char *)d_poi->main.cmema, 
(int)s_ poi->mext.pic.xsize,(int)s_ poi->mext.pic.ysize, 
ope_ poi->ext.mss.ext2,ope_ poi->ext.mss.ext3); 

break; 
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default: 
return(-1); 

} 

/* if not successful, then empty destination */ 
if (flag<0) mss_ dico(d_ poi); 

/* if successful, decrement reference count */ 
else if (hiword(s_ poi->chain.st) >0) 

(hiword(s_ poi->chain.st))--; 
/* done */ 

return(flag); 
} 

Note that the handling of different image formats must be done 
also here. If there are no core functions for a certain image 
format the interface module should give an appropriate error exit 
code. If there is a core function for the given format it is called 
with the proper parameters. In cases when the output format 
is different, the interface module is responsible for the necessary 
transformations and preparation of destination objects. The intent 
is that the core functions might be completely independent from 
RAPIL (e.g. external, third party libraries), and thus they might 
not be able to handle RAPIL related data structures. But even 
core functions written especially for RAPIL have usually limited 
flexibility in data handling not to compromise efficient execution. 
Typically, for different pixel sizes the programmer might give 
separate core function implementations. The selection of such 
separate implementations is a task for the data-flow interface 
module. 

A core function can implement multiple data-flow operators. 
In some cases the data-flow interface function must reflect this by 
different handling of operands and results. 

6. THE DATA-FLOW WORKBENCH 

It is easy to recognize the trend of spreading graphical pro-
gramming paradigms. In the middle of the eighties the idea of 
an image processing workbench was born [8]. But the implemen-
tation came to reality only when the development of RAPIL was 
started. The first demonstration of the concept was created in 
the DOS/DR-GEM environment in 1988, later it was ported and 
extended into a X-Window (see [3] and [5]) and a MS Windows 
version. Unfortunately, because of the lack of the necessary hu-
man resources, these versions are at the prototype level only at 
the moment, but the first full implementation for MOTIF might 
be available in this year. 

The workbench concept for programming was tested very early 
in the development of RAPIL. We found it very promising for our 
exploratory and experimental programming. The static data-flow 
graphs can be formulated in a graphical editor. The nodes of 
the graph can be selected from tool libraries. To support the 
programmer the tools are equipped with history and annotation 
records. Sometimes graphical representations are not satisfactory, 
so the workbench provides a text window, where we can edit 
the same graph described with a textual data-flow language. The 
modifications are updated in the other window automatically. 

We can also initiate the compiling of the program into an MSS 
database. After successful compilation we can call the data-flow 
interpreter to execute the program. 

The workbench should contain debugging aids as well. The 
workbench can be dynamically configured to support different 
personal requirements. New tools can be integrated through a 
guided procedure. 

7. APPLICATIONS OF THE DATA-FLOW 
PARADIGM IN IMAGE PROCESSING 

The first applications of the data-flow paradigm was introduced 
in [14], where it was demonstrated how to compose intensity and 
range data fusion algorithms into a data-flow graph represented 
in MSS. Later on in various student projects we tested the 
possibilities of creating example applications. The data-flow 
interpreter worked properly on quite different MS-DOS, UNIX 
and VMS configurations. Real applications will be developed 
when the next release of our Workbench will be availa le this 
year. 

To develop meaningful and usable applications we need a 
library of OPEs. The details of the existing image processing 
and feature extraction libraries (providing data-flow interface 
modules) can be found in [12] and [13]. Here we give only a short 
listing of the modules: 
• Image Processing OPEs: interpolation operator, normal vector 

operators, convolutions operators, covering curve smoothing, 
extremum operator, histogram modification, median filtering, 
normal scalar product operator, Roberts operator, Robinson 
operator, symmetrical hysteresis smoothing, Sobel operator, 
binarization, labelling, Tsuruoka's thinning, Deutsch's thinning, 
Hilditch's thinning, Tamura's thinning etc. 

• Feature Extraction OPEs: component graph creation, geomet-
rical element addition, point graph creation, histogram oper-
ator, Wei's edge detection operator, Martelli's edge tracking 
operator etc. 
We have running developments for more early processing 

routines. One of our main focus in recent months is to provide 
frequency domain analysis tools as well. We want to achieve the 
richness of the well-known SPIDER package in about two years. 
Anyhow, we will include a lot of knew algorithms, especially in 
range image processing, not included in any commercial package. 

8. CONCLUSION 

In this article we described a data-flow approach to develop 
image processing applications. The RAPIL tools supporting data-
flow programming initiated a lot of research efforts and student 
projects (not possible to list here), and proved to be a valuable 
means in education as well. Some example image processing 
applications were already developed using the data-flow support, 
but this work was limited by the features of the first workbench 
prototypes. 

The data-flow support package will be an important base for 
developing intelligent sensors for the IRENE project, too (details 
can be found for example in [11]). In that case the data-flow 
paradigm helps to develop blackboard architectures. 

The details of data-flow programming in RAPIL is described in 
[9]. In recent times our team is just designing and implementing 
the newest version of the data-flow workbench. The next release 
of the RAPIL Data-Flow Support is scheduled in September 1994. 

Next year we plan to start the migration from plain C to C++ 
as a programming language for the project. This was not possible 
previously, since there were no good quality C++ implementation 
on all of our target systems. We would also like to solve the 
dynamic linking problem, but in this case we have to do more 
research to find good portability techniques to remain consistent 
with our original goals. 
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1. INTRODUCTION 

Mankind's principal means of interacting with his environment 
is visual. As age diminishes the acuity of our senses, we use 
eyeglasses commonly, hearing aids occasionally and practically 
never any prosthetic aids for any of the remaining senses (an 
ancient Chinese proverb says that a picture is worth 1000 words). 
Many scientific instruments directly produce pictorial images or 
have some type of graphics display (to present a spectrum, for 
instance), expecting the operator to be able to extract the usable 
information more rapidly than from a list of numbers. 

Recognising, counting and measuring the size, shape, position, 
density and other similar properties of particular objects in an 
image can be done by computers relatively quickly and with 
excellent reproducibility. 

A large variety of instruments produce images in suitable forms 
for acquisition and analysis and computerized measurement is 
used to extract specific information from images much more 
accurately and reproducibly than a human can. In normal 
situations humans rarely need to measure an object in an image, 
but they can interact with their environment to bring a comparison 
object or ruler into play. Computer image measurement is less 
easily distracted from what is important by trivia in images and 
is better than a human observer at paying attention to all the 
details. On the other hand, humans are better at recognizing 
objects, often based on very incomplete or unconventional images, 
capability that is much harder to program in the computer. The 
process of image measurement involves a huge reduction in the 
amount of data, by selecting from the original image the objects 
or features that are important. An original image may represent 
a million separate points stored in the computer, but the desired 
information may be as simple as, for example, the number of white 
blood cells on a slide, the size (area of a surface, volume, etc.) or 
the presence of a tumour in an X-ray image. This selection and 

reduction of the data amount by ignoring irrelevant information is 
at the heart of image analysis and measurement. The human eye 
has sensors with peak sensitivities for red, green and blue light 
and the spectral response is frequency dependent. Combinations 
of those colors are interpreted as a continuous range of color 
and experiments stated that the human eye can distinguish only a 
limited number of gray-levels (20-30 levels in monochrome images 
under good conditions) and that, at the same time, the number of 
different colors available for display is much more important [6]. 
That is why, an important aim for the processing of biomedical 
images is to enlarge the visual perception of the human eye by 
pseudocoloring the gray-level images obtained from most of the 
instruments used for biomedical visualization. 

2. ANATOMIC SEGMENTATION AND FEATURE 
EXTRACTION OF BIOMEDICAL IMAGES 

Further, a set of representative biomedical images will be 
considered. Fig. 1 shows the image of an animal tadpole obtained 
with an optical microscope, Fig. 2 presents an echograph image, 
Fig. 3 a X-ray radiography and Fig. 4 a CT reconstructed 2D 
image. The information content of each image is slightly different 
and so are also the relevant features that we want to extract. 
That's why the processing of these images has to be appropriate 
to the proposed goal and to the features in the image. 

Anyway, some common features of these images make that a 
series of algorithms for the digital processing of medical images as 
those presented in Figs. 1-4 are similar. 

59 VOLUME XLV. JULY-AUGUST 1994. 



Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

In order to recognize or measure objects in images, it is 
necessary to distinguish them from their surroundings, that is 
to separate a region of contiguous pixels that share the same 
property. The human eye has within the retina a certain number 
of cells, known as amacrine cells, which connect to several retinian 
cells in order to extract higher level information, for instance to 
detect an edge oriented in a particular direction. The responses of 
several cells are combined, some positively and some negatively: 
when a uniform region is viewed, there is no output and only when 
an edge lies in a proper alignment, the cells produce a significant 
signal for the brain. The most important feature of the method is 
inhibition: the positive and negative connections on the logic cells 
allow neighbouring pixels to be considered [2]. 

The same technique is used in spatial operations upon images, 
performed for the enhancement of the contours or for the 
edge extraction. For example the Laplacian kernel operator 
presented below, has negative coefficients corresponding to all the 
surrounding pixels, representing an inhibition: 

1 —1 1 
H= —1 9 —1 

—1 —1 —1 

Fig. 5. 

For extracting the edges, several different algorithms can 
be used. In Table 1, some of them are presented, along 
with the value of the coefficients used in experimental studies. 
Combination of these algorithms are used in order to extract the 
contour of an object in the image [1], [3]. Fig. 5 presents the 
contour obtained from the image presented in Fig. 1 by applying 
the horizontal Sobel operator and, after that, the vertical Sobel 
operator on the image. By combining the images in Fig. 1 and 5 a 
composite image is obtained (Fig. 6) featuring particular regions 
of interest in the original image. 

There are also other edge-detecting operators besides Sobel 
and Kirsch. Marr (1982) found that the eye uses smoothing 
techniques in which the smoothing distance varies (the distance is 
roughly equivalent to the maximum size of features which are to 
be ignored). By forming different smoothed images using different 
scales, edges of different size structures can be extracted from the 
image, by taking the difference of two successive images. There is 
an alternative way to get virtual!y the same result and this is the 
so-called LOG procedure, that i ; the Laplacian of a Gaussian. If 
the smoothed image is subjectel to the Laplacian operator, the 
edges are selected, as the smoothing operation has suppressed 
the points and lines. The weights of the two operators can be 
combined into a single operation, in order to obtain the LOG 
image and the zero-crossings of the resulting image mark the 
edges of features [2]. 
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Table 1. 

F-
Uperator a u de a,s a" aer an a „ a., a,, 

Directional gradient E 1 1 1 1 -2 1 -1 -1 -1 
Directional gradient N-E 1 1 1 1 -2 -1 1 -1 -1 
Directional gradient S-W I 1 -1 i -2 -1 1 1 -1 
High-pass filter 1 @ -1 • -1 5 -1 0 -1 0 
High-pass filter 2 0 -1 0 -1 4 -1 @ -1 0 
Laplacian -1 -1 -1 -1 9 -1 -1 -1 -1 
Diagonal Laplacian -1 • -i 0 4 • -1 • -1 
Horizontal Laplacian 0 -1 0 0 2 • 0 -1 • 
Vertical Laplacian • @ 0 -] 2 -1 0 • 

@ 

Horizontal Prewitt -1 -1 -á @ • @ I 1 1 
Vertical Prewitt 1 @ -1 1 0 -1 1 0 -1 
Horizontal Sobel 1 2 1 0 • 0 -1 -2 -1 
Vertical Sobel 1 @ -1 2 • -2 1 • -1 
Horizontal Kirsch -3 -3 5 -3 • 5 -3 -3 5 
Vertical Kirsch 5 5 5 -3 @ -3 -3 -3 -3 

Table 2. 

Brey 
le- 
vel 

Correa- 
ponding 
color 

Color coefi- 
cients 
R 6 B 

Grey 
le- 
vet 

Correa- Color coefi-
ponding cients 
color R G B 

@ black • • @ 32 light brown 63 31 16 
1 dark blue • • 1 33 dark orange 63 31 • 
2 • • 2 34 63 33 • 
3 • • 3 35 63 35 • 
4 • • 4 36 63 37 • 
5 • • 5 37 63 39 • 
6 dark brown 15 2 @ 38 63 41 • 
7 17 3 • 39 63 43 • 
R 19 4 @ 40 63 45 • 
9 21 5 0 41 63 47 • 
1@ 23 6 @ 42 :.3 49 • 
11 25 7 • 43 light orange 63 51 • 
12 27 8 1 44 dark yellow 63 53 • 
13 29 9 1 43 63 63 • 
14 dark red 26 • • 46 63 63 2 
15 29 5 5 47 63 63 4 

f 

16 32 5 5 48 63 63 6 
17 35 5 5 49 63 63 B 
18 3Ú 5 5 50 63 63 1• 
19 41 5 5 51 63 63 12 
20 44 5 5 52 63 63 14 
21 47 5 5 53 63 63 16 
22 50 5 5 54 63 63 18 
23 53 5 5 55 63 63 2• 
24 56 5 5 56 63 ‚3 22 
25 red 59 5 5 57 63 63 24 
26 light brown 48 24 9 58 63 63 26 
27 53 26 11 59 63 63 28 
28 55 27 12 60 light yellow 63 63 30 
29 57 28 13 61 61 61 61 
30 59 29 14 62 62 62 62 
31 61 30 15 63 white 63 63 63 

With most of the derivative edge-finding methods, a problem 
that we must deal with is the continuity of the edges. Due to 
the fact that the methods discussed use purely local comparisons 
between pixels, there is no guarantee that the points will merge 
into connected lines. This is particularly the case when there is 
side lightening or nonuniform illumination, or if the image is very 
noisy. 

There are several approaches to connecting incomplete lines 
in continuous contours, including methods that belong to scene 
understanding. These are computationally very demanding and 
this paper will not deal with them. The images we usually wish 
to measure are simpler in organization and we will assume that 
boundaries revealed in the edge image lie in the same image 
plane and should be connected to form a simple tessellation or 

set of feature outlines. The connection of gaps between line 
segments can be made by cur" fitting with the simplest case 
of straight lines or the extension of the method to quadratic 
curves. The zero-crossing of the LOG method is guaranteed to 
have a continuous path. Another method is to generate contour 
lines. It is helpful to imagine the image as having an elevation 
proportional to the pixel brightness. Then, the image is equivalent 
to a conventional map and contour lines of selected brightness are 
analogous to isoelevation contours marked on topographic maps. 
If there are two regions at different elevations, there must be 
somewhere between them a location along the contour line at any 
intermediate elevation. The boundary line can pass between pixels 
and may either be located by interpolation or may be arbitrary 
assigned to the nearest pixel. 
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Fig. 6. 

Region growing is a method similar, in a way, to the edge 
following, in spite of the fact that it deals rather with threshold 
methods. Starting with any interior pixel in the image, each 
neighbouring pixel is examined to decide whether it is part of the 
same feature. The criteria used are quite varied but, more often, 
the brightness value of a pixel is used. If the difference between 
the new pixel and the neighbour is less than an arbitrary limit, the 
pixel is considered to belong to the feature [4], [7]. 

The use of brightness discrimination to select pixels belonging 
to features of interest is a convenient method of converting a 
gray-scale image to a binary one. Discrimination by thresholding 
is much more etl'icient than any edge detection or region growing 
method because it works on the entire image at once and the 
resulting binary image is a pixel-based representation of features 
of interest that are interesting for most measurement operations. 
Thresholding on original gray-scale image in which the features of 
interest are different in brightness than others or background is 
an important step for the preparation for further measurements 
(surface, perimeter, etc.) of features. This needs not to be 
performed on original gray-level images. Smoothing operations 
for the reduction of noise or background leveling methods, 
subtracting one image from another, produce derived images from 
the original one. These can be discriminated to produce better 
results than those obtained with the original [5]. Background 
leveling by subtracting or dividing an image by another is intended 
to modify the brightness values of pixels specifically, so that similar 
features in different locations would have the some brightness. 

Due to the fact that most of the biomedical images are low-
contrast ones, the histogram modelling is a powerful technique for 
image enhancement. The problem is to modify the image so that 
its histogram has a desired shape. This is useful in stretching the 
low-contrast levels of images with narrow histograms [1], [3]. 

In histogram equalization, the goal is to obtain a uniform 
histogram for the output image. Considering a pixel's value v > 0 
as a random variable with a continous probability density function 
pv (x) and a cumulative probability distribution: 

Fv (x) = P[v ≤ x]. (1) 

Then, the random variable 

v' = F JPv(z)dx(x) =

0 

(2) 

will be uniformly distributed over (0, 1). Supposing the input with 
N gray-levels x; = 0,1, .. . , N — 1 with probabilities pv (x; ). 
These probabilities can be determined from the histogram of the 
image giving the number of pixels h(z) having a gray-level value 
x; [1]. In this case: 

h(xi)
pv(xi) = N—i i= 0, 1, . . . , '-1 . 

~ h(xi) 
i=0 

(3) 

The output image v', assumed to have also N gray-levels, is 
given by: 

v 

W = pv(xi) (4) 

j 

x;=o 

W 11j 
— Wmin  (N — 1) + ü, 5J (5) L 

1 — Wmin 
where Wmin, is the smallest positive value for W obtained from 
(4). The Eq. (5) simply requantizes uniformly the set of values 
{Wk } into { W }. The results obtained by histogram equalization 
on biomedical images are very useful from the point of view of the 
other processing methods (thresholding and edge detection) used 
for image measurements, as well as for the better understanding 
and interpretation of the output image. Figs. 7, 8, 9 present the 
result of histogram equalization applied to the images in Figs. 1-3. 

Fig. 7. 

Fig. 8. 

Fig. 9. 
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3. PSEUDOCOLORING THE BIOMEDICAL 
IMAGES 

The human eye is capable to distinguish a rather small number 
of gray-levels (25-30, under good conditions) but can easily 
distinguish hundreds or thousands of colors [6]. False-color or 
pseudo-color display of gray-level images is therefore a powerful 
way to accentuate small brightness variations [5]. If the original 
image is digitised and stored with 256 brightness levels, it is 
common to use 8 bit DAC's for each colour. The number 
of different colours obtained in this way, hence, effect the 
intelligibility of the image. That is why the use of 6 bit DAC's, 
allowing us to obtain a number of 64 different colours for 
the corresponding 64 gray-levels in the original image is quite 
satisfactory. 

False or pseudo color display is used especially for astronomical 
images. They can emphasize gradients and communicate a great 
deal of information. When misused, however, false color or 

Figs. 10., 11., 12. 

4. CONCLUSIONS 

Anatomic segmentation and feature extraction of biomedical 
images is a combination of different algorithms that modify the 
original content of data in the image in order to make it more 
appropriate for visualization or measurement. The algorithms 
and their implementation is different for different type of medical 
images, depending on its specific features and on the proposed 
goal. 

By choosing an appropriate color palette for pseudo coloring 
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1. INTRODUCTION 

Due to the progress in imaging instruments and graphic work-
stations, the access to the third dimension in medical imaging 
has already provided valuable information in various fields such 
as reparative surgery, radiotherapy treatment planning, neuro-
surgery, the study of structural and morphological characteris-
tics of organs in biomedical sciences, etc. This has made three-
dimensional (3D) medical image processing and display a rapidly 
emerging field of research [2], [3]. 

The main task in a computer-aided reconstruction process 
consists of extracting the regions of interest (ROI) or their 
contours in all sectional images and in forming surfaces and 
volumes between the contours of adjacent slices. If the interslice 
distances between successive contours are small, the 3D object 
can be displayed by stacking up the successive contours in the 
correct order. If the interslice resolution is larger than the 
resolution within the slice, the anisotropy in the voxel dimensions 
requires carefully designed interpolation schemes. 

Since the information provided for reconstructing a 3D object 
is contained in the serial sections only, the smoothness of 
the reconstructed slices is a major concern [2], [3]. Various 
surface interpolation algorithms have been proposed to satisfy this 
criterion. The technique of lofting utilizes parametric curves for 
surface representation. In this approach, sectional curves are 
represented by uniform B-splines manually and then surface is 
interpolated between sections by cardinal splines. Other methods 
approximate the closed bounding surfaces between two contours 
extracted from consecutive slices, by a collection of triangular 
patches or reconstruct the surface of an object by a 3D volumetric 
scene discription [5]. The scene description is obtained from a 
volume-segment structure which is characterized by a collection 
of planar slices. In order to extract the information from the 
given planes, a set of associated contours in consecutive slices is 
identified first. A triangulation process, producing local bounding 
patches between every pair of consecutive contours follows. 
The reconstructed object is formed by coalescing the adjacent 
triangular patches into polygonal facets such that the orientation 
of constituent triangular patches are preserved [6]. 

The segmentation process has been approached in two differ-
ent ways. In the first, one tries to find the contours of the object 
in the section, while in the other one looks for isodensity objects. 
The first approach is limited by the large number of contours with 
respect to the signal-noise ratio. In the second one, in the 3D 
case some degree of operator intervention is required and voxel 
anisotropy may create artificial links between slices, that are diffi-
cult to eliminate [6], [7]. 

In the paper an interpolation method and segmentation algo-
rithms implemented on an IBM-PC 486 DX computer are pre-
sented. 

The goal of the computation was to obtain a 3D isotropic data 
volume for the display of different views according to the ROI 
and, on the other hand, to realize a 3D representation of an object 
by segmentation and volume rendering. 

2. MORPHOLOGICAL INTERPOLATION 

Interpolation methods based on morphological properties of 
an object is preferable to gray level interpolation methods. The 
goal is to create an intermediate slice by operating on two 
adjacent slices and trying to avoid artifacts that appear mostly at 
boundaries, due to the anisotropy of voxels [6], [11]. Suppose we 
have n axial slices with 640x480 pixels each, with pixel dimensions 
of 0,25 mm. The distance between slices being 1 mm, in order 

to obtain the isotropy of the voxels we have to reconstruct three 
intermediate slices and to insert them between the i and i+1 slices 
in the 3D volume of data. 

The algorithm proposed has two successive steps: first we 
reconstruct by interpolation an intermediate slice j and then, using 
slices i and j and, respectively j and i+l, we reconstruct slices j-1 
and j+l. Figs. 1 and 2 illustrate the algorithm. 

Assuming that the n axial slices are available, each of them 
having k lines and m columns, the reconstruction of the interme-
diate ones can be made either by reconstructing sagital or coronal 
slices, using successively lines or columns from the n axial slices. 
Considering the first line from the i and i -1- 1 slices, the recon-
struction of the intermediate slice line j is made by linear interpo-
lation for the regions containing pixels within a certain gray-level 
domain Dy. 

Region A 

i•3 

1~ 
i•2 

1i
i•1 

1 
i 

Jo 

i-1 

Region B boundary 

Fig. 1. Interpolation for different gray level regions and boundary —
j rst step 

1.1 

j•1 

J 
j —1 

i 

O — linear interpolated pixels in region A 

0 - - „ - „ -   - „ - g 
•— window interpolated pixels on boundary 

t) 
Fig. 2. Interpolation of different gray-level regions and boundary —

second step 

In Fig. 1 two regions A acid B with different gray-levels 
and the boundary between t}.em are considered. First, a 
linear interpolation of the pixels inside the regions A and B is 
performed, resulting the pixels from lines jo, j,)'  j", except for 
the pixels near the boundary. The algorithm for the vertical 
interpolation is applied only for the pixels having the gray-level 
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gp=gAfDgorg,=gBfDg. 
Near the boundary, the linear interpolation is not useful 

because the contour of the two regions has to be preserved in 
the intermediate slices too. That is why, for the boundary, a 
window of 3x3 pixels is taken into account and the number of 
pixels nA and nB having the gray-level gp and gp respectively is 
computed. If nA > nB, the value gp will be allocated to the 
boundary pixel and if nB > n A , the value gp will be allocated. 
If nA = n B (it is possible that within the window, the value of 
a pixel to be uncertain) a 5x5 pixel window is taken into account 
and the procedure continues in the same way. 

Thus, the pixels belonging to a certain region in the recon-
structed slices will have gray-levels obtained by linear interpola-
tion and the pixels in the boundary regions will have a gray-level 
computed as the mean value of the majority of the neighbouring 
pixels, having gray-levels within a certain domain ±Og. An illus-
tration of the boundary pixels interpolation is made in Fig. 3. If we 
assume that interpolation is done on line j from left to right, we 
can see that pixels 5 and 6 from the intermediate line cannot be 
linearly interpolated, because the gray-levels of the corresponding 
pixels in lines i and i ± 1 are different. Consequently a window of 
3x3 pixels around pixel 5 is considered and, within this window, 5 
pixels have the gray-level close to gA and 2 have gB (pixel 5 and 
6 on line j have yet uncertain gray-level). The mean gray value of 
the _5 pixels having gray values close to gA will be allocated to the 
5-th pixel in line j. The same rule is followed for the 6-th pixel in 
line j and for the 7-th and e-th pixel in line jo. 

1 2 3 4 ‚ 5_6_7  8 910 

i+1 

1 
i 

jo
i —1 

Fig. 3. Boundary pixels interpolation 

1 

Fig. 4. 

Fig. 5. 

Fig. 6. 

The first interpolation algorithm applied produces the image in 
Fig. 4, containing 61 lines (the 31 original and 30 intermediate 
lines). The second interpolation, for the 61 lines in Fig. 4 produce 
the image in Fig. 5, containing 121 lines. Thus, a sagital slice 
is obtained. The interpolation procedure can be followed even 
further (Fig. 6, with 241 lines) but the result is a slice with 
different vertical and horizontal resolutions (the vertical resolution 
is 0,125 mm and the horizontal one, equal to the slices resolution, 
is 0,25 mm). 

3. BOUNDARY-BASED SEGMENTATION 

Using the morphological interpolation algorithm presented in 
section 2 a 3D isotropic data volume is obtained. This information 
is useful for surface rendering, that is for the visualization of either 
axial or sagital and coronal slices. For volume rendering, the 
separation of certain regions of interest is, however, necessary. 

If various tissue regions within the part of the body scanned 
can clearly be distinguished, the boundary of the region of interest 
with the surrounding tissue region can be obtained by thresholding 
algorithms. At such a boundary, it is reasonable to expect 
a discontinuity in the distribution of the density. The main 
idea in boundary-based segmentation is to detect where these 
discontinuities occur and to locate the boundary. 

Fig. 7. 

Segmentation methods use edge detection operators in order 
to obtain the close boundary of the ROI. Either Sobel or Kirsch 
operators, or the LOR (Laplacian of a Gaussian) operator can be 
used. Further, once the ROI is bordered, an algorithm for filling 
the closed contour of the ROI with pixels having a nonexistent 
value in the rest of the processed image is used. In this way, a 
thresholding procedure in order to separate the ROI from the 
rest of the image is easy to carry on. Finally, by combining the 
original slice with the thresholded image, the segmented image 
of the ROI, having the original values for the inside pixels, is 
obtained. Fig. 7 presents an axial slice in the abdominal region. 
A vertical Sobel operator followed by a horizontal Sobel operator 
is applied, in order to detect tli ; contours in the image (Fig. 8). 
Furthermore, the ROI are filled with white-level pixels and an 
algorithm preserving the values of the pixels inside the contours 
of the ROI and erasing the others is applied (Fig. 9). For volume 
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rendering of the ROI, the slices obtained in this way can be used 
or they can be pseudo coloured according to anatomic atlases, for 
a better resemblance with real body structures. 

Fig. 9. 
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1. INTRODUCTION 

The paper deals with the problem of the palette representation 
(8 bit/pixel) of full-color (24 bit/pixel) images. This very common 
problem [1-3] is related to color image visualization using popular 
and cheap Super Video Graphic Adapter. Nevertheless the prin-
cipal motivation of this research is related to medical applications. 
In fact, we deal here with two image compression tasks: 
• palette design (weakly lossy), 
• lossless compression of an image with a palette. 

We deal primarily with microscopic color images of slides of 
some human tissues. The pictures are produced by an electronic 
camera (usually a CCD device) and then grabbed into a computer 
by a kind of a frame grabber. The problem of storing of such 
images is related to their substantial size of at least 750 kB causing 
severe problems in large hospitals where many of the data are 
retrieved very rarely or never. Therefore, from the technical 
and economic point of view, efficient programs to compress such 
images are very important. Nevertheless the medical applications 
require lossless techniques, i.e., techniques that remove only 
redundant information preserving any other information. 

The very important issue is related to simplicity of the algo-

rithm which should be easily implementable on simple and cheap 
personal computers. 

2. PALETTE DESIGN 

The initial palette of 16 millions of colors is to be reduced to 
an image-dependent palette of 256 colors. The input image has 
the RGB components because the color cameras, both CCD and 
tube, produce such signals. Similarly, the color cathode ray tubes, 
being still the most popular color displays, also need the RGB 
signals. It seems to be quite lucky situation because probably our 
visual system is also based on the sensors of red, green and blue. 
The problem is that some distance between two points in the 
RGB color space corresponds to a unnoticeable color difference 
while the same distance in the other part of this space corresponds 
to a quite significant difference in color sensation. Moreover the 
RGB system is somewhat difficult to handle because the values of 
RGB are related to color sensation in a rather complicated way. 
Therefore the RGB colour system is definitely improper for image 
processing and compression tasks. 

After some experiments wifi sample images we decided to 
use the IHS (Intensity-Hue-Saturation) coordinates [4], [5]. As 
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the desired reduction of the palette is very high the process is 
performed in two steps: 
• Vector quantization of the IHS coordinates. 

• Recursive reduction of the number of palette entries. 
The first step consists of quantization in the IHS color space, 

i.e., the RGB vectors corresponding to all pixels have to be con-
verted to the IHS-values. The intensity component is uniformly 
quantized but the quantization step is set adaptively with respect 
to the actual dynamic range of intensity in the processed pic-
ture. Nonuniform vector quantization is performed on the hue-
saturation plane, where hue is finer quantized as saturation grows. 

Then a palette consisting of all quantized colors existing 
in a given image is created and simultaneously the respective 
histogram is calculated. The obtained palette has usually much 
more than 256 entries, i.e., a further reduction in the second step 
is needed. 

Fig. 1. The palette creation 

A color is removed from the palette if it is close to another 
one. At first the colors corresponding to very small entries to 
the histogram are removed, i.e., a color vanishes if it is close 
enough to another more frequent color from the palette. The 
color differences are measured according to the taxi-cab norm in 
the IHS space. A color is reduced from the palette if the color 
difference is smaller than some predefined error. The respective 
pixels are labelled with the color which is the closest member of 
the palette. The process begins with the lowest histogram values 
and is interrupted when satisfactory reduction of the palette is 
obtained. If such a reduction is not achieved, the previous step is 
repeated with some higher threshold and starting with the lowest 
values of the histogram. 

3. LOSSLESS COMPRESSION OF AN IMAGE 
WITH PALETTE 

Using the technique described above, we get an 8-bit/pixel-
image where the color of each pixel is defined as one from the 
256-entry palette. Such an image is very weakly correlated and 
therefore the direct application of classic techniques of entropy 
coding, like Huffman or Lempel-Ziv, or predictive coding give 
poor results. 

Here we describe two lossless techniques proposed by the 
authors. 

3.1. Predictive coding of components 

The first technique is based on predictive coding of the 
intensity component which is highly correlated. In the cases where 
the intensity difference does not define the palette entry uniquely, 
the difference in hue or even in saturation are additionally coded. 
A special codebook is constructed. It consists of symbols denoting 
single numbers (corresponding to an intensity difference), couples 
of numbers (corresponding to the difference in both intensity and 
hue) or even three numbers each (corresponding to differences 
of I, H and S). All of them are coded in the same way using 
image-dependent Huffman codes. 

3.2. Compression using palette ordering 

An alternative lossless compression technique for palette im-
ages arises from the well-known idea of lossless differential pre-
dictive coding (DPCM) augmented by Huffman coding. This 
standard technique can be adopted for images with appropriately 

sorted palettes. 
The problem of the optimum sorting of the palette is surely 

quite difficult. Here, we propose a relatively simple but sub-
optimum algorithm. 

We aim at a such an ordering that the changes in color number 
between adjacent pixels exhibit small values with higher probabil-
ity than large values. The more spiky is such a two-dimensional 
probability density function the higher is the lossless compression 
obtained using DPCM and Huffman coding. Therefore the palette 
should be ordered in such a way that "short" transitions are signif-
icantly more probably than "long" transitions. 

In order to obtain such an ordering we use the weighted 
graph representation of the image statistics, where the nodes 
represent palette entries, and the edges weights are the numbers 
of respective color transitions. The algorithm consists of one stage 
graph preparation and eight iterations of node reduction which 
correspond to ordering of single entries to couples, then couples 
to the sets of four nodes and so on. 

The algorithm: 

Graph preparation: 
• Create a directed weighted graph with 256 modes. 

Remove all the self-loops. 
Iterations for n = 1 . . . 8 

• Find 28_n nonincident edges with maximal weights. Denote 
the beginning node as n; and the ending node as k; (i = 
1. . . 28-n). The edge weight is d(n;, k;). 

• Increase all the edges ending at n; of d(n;, k;). 
Increase all the edges starting from k; of d(n;, k;). 

• Remove all the edges starting from n;. 
Remove all the edges ending at k;. 
Remove the edge from k; to n;. 

• Fix the (k;, n;) order in the output palette. 
Join the nodes k; and n;. 

Repeat steps 2. . .  5 for next n until 8. 

4. EXPERIMENTAL RESULTS 

The computer programs based on the techniques described are 
successfully running on some computers in Medical Aeademy of 
Poznafi. 

The first step (palette reduction) gives the compression of 
1:3. The algorithm to compress palette-images using predictive 
component coding gives an additional compression of range of 
1:2. The alternative compression technique using differential and 
Huffman coding of an image with the appropriate ordered palette 
gives the data reduction of 1:4. 

Some results for the medical images (cf. Fig. 2 and 3) are 
given in the Table 1. 

Table 1. Experimental re alts for some typical images 

Image 

Opinion 

acorn 

[range 

1..S] 

SNR 

[di) 

Error 

ES

[9] 

Error 

8. 

[9) 

Error 

85

[9) 

Data reduction 

using predic- 

tive component 

coding 

(ratio) 

Data reduction 

uaing palette 

ordering 

(ratio) 

teat]. 4 26.9 2.3 10.7 1.4 1,2.12 1,4.31 

teat3 S 23.4 4.6 7.2 3.7 1,1.79 1,3.19 

teat4 S 29.1 2.9 10.5 1.3 1,1.91 1,3.31 

teats 5 29.6 2.6 7.0 1.4 1,2.15 1,4.60 

Where the following definitions have been used 

SNR = —101og 

~ N 

m 
II o11z , ~ 

I IX°I I 

n-1 n 

N — number of samples (pixels) in the image, 
• — Euclidean norm in the RGB space, 

x, zo — RGB-vectors represe sting image samples before and 
after palette definition. 
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The errors are defined as follows: 
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Fig. 2. The "testi" image (intensity component) 
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Fig. 3. The "tests" image (intensity component) 

5. CONCLUSION 
The paper describes a technique to generate reduced palettes 

of medical images. The experimental results prove usefulness 
of this weakly lossy (see the columns 3-6 in Table 1 above) 
technique in medical applications. Moreover the paper describes 
two techniques to compress palette images with no loss of 
information. The results are aimed at applications in medical 
image archivization systems. 

The research has been under to the project BW — DPB of 
Poznan University of Technology. 

[5] W. Pratt: Digital image processing, 2nd Edition; John Willey & 
Sons 1991. 

[6] A. Gersho, R. Gray: Vector quantization and signal compres-
sion; Kluwer 1992. 

[7] M. Domanski: "Vector quantization of color images, Scientific 
report"; Politechnika Poznanska, Instytut Elektroniki i Teleko-
munikacji, Poznan 1992, in Polish. 

[8] Przetwarzanie i archiwizacja obrazów kolorowych w systemach 
cyfrowych. Sprawozdanie merytoryczne BW-44-364; Politech-
nika Poznaska, Instytut Elektroniki i Telekomunikacji, Poznan 
1993. 

JOURNAL ON COMMUNICATIONS 68 



POSTERS  I. 

QUANTIZING ACCURACY FOR HIGH QUALITY COLOR IMAGE PROCCESSING 
Q. GAN, K. KOTANI and M. MIYAHARA 

SCHOOL OF INFORMATION SCIENCE, JAIST: 
JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY 

ISHIKAWA, 923-12 JAPAN 

1. INTRODUCTION 

1.1. Background 

Most of the color image processing terminals and workstations 
available today do not support full color quality due to limitations 
imposed by the analog-to-digital conversion. It is widely assumed 
that 8 bits per (R,G,B) signal provides sufficient color variation 
in electronic imaging. As our demands for high quality of color 
reproduction increase higher and higher, it becomes insufficient 
to provide good color reproduction as required for a perceptually 
transparent representation and coding. 

1.2. Objective 

In this paper, we attempt to analyze the discrete colors in 
a perceptual level. We use a knowledge of uniform color 
space with a view of examining the distribution of the discrete 
colors and measuring the perceptual color differences between 
the adjacent colors. Then we discuss the minimum numbers of 
quantizing levels of (R,G,B) signals when the color differences 
between adjacently discrete colors are always satisfying the "just 
perceptible" criterion. 

2. UNIFORM COLOR SPACE AND COLOR 
DIFFERENCE 

In our study, we prefer a perceptually uniform color space 
(Munsell color space) [11 to RGB color space, because it specifies 
colors by cylindrical three orthogonal axes (H,V,C) showing the 
three attributes of color perception (Value, Hue and Chroma) 
respectively (see Fig. 1). We use a mathematical transform 
method MTM [21 which transforms (R,G,B) signals to (H,V,C) 
signals more accurately than conventional methods based on 
L*a*b* color space. Moreover, in this study, MTM is modified 
as MTM2 and then combined with a look-up table, the transform 
accuracy is further improved to transform error (NBS color 
difference) as max: 0.59, mean: 0.28 when deals with 791 Munsell 
samples (see Table 1). We call the color space achieved by 
MTM2 + Table as HVC color space bellow. In HVC color space, 
the color difference is calculated by Godlove's formula (Eq. (1)) 
[31. The relation of Godlove's color difference and NBS color 
difference is prescribed as Eq. (2). 

W 
N 9/ 

Y8/1 

YR6/12 
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BL 

Fig. 1. Munsell Color Space 
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Table 1. Comparison of Approximation Errors 

Method Max. Min. Ave. Var. 

L*a*b* 8.05 0.24 1.73 1.52 

MTM 4.53 0.23 1.13 0.46 

MTM2 3.90 0.05 0.92 0.36 

MTM2+Table 0.59 0.02 0.24 0.015 

DEGOd = (1) 

= 1 / 2CI C2 x {1 — cos( H)} -1- (OC)2 -}- (4 x

where 

OH = CHI — H2~, OV = ~V1 - V2~, OC = ICl - C2~ 

DENBS ti  1.2 x OEGOd 

3. DISTRIBUTION OF DISCRETE COLORS 

We expect to know whether the intuitive impression of a 
unit change in one of the (R,G,B) color signals is equivalent 
everywhere within the whole range of color space while the color 
signals are quantized into discrete values. 

3.1. Simulation 

A computer simulation is executed to observe the distribution 
of the (R,G,B) discrete colors in HVC color space. At first, 
RGB color space is sampled with linear quantization of 256 
levels (8 bits) in each axis, giving 256*2-56*256 points distributed 
uniformly throughout the color space. For each point, the 
(R,G,B) signals are transformed to (H,V,C) signals by MTM. 
Then, the distribution of these separated points in HVC color 
space is considered. 

(2) 

3.2. Results 

In Fig. 2, the photograph shows these discrete colors plotted 
on several different V-C planes with constant Hue as black points. 

i 

Fig. 2. Distribution of Discrete Colors in V-C Planes (H: constant). 
(a) H=5R; (b) H=SG 

It is clear that the discrete colors represented by 8 bits (R,G,B) 
data has an irregular distribution in HVC color space and color 
quantized in steps are coarser in the dark areas than in the bright 
areas. 
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3.3. Color Differences of Quantizing Errors 

To make out the visual impact of quantizing errors, the color 
differences of the discrete colors are calculated. Three kinds of 
linear quantizing methods are under discussion: 
• (R,G,B) signals are quantized linearly, 
• y-precorrected (R,G,B) signals are quantized linearly, 
• (R,G,B) signals are linearly quantized after a non-linear trans-

formation (for y = 3.0). 
Table 2 shows the maximum values of color differences between 

each discrete color and its most adjacent color in several V-
C planes when (R,G,B) signals are linearly quantized by 8 bits 
respectively [4]. 

Table 2. Color Differences  of Adjacent Colors 
in V-C Planes (NBS value) 

Hue 

SR 
5YR 
5Y 

SGY 
5G 

5BG 
SB 

5PB 
5P 

SRP 

2.45 
3.78 
4.26 
3.18 
4.18 
5.25 
1.60 
2.79 
3.86 
2.48 

DENBS MAX 

1.98 
3.12 
3.26 
2.73 
3.17 
4.23 
1.63 
2.50 
2.84 
1.90 

(3) 

2.11 
1.81 
2.69 
2.71 
2.98 
3.43 
1.45 
2.29 
2.42 
1.92 

The results are as the following: 
1) In each case the maximum color differences of adjacent 

colors are larger than the "just perceptible color difference" 
(~ENBs = 1)• 

2) It is competent to decrease the perceptual color differences 
of quantizing errors by transforming the (R,G,B) signals with non-
linear functions such as the y-precorrection, the technique well 
known in television, before linear quantization. But the quantizing 
errors of 8 bits quantization are still larger than the threshold 
difference. Same results are confirmed on H-C planes [5]. 

4. OPTIMAL QUANTIZATION OF HVC COLOR 
SPACE 

The goal then is to furnish the minimum number of quantizing 
steps of (R,G,B) signals when the color differences of quantizing 
errors are always smaller than the "just perceptible color diffe-
rence". First, we discuss that how many quantizing levels are ne-
cessary to quantize (H,V,C) signals with the color difference of 
~ENBS = 1 as the maximum distortion. 

l.1. Quantizing Steps of (V,C) Signals 

According to Eq. (1) and Eq. (2), the (V,C) signals should be 
divided into small uniform steps and the color differences between 
neighbours should be satisfied under the next constraint: 

~Ecod ≤ 1/1.2 . (3) 

When OH = OC = 0, the quantizing levels of V signal can be 
easily derived from Eq. (1): 

~V ≤ 1/4.8. (3) 

It indicates that the quantizing interval should be smaller than 
1/4.8 within the range of V signal, that means, the number of 
quantizing steps should be taken more than 48 (i.e. 6 bits). But 
in real case, the V signal performs a strong impact on color 
perception, it is asked two bits more, 8 bits quantizing accuracy 
is necessary in our study [5], [6]. 

In the case of C signal, as the analysis of V signal, we can obtain 
the number of quantizing steps should be taken more than 43.2 
(i.e. 6 bits). 

4.2. Quantizing Steps of H Signal 

It can be noticed that the perceptual difference caused by 
changing H signal depends on the level of Chroma. Therefore the 
quantizing steps of H should be changed based on the Chroma 
level of the colors. 

We assume that is the necessary quantizing interval of H 
signal on circle C. So OHI can calculated when DV = OC = 0 
and CI = CZ = 1 from Eq. (3): 

OHI < 13.68 . (5) 

It indicates that the quantizing interval should be smaller than 
15.54 within the range of H signal when C=1, that is, the number 
of quantizing steps should be taken more than 8 (i.e. 3 bits). 
Further, it is found that the quantizing interval of H signal changes 
with the variable C as the following relation: 

LHc ≤ CHI /C. (6) 

Hence the quantizing levels should be taken more than 8C 
steps counting on the level of C, the maximum value of C is 30 
at V = 8.0, H = 56.1 (near 5G). 

In accordance with the previous analysis, the minimum number 
of quantizing steps of (H,V,C) signals can be determined as the 
following (see. Fig. 3): 

V:256 levels (8 bits) 
C:64 levels (6 bits) 
H:8C levels (2 bits ti 8 bits) 

.‚ 

v-0.o 

z 

Fig. 3. Quantization of HVC Color Space when DENBS ≤ 1

5. QUANTIZATION OF RGB COLOR SPACE 

It is desired that the quantization can be performed in HVC 
color space. But it is hard to maintain stability of the hard-
ware of non-linear processing and realize the transformation of 
RGB <—> HVC with considerable precision, consequently, the 
(R,G,B) signals are uniformly quantized before any processing. 
Then, we establish a scheme for the quantization of (R,G,B) sig-
nals. 

First, the HVC color space is quantized by the previous method 
into small uniform solids. After reverse transforming the (H,V,C) 
data of representative colors of each solid to 8 bits RGB color 
space, the minimum distances between the representative colors 
along R,G,B axes should be equivalent to the necessary quantizing 
intervals of (R,G,B) signals. 

From the simulation results of the analysis, the minimum 
quantizing steps of (R,G,B) and (II,V,C) are given in Table 3. It is 
flexible when the dynamic range of input data is limited (Fig. 4). 

We have shown that by quantizing the (R, G, B) signals directly, 
the necessary quantizing accuracy is 14 + 16 + 12 = 42 bits 
which is significantly larger than by quantizing the singals in the 
HVC color space, because the RGB color space is not uniform to 
visual perception. In order to satisfy the condition: ' ENBS ≤ L 
the linear quantization should use the minimum interval as the 
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quantizing interval in the all range of RGB color space. In order 
to reduce the necessary quantizing accuracy of (R, G, B) signals, 
a simple non-linear transformation (€h/Y, y = 3.0) before the 
linear quantization is an advantageous procedure to reduce the 
necessary quantization steps. 

25.5 51 26.5 102 121.5 153 128.5 204 229.5 255 

Signal k'CI 

Fig. 4. Quantizing Accuracy in each range of í iils (linear case 
divided into 10 steps) 
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6. CONCLUSION 
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1. INTRODUCTION 

Several image coding schemes have been developed using 
IFS (Iterated Function Systems) based upon fractal geometry, 
recently~t >'(4>. These schemes estimate optimally a set of 
contractive transformations for the prescribed local region on 
an original image. Then the sets of transformations are coded 
and transmitted to the recipient. The image is regenerated by 
repeating the contractive transformations to each local region at 
the recipient, recursively. However, because it requires a large 
amount of processing to estimate the optimal IFS parameters, the 
reduction of processing time is desirable. 

From this point of view, this paper presents a new scheme 
which accelerates the estimation of IFS parameters. If we 
represent the characteristic of each region in binary, which are 
digitized by the average level of the region, the optimnal region is 
obtained by XOR operation and it brings us much reduction of 

the processing time of IFS parameter estimation. The detailes on 
our scheme are presented below. 

2. DEFINITIONS AND BASIC CONCEPT 

Some 
Stepl: 
Step2: 

Step3: 

Step4: 

StepS: 

conventional schemes use the following steps in general: 
Let I0 be the original image in N0 x No pixels. 
Make disjoint sub-blocks (R = [r ]) of I0 i where i, j = 
=1,2,... ,n. 
Get the average level (aR) and make r .— r;j — aR. 

Let D = [d ] be blocks consisting n' x n' pels on I0, 
where i, j = 1, 2, . . . , n', and the corresponding regions 
may be overlapped. 
Make the matrix (D) the contractive transformation of 
¢ = (n/n')2 so as to become the same to R in size. Let 
the results be D' = [d  ]. 
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Step6: Get the average level (rxD i) in D', and make d" 

Step 7: Rotate D' by B and make it the contractive transformation 
of p(-1 < p < 1). We have ds7 — 0 • p • d~7, where 

=,j= 1, 2, ... ,n. 
Step8: Calculate the sum of square error between R and D, i.e., 

e= 

n n 

i=1 j=1 

;j — d'') . (1) 

Step? to Step8 are done with different 6 and p. Step4 to 
Step8 are repeated for all D on Jo, then, the minimum (emin) 
is obtained. We decide the region with emin to be optimal and 
store its offset position x and y from (0,0), QR, 4', 0 and p as IFS 
parameter (P) (see Fig. 1). These procedures are done for all R 
in the whole image. 

Fig. 1. The concept of image coding scheme based on Iterated 
Function Systems 

Because it requires a lot of processing time to find emin for 
a pair of possible (R, D), the conventional methods save the 
processing time by only the pairs satisfying e < /i in this process, 
where f3 is previously set as the threshold of e. Next, a set of P 
for all R on Jo are coded and transmitted. 

On the other side, the image is decoded by the following steps 
at the recipient. 
Step]: An initial image Jo is randomly generated in NO x NO 

pixels. 
Step2: Make disjoint sub-blocks (R = [ri j ]) of Jo, where i, j = 

1,2, . .. ,n. 
Step3: Extract the region D = [dij ] (i, j = 1, 2, . . . , n') 

positioned (x, y) from (0,0) on Jo, where (x, y) is included 
in IFS parameter P corresponding to R. 

Step4: Make the matrix (D) the contractive transformation of 

4' = (n/n')2 so as to become the same to R in size. Let 
the results be D' = [d~j]. 

Steps: Get the average level (aD,) in D', and make d~' —

d~ j — a D~. 

Step6.: Rotate D' by 0 and make it the contractive transformation 
of p(-1 < p < 1). We have &' f- 0 • p • d~7, where 
i,j=1,2, ... ,n. 

Step7.: Replace R by R' after making r j 
— d~! + atz• 

The individual contractive transformation of D based on P 
(Step3 to Step7) is applied for each R on Jo, and is recursively 
repeated as 

J,k=Jk_1 UP (k=1,2, .. .). 

Finally, we have the regenerated image. 

(2) 

3. PRESENTED SCHEME 

In order to accelerate the estimation of IFS parameters, the 
above concept is revised in this paper. Let us denote the total 
possible blocks of D on the image as ND. Because ND = 
(No — 2m • n + 1)2 on Io when ¢ = 1/22m (m = 1, 2, ...), 
ND becomes 62,001 in case of No = 256, n = 4 and m = 2, for 
example. The reduction of ND results in saving the processing 
time. Therefore, we try to estimate IFS parameters on the image 
reduced from the original image. First, let Jo be reduced by 

1/2L (L = 1, 2, . . .) both in horizontal and vertical directions, 
and then, the reduced images be IL(L = 1,2. ..), respectively. 
Next, let the size D on IL (L= 1, 2, . . .) and 4' be set ton x n 
and 1/22 , respectively. Because the size (NL) of IL is No/2L
(L = 1, 2, . . .), ND = (NL — n + 1)2 on IL. Table 1 shows ND 
on I,, for m(= 1, 2, 3, 4) and ND on IL for L(= 1, 2, 3, 4). It 
tells us that much reduction of processing time may be attained if 
IFS parameters could be estimated from the reduced images. 

Table 1. Possible numbers of D on the image 

(a) ND on Io for m(= 1, 2, 3, 4) 

m 1 2 3 4 

N D 62,001 58,081 _50,625 37,249 

(b) ND on IL for L(= 1, 2, 3, 4) 

L 

ND 

1 2 3 4 

15,625 3,721 841 169 

Let us denote the numbers of rotations and amplitude-
reductions of pixels as NB and NP, respectively, and also define 
the number of calculations of e for each R as N. Under the 
assumption that IFS estimation is achieved for all possible D, we 
have N = NB • NP • ND. For example, when 4 kinds of rota-
tions (9 = 0, ir/2, lr, 3ir/2) and 8 kinds of amplitude-reductions 
are specified to the estimation, N and SN ratio (dB) of the 
regenerated image are shown in Table 2 together with the results 
in case of B = 0 and p = 1, where the sample image is Girl 
(256 x 256) in SIDBA and n = 4. Although the image quality is 
improved 1 « 3dB by introducing both rotations and amplitude-
reductions, it increases N by NB • No times. Because our object 
is to accelerate the IFS estimation, B and p are fixed to 0 and 1 in 
this paper, respectively. 

Table 2. Nc and SN ratio (n = 4) 

(a) with 4 kinds of B and 8 kinds of p 

L 1 2 3 4 

Nc -500,000 119,072 26,912 5,408 
SN(dB) 35.83 35.44 34.04 32.20 

(b) with B = 0 and p = 1 

L 1 2 3 4 

Nc 15,625 3,721 841 169 
SN(dB) 34.07 33.21 31.21 29.00 

A new scheme which can effectively classify D and moreover 
accelerate the parameter estimation is presented in this paper. It 
requires N = ND times of calculation under above preparations. 
If some optimal candidates (D) are estimated before calculating 
the square error between R and D, the number of calculations 
(N e) may be moreover reduced. When a pair of R and D with 
smaller a is found, not that their region characteristics are similar 
to each other as shown in Fig. 2. Therefore, let us first prepare a 
pair of R and D as shown in Fig. 3. and digitize them to BR and 
BD in binary by their average levels °R  and D, respectively. If 
two region characteristics are similar each other, it is estimated 
that the binary matrices BR and BD may have almost the same 
patterns. Next, exclusive-OR (XOR) operation between BR and 
BD is achieved and bits colored "1" are counted (b). If b < 6, 
then obtain the error a between R and D, otherwise ignore 
the region. This approach can effectively reduce the number of 
calculations under less deterioration of inlage quality as shown in 
Table 3 compared with results in Table 2(b), where n = 4 and 
b=6. 
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average 
aR

average 
aD 

Fig. 2. Illustration of region characteristics. (a) signal form of R;; (b) 
--_--~ _ signalform 9LD  

40 42 61 65 0 0 1 1 

41 43 68 70 0 0 1 1 

42 45 70 71 aR 0 0 1 1 

43 62 68 70 0 1 1 1 

R BR

25 20 40 46 0 0 1 1 

22 23 24 38 0 0 0 1 

24 38 40 40 ~D 0 1 1 1 

20 40 45 42 0 1 1 1 

D BD 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 0 

BR X0R BD
b=2 

Fig. 3. Illustration of binary matching 

Table 3. Nc and SN ratio with binary matching (n = 4) 

L 1 2 3 4 

Nc 4,919.27 1,154.26 249.29 48.78 
SN(dB) 34.06 33.21 31.20 28.45 

In order to attain both fast estimation of IFS parameters and 
high quality of regenerated image at the same time, it is preferable 
that the size of R is adaptively changed depending on emirs. 
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Fig. 4. Examples of output image (Girl). (a) original image; (b) 
regenerated image 

If emirs > O, then the sizes length of R and D are reduced 
to n/2 and the same procedures are achieved again, where O 
is previously set as a threshold for emin. Because the same 
procedure are done in such the region of emi rs > O, it is 
possible to attain fast estimation and higher image quality. When 
n = 4, O = 64 and ő = 6, N~, SN ratio (dB), block numbers of 
both n = 4(B4) and n = 2(B2), and volume of IFS parameters 
(p; no compressed, bit/pel) are shown in Table 4. It is understood 
that less of calculations high SN ratio are attained by our scheme. 
Examples of regenerated images are also shown in Fig. 4 with the 
original image (IFS parameters are determined from 14(16 x 16)). 

Table 4. Experimental results (n = 4, D = 64 and ő = 6) 

L 1 2 3 4 

Nc 9,510.06 2,725.-59 777.23 231.35 
SN(dB) 38.28 38.63 38.18 35.99 

B4 3,269 2,949 2,484 1,688 
B2 3,308 4,588 6,448 9,632 

p 2.27 2.36 2.52 2.83 

4. CONCLUSION 
It is concluded that our scheme attains to accelerate IFS 

parameter estimation and high image quality at the same time. It 
will be more investigated how to compress IFS parameters and to 
estimate the optimum reduced image and thresholds for the IFS 
estimation in desirable bit-rate and image quality, automatically. 
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An image signal transmitted by a transmission channel, is often 
multiplied by noise. Because of this it is necessary to solve the 

problem of removing of the multiplicative data-noise. One of 
possibilities to remove it is homomorphic filtering. 
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The degraded image due to multiplicative noise, g(nl , n2 ), can 
be expressed as [1] 

g(nl , n2) = .f(nl,n2)'v(nl,n2), ( 1 ) 

where v(nl,n2) is random noise that is not a function of 
f (nl , n2 ) represent image intensities and are therefore nonneg-
ative, v(nl, n2) is also nonnegative. By applying the logarithmic 
operation, we obtain 

T[g(nl , n2)] = log[g(nl, n2)] = 
(2) 

= log[.f(nl, n2)] +log[v(n1i n2)]• 

If we denote log[g(nl ,n2 )] by g'(nl,n2 ) and denote 
log[f(nl,n2 )1 and log[v(nl ,n2 )] similarly, becomes 

g
‚
(nl,n2) =.f~(nl,n2)+v~(nl,n2)• ( 3) 

The multiplicative noise v(nl,n2 ) has now been transformed 
to additive noise v'(nl, n2 ) and image restoration algorithms de-
veloped for reducing additive signal-independent noise may be ap-
plied to reduce v'(nl , n2 ). The resulting image is exponentiated 
to compensate for logarithmic operation. 

For the separation of the original image signal and multiplica-
tive noise it is very important [7]: 
• possibility of short signal approximation by suitable orthogonal 

functions, 
• possibility of noise approximation by sequences they are in the 

sufficient distance from image sequences. 

(b) 

This is the optimalization of homomorphic system approxima-
tion by using the transform coding of discrete orthogonal trans-
form, according to two conditions introduced above. 

This contribution deals with applicability of two-dimensional 
homomorphic filter for image signal filtering using compression 
method [6]. For this purpose the signal was processed by zig-
zag scanning after two-dimensional discrete transforms. Instead 
of transmission function of low-pass filter there quantizator for 
transform coding was used. 

Data signals have infinite length Fourier approximation. We 
disturb the image signal by multiplicative data-noise which is 
better approximable by functions from Walsh base than Fourier 
base. Then for homomorphic filtering it is possible to use 
compression methods based on the two-dimensional discrete 
Walsh transform. 

The fact, that Walsh noise has short sequency spectrum, was 
the main reason for using the transfer function of filter removing 
the higher sequences instead of the usual method for two-
dimensional digital filtering. For this purpose we processed the 
signal by zig-zag scanning after two-dimensional discrete Paley-
ordered Walsh-Hadamard transform [5] which was applicated on 
homomorphly preprocessed image. 

Fig. 1 illustrates the performance of the image restoration 
algorithm in reducing multiplicative data-noise for discrete cosine, 
Haar and Paley-ordered Walsh-Hadamard transforms. 

From the results of the experiment it follows, that our filter 
processing is suitable for multiplicative noise filtering in data chan-
nel. Using this method it is possible to acquire image enhance-
ment and this method uses simpler computational algorithm in 
comparison with usually used process, because it does not need 
complex mathematics. 

(c) 

Fig. 1. Performance illustration of the multiplicative data-noise reduction system. (a) Original image of 256 x 256 pixels; (b) image degraded 
by multiplicative high-sequency data-noise; image processed by: (c) discrete cosine transform; (d) discrete Haar transform; (e) discrete 

Paley-ordered Walsh-Hadamard transform 
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In the literature the wide interest has been offered to the 
DFT for many years. The DFT spectrum has the different 
digital and geometric shape (symmetry around the center) than 
transformations with real response. 

To unify block transformation outputs from the JPEG-transform 
coder we can modify 1-dimensional and 2-dimensional DFT and 
Discrete Hartley transform (DHYT). We use new ordered queues 
of sequence (with DFT we can speak about frequency) elements, 
they have no need of special organized quantizator and zonal filter. 

1. NEW ORDERED RESULT OF DFT 

Let us have the result of 1-dimensional DFT of length N = 4: 

Re{X(0)}, Re{X(1)}, Re{X(2)}, Re{X(3)} 
Im{X(0)}, Im{X(1)}, Im{X(2)}, Im{X(3)} 

From DFT properties follows for the complex vector form: 

Re{X(0)} , Re{X(1)} , Re{X(2)} , Re{X(1)} 
0 , Im{X(1)} , 0 , -Im{X(1)} 

This form clearly shows, that to keep full information from 
DFT it is enough to save left half part and the reflection-element 
of the vector. Because of the real character of DC-coefficient 
and reflection elements, we need N places for real numbers to 
save DFT result without any lost. That is the same amount as 
for standard real discrete orthogonal transform. The geometric 
shape of spectrum in left half part is than very similar to the DCT 
spectrum shape. Only it is of bigger slope, what is caused by the 
fact, that it is situated in two planes (real and imaginary). So that, 
after suitable interchanging of real and imaginary components, the 
same coding structure as for DCT can be applied to it. 

New order will be: 

X(0), Re{X(1)}, Im{X(1)}, X(2). 

In this way we get new ordered DFT spectrum for larger 
vectors, too. Two-dimensional form of spectrum with its properties 
is suitable for similar new ordering. We shall describe reflection of 
2D spectrum on example: 

Let's have the 2D discrete Fourier spectrum of dimension 
NXM=4x4: 

Re{X(0, 0)}, Re{X(0, 1)}, Re{X(0, 2)}, Re{X(0, 3)} 
Re{X(1, 0)}, Re{X(1, 1)}, Re{X(1, 2)}, Re{X(1, 3)} 
Re{X(2, 0)}, Re{X(2, 1)}, Re{X(2, 2)}, Re{X(2, 3)} 
Re{X(3, 0)}, Re{X(3, 1)}, Re{X(3, 2)}, Re{X(3, 3)} 

Im{X(0, 0)}, Im{X(0, 1)}, Im{X(0, 2)}, Im{X(0, 3)} 
Im{X(1, 0)}, Im{X(1, 1)}, Im{X(1, 2)}, Im{X(1, 3)} 
Im{X(2, 0)}, Im{X(2, 1)}, Im{X(2, 2)}, Im{X(2, 3)} 
Im{X(3, 0)}, Im{X(3, 1)}, Im{X(3, 2)}, Im{X(3, 3)} 

using its properties we can write equivalent characteristic [5]: 

Re{X(0, 0)}, 
Re{X(1, 0)}, 
Re{X(2, 0)}, 
Re{X(1, 0)}, 

0 
Im{X(1,0)} 

0 
-Im{X(1,0)} 

Re{X(0, 1)}, 
Re{X(1, 1)}, 
Re{X(2, 1)}, 
Re{X(1, 3)}, 

, Im{X(0,1)} 
, Im{X(1,1)} 
, Im{X(2,1)} 
, -Im{X(1,3)} 

Re{X(0, 2)}, 
Re{X(1, 2)}, 
Re{X(2, 2)}, 
Re{X(1, 2)}, 

, 0 
, Im{X(1,2)} 
, 0 
, -Im{X(1,2)} 

Re{X(0, 1)} 
Re{X(1, 3)} 
Re{X(2, 1)} 
Re{X(1, 1)} 

, -Im{X(0,1)} 
, Im{X(1,3)} 
, -Im{X(2,1)} 
, -Im{X(1,1)} 

Result are N x M real numbers, what is the same amount as 
for real transformations. 

Let's transform previous 2 fields into one matrix: 

Re{X(0, 0)}, Re{X(0, 1)}, Im{X(0, 1)}, Re{X(0, 2)} 
Re{X(1, 0)}, Re{X(1, 1)}, Re{X(1, 3)}, Re{X(1, 2)} 
Im{X(1, 0)}, Im{X(1, 1)}, Im{X(1, 3)}, Im{X(1, 2)} 
Re{X(2, 0)}, Re{X(2, 1)}, Im{X(2, 1)}, Re{X(2, 2)} 

The similar method for new ordering of complex spectrum 
to real matrix can be applied to the larger blocks of complex 
spectrum. Spectrum of DFT, new ordered spectrum of DFT and 
spectrum of DCT are shown in Fig. 1 for comparison. 

Results are obtained from picture fragment of `LENA of 
size 256 x 256 processed in one 2-dimensional batch. Here 
we can see that for new ordered DFT spectrum the similar 
processing methods can be used as for sequence spectrums of 
other transforms. And its character is so similar to DCT spectrum 
that nearly the same results of this transformation for signal 
approximation can be expected. 
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Fig. 1. Logarithmic magnitude spectrum of the picture fragment 
256 x 256 of LENA obtained by 2D DCT (a), bye 2D DFT Re (b) 

and Im (c), and by new ordered result of 2D DFT (d) 

2. NEW ORDERED RESULT AND BASE OF DHYT 

Because of energy concentration in borders of sequence spec-
trum it looks to be advantageous to new order it in the similar 
way as DFT spectrum. 

For DHYT this new order corresponds with some changes in 
order of base functions. In this case we create the new order of 
complete number of sequence components, because the spectrum 
is not reflected in values. A feeling of reflection is caused just by 
similarity in values around the middle of the spectrum. For the 
vector of DHYT sequence components of length N = 8 [4]: 

X(0), X(1), X(2), X(3), 

new ordered set will be: 

X(4), X(5), X(6), X(7) 

X(0), X(1), X(7), X(2), X(6), X(3), X(5), X(4). 

The base of the length N = 16 obtained in the way described 
above is in Fig. 2. From shapes of single base functions the same 
results as for DCT could be expected. We shall call this base with 
new order: base of DHYT2. 

2D sequence spectrum will be new ordered in two steps: 
1. to new order the spectrum by rows in the same way as 1D 

spectrum: 
ui(k) for k = 0 

u2 (k) = uI (2 • k — 1) fork = 1, . . . N/2 
ul (2•(N—k)) fork=N/2+1, . . .N-1; 

2. to new order the result from the first step by columns in the 
same way. 

The result in transform coding is sequence spectrum which 
does not need any additional processing. The spectrum is in 
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1. INTRODUCTION 

Image compression is essential for applications such as TV 
transmission, video conferencing, facsimile transmission of printed 
material, graphics images, etc. Another area for the applications 
of efficient coding is where pictures are stored in a database, such 
as archiving medical images, multispectral images and drawings 
[1]. Numerous bandwidth compression techniques have been 
developed such as vector quantization [1], differential pulse code 
modulations, transform coding, hybrid coding, and versions of 
these techniques (e.g. [6]). 

Approach based on neural networks is also very interesting. 
One of the well-known methods is Cottrell-Munro-Zipser tech-
nique [2] using bakcpropagation algorithm [3]. The self-organizing 
map introduced by Kohonen (SOM) [4] can be used as one of 
the possible techniques for designing codebooks for the vector 
quantization of images. This technique exhibits rapid learning for 
the vector quantization problem. The counterpropagation net-
work (CPN) [5], [2] can also be considered as a data compression 
system based upon a concept of vector quantization. But this net-
work functions directly as a nearest-match lookup table. Besides 
Kohonen learning in this network also Grossberg learning is used. 

2. SELF-ORGANIZING MAP 

The self-organizing map [4] consists of cells depicted in Fig. 1. 
Their arrangement can be hexagonal, rectangular, etc. Let x = 
[x l , x2, . .. , x 1 E R" be the input vector, which is assumed 
to be connected in parallel to all the neurons i in this network. 
The weight vector of cell i is m , = [m m min ] T  E i sl> t2 , . .. 
R'". The matching criterion for the match of x with m; is 
based on Euclidean distances. The minimum distance defines 
the "winner" mc. The cells doing learning are not affected 
independently of each other, but as topologically related subsets. 
The neighbourhood set Nc around cell c is defined. At each 
learning step all the cell within Nc are updated, whereas cells 
outside Nc are left intact. The neighbourhood set is centered 
around that cell for which the best match with input x is found: 

llx— mell = min{lix— mi ll). (1) 

Fig. 1. Cell arrangement for the step 

The width or radius of Nc is time-variable, for good global 
ordering it is very wide in the beginning and shrink monotonically 
with time (Fig. 2). It is possible to end the process with Nc = {c) 

_ D(w°la, x) ≤ D(wz; 

updating only winner. The updating process (in discrete time 
notation) is 

m; (t + 1) = l m; (t) 
+ a(t)[x(t) — m; (t)] 

if i (2) 

where adaptation gain 0 < a(t) < 1 should decrease with time. 
Some practical hints for the application of the algorithm 

(number of learning steps, rule for a(t), radius of Nc(t)) can be 
found in [4]. 

N(.(t1) 
‚‚fw''4 \''' 
‚‚‚‚‚‚4'' 

‚‚4'' 

4' ‚‚‚‚4  : :4? ' fr, ' 

‚. ‚ ‚\ ‚ ‚_ - ij 4'' ,'4 ' 

'''''44''' . 

Fig. 2. Examples of topological neighbourhood Nc(t), where 
t1 < t2 < t3 

3. COUNTERPROPAGATION NETWORK 

The counterpropagation network was proposed by Hecht-
Nielsen [2], [5]. The architecture of forward-only CPN is shown 
in Fig. 3. It consists of 3 kyers: an input layer (bottom) 
containing n units that multiplex the input signals x1, x2, ... , x„ 
(and m units that supply the "correct" output signal values 
y1, Y2, • • • , ym to the output layer (Grossberg layer — top)) 
and middle layer (Kohonen layer) with N processing elements 
that have output signals z1, z2,...  , zN. The outputs of layer 
3 represent approximations to the components y1, y2, • • • ‚ ym• 
During training these correct values are supplied to the units of 
final layer. During training, the transfer function equations for 
middle layer are: 

1 if i is the smallest integer for which 
la, x) for all j 

0 otherwise, 

where D is Euclidean distance. Following the completion of 
competition process, the next step is weight adjustment using 
Kohonen learning. Only the processing element that wins adjusts 
its weight vector in accordance with the equation 

flew = (1 — a(t))wold + a(t)x(t) (4) 

(c (t) is function of time, it starts at high value and gradually 
decreases towards zero). 

(3) 
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Y! ~ 

Fig. 3. The forward-only CPN 

Output layer receives the z signals from middle layer. The 
processing elements of output layer are governed by Grossberg 
learning: 

N 

uo 1dz; 

(=1 
(5) 

=u )9~d +a( —u 9~d +yj)zj, 

where uj = [uj 1, u j 2, . . . , u j N] is the weight vector associated 
with the j°h processing element of output layer and a is the 
learning rate (0 < a < 1) of the Grossberg learning law. 
After sufficient training, the network will output a vector v; = 
[uht u2„ .. . , u,n;], whenever processing element i wins the final 
Kohonen layer competition. 

Following the completion of training the network functions 
exactly as the lookup table shown in Fig. 4. The input vector x 
is compared with Kohonen layer weight vectors to find the closest 
match w~. Grossberg layer output vector vl associated with wl is 
then emitted by the network. 

Input vector 

WI vI

w2 Vz

w I VI

w N VN

Output vector 

VI

Fig. 4. The CPN as an adaptive lookup table 

4. MODIFIED COUNTERPROPAGATION 
NETWORK 

From herein mentioned facts we can see fundamental differ-
ence between Kohonen learning in SOM and in CPN. In former 
network the cells doing learning are arranged 2-dimensionally and 
they are not affected independently of each other, but as topologi-
cally related subsets by defining neighbourhood set. Result of this 
sort of spatially correlated learning is that the weight vectors tend 
to attain values that are ordered along the axes of the network 
[4]. For good global ordering the width of the radius N is very 
wide in the beginning and shrink monotonically with time. The 
process of learning can be finished with N = {c}, in which case 
the process is reduced to simple competitive learning. The latter 
network performs whole learning process as simple competitive 
learning. 

This is why we propose following modified architecture of 
forward-only CPN: 

Input layer contains n units that multiplex the input signals 
x1i x2 , . . . , x„ (and rn units that supply the correct output sig-
nal values y1, y2, .. . , y,,, to the Grossberg layer) and Koho-
nen layer with N processing elements that have output signals 
z1i z2, ... , zN. But N elements of Kohonen layer are arranged 
in 2 dimensions (supposing rectangular arrangement of the cells 
and the most simple case when N is power 2 of integer, we have 
the layer of type V' ' * v'i' cells). During training of Kohonen 
layer (which is now the same as SOM) all attributes of learning in 
map are maintained (the radius of neighbourhood set N shrinks 
monotonically with time, a is time-variable). Grossberg layer re-
ceives the z signals from Kohonen layer (SOM). The processing 
elements of output layer are governed by Grossberg learning [5]. 

5. SIMULATION RESULTS 

SOM, CPN and modified CPN were used for simulation. SOM 
had 4096 cells arranged rectangularly as 64x64 cells, CPN had 
16 cells in input and Grossberg layer and 4096 cells in Kohonen 
layer. Modified CPN with 16 cells in input and Grossberg layer 
and 4096 cells in Kohonen layer. was used. Kohonen layer was 
arranged rectangularly as 64x64 cells. As training set, 4 different 
8 bit gray scale images were used, they were divided into 4 x 4 
blocks. Other images, LENA, Girl and Baboon were used for 
testing, these images were also divided into 4 x 4 blocks. This 
configuration results to the bit rate 0.75 bit/pixel. 

Image degradation caused by compression is evaluated by 
means of mean square error MSE and peack S/N ratio defined 
by PSNR = IOlog(2552 /MSE2 ) [dB]. 

Visualized SOM (64 x 64 codewords 4 x 4) is shown in Fig. 5. 

Fig. 5. Visualized SOM 

Original image, image processed by SOM, CPN and modified 
CPN for LENA, Girl and Baboon are shown in Figs. 6, 7, 8, 
respectively. 
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Fig. 6 Image LENA: original (trop left), processed by SOM (top 
right), CPN (bottom left), modified CPN (bottom right) 

Fig. & Image Baboon: original (trop left), processed by SOM (top 
right), CPN (bottom left), modified CPN (bottom right) 

Fi& 7. Image Girl: original (trop left), processed by SOM (top 
right), CPN (bottom left), modified CPN (bottom right) 
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1. INTRODUCTION 

Observing a specific object visually, there always appears a 
problem of interpretation of the necessary information as an 
image. As the utility provided to capture, store and transport 
the necessary information never is an optimal one, there exists a 
necessity to improve the resulting image. Several methods are 
proposed by the literature; approaches may vary according to 
the selected image representation, type and level of degradation 
to be recovered from and to the selected observation domain. 
The common problem is, however, the same. A degraded image 
should be affected by a reconstruction function with a resulting 
image as close to a desired image as possible. 

Although the observed object itself is likely to appear analog, 
the natural form in which it is formed and acquired is a discrete 
or digital form. This is already at the beginning conditioned by 
the nature of electronic image sensors. The discrete nature of the 
image makes the use of digital computers in the reconstruction 
even more convenient. The efficient tools to use can be acquired 
from the linear algebra theory. 

We have decided to represent the degradation model for 
our imaging system in a form of discrete linear point-spread 
degradation functions. For discrete image F degraded to image 
G and subjected to additive noise N, we may write 

N N 

h(x, y, v, v)f(u, v) + n(x, y) 
u-1 v-1 

or, alternatively, in tensor notation 

[G] = [[H]]{[F]} + [N], 

with two-dimensional matrices G, F and N and using the four-
index operator H [5]. 

For many cases, it could be assumed that the operator H (or 
the degradation function itself) is position-independent. In this 
special case, this is a space-invariant point-spread function, and the 
above tensor product degrades to a two-dimensional convolution: 

G=H'**F+N. 

The objective of restoration is to find an inverse to the 
degradation function. We shall assume, that in limited cases the 
inverse function appears in a similar convolution form. Even 
for this special case the solution often remains an ill-conditioned 
problem. 

2. CONVOLUTION FILTER 
Consider a situation where it is excepted a limited finite-

impulse response restoration filter would be an appropriate 
solution to the problem. Suppose also that all images are real-
valued functions. The solution may then be represented in a form 
of 

F=W**G, 

with symbol ** standing for 2D convolution. We have to point out 
that the solution in such a formulation exists only for linear, space-
invariant distortion functions with finite (space-limited) response. 

The general proposed adaptive filter structure for this case is 
illustrated in Fig. 1. 

G 
desired 

(reference) 
image 

algorithm 

p R 

SVD 

w->W 

z 
z 

U
G•W —9' F 

restored 
E image 

Fig. 1. SVD based 2D adaptive filter 

The filter operates on a real image (signal matrix) X that is 
corrupted with noise. The desired signal (reference image) is also 
provided. The filtering parameters can be represented in form of 
an N-by-N matrix W, and the filtering process may be represented 
by convolving the image input X with the matrix W. During the 
adaptation, the filtering weights may be changed in order to obtain 
optimal solution. The filtering result is given by the following 
equation: 

M M 

f (x, y) = w(t,1)9(x + i — k, y + i — k). 

r=0 i —o 

The difference between the desired end the resulting image 

e(x, y) = f(x, y) — f(x, y) 

is called the estimation error. From Wiener filter theory, optimal 
filtering coefficients W are defined by the minimum mean-square 
error criteria. The objective function J(W) = E[e2 (x, y)] should 
be minimized for W to obtain the optimum filter. 

3. WIENER OPTIMAL SOLUTION 

The idea is well known from 1D adaptive filtering, where 
instantaneous estimates of gradient of the error surface J(W) are 
used to approach the optimum solution iteratively. The algorithm 
is popularly called LMS algorithm. It is possible to extend 
the algorithm to be used in both x and y image dimensions, 
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iteratively searching for the solution either columnwise or row-
wise. The procedure is numerically convenient due to low storage 
and computing requirements. The problem of this approach 
is that the instantaneous estimates of the error surface have 
relatively large variances. The estimate of their gradient vectors 
may then not always be pointing to a global optimum; the fact 
could cause unstable performance of the algorithm. The stability 
may be improved using smaller adaptation step-size, however this 
seriously affects the convergence rate of the procedure. 

Another, in the article described approach captures the infor-
mation from the entire image, determining the shape and orien-
tation of a global error surface and calculate best possible weight 
matrix in a single operation. The error surface function for the 
two-dimensional problem needs to be defined first. In order to 
keep mathematical notation clear, we decided to restack partial 
images as well as filtering matrix to a vector form with horizontal 
and vertical dependency kept in mind. 

A single point of the reconstructed image could be defined by 
the inner vector product 

f (x, y) = wT x(x, y) 

w = [w(1, 1), w(1, 2), . . . , w(M, M)] 

x(x, y) = [g(x — k,y — k), g(x — k + 1,y — k), . . . 

M=2k+1. 

Based upon this interpretation, the error surface function is 
denoted by 

J(W) =E[e2 (x,y)] 

J(W) =E[(f(x, y) — wT x(x, y))2] 

J(W) =E[f(x, y))2 ] — 2wT E[x(x, y)f(x, y]+ 

+ wT E[x(x, y)xT (x, y)]w. 

The expectation E[(f(x, y))2 ] = c is constant scalar value. 
The expectation E[x(x, y)f(x, y)] is equal to the M2 x 1 cross-

correlation vector between the convolution-input area x(x, y) of 
distorted image and desired value f(x, y), 

p = E[x(x, y)f(x, y)]• 

Finally, the expectation E[x(x, y)xT (x, y)] equals the M2 x 
M2 correlation matrix 

R = E[x(x, y)xT (x, y)] 

of the convolution-input area x(x, y). 
Following the presented notation we may express the mean-

squared error function as 

J(W) = c — 2wTp+wTRw. 

For stationary images, the mean-squared error J(W) is exactly 
a second-order function of correlation coefficients W. The 
function can be visualized as a parabolic surface having a unique 
minimum Wo, called optimum in the minimum mean-squared sense 
[2]. We may assume that the gradient of the mean-squared error 
function at the optimal weights equals zero: 

v=0 

dJ(W) 

dW 

= —2p + 2Rw 

Rwo = p• 

The equation Rwo = p is a so-called normal equation that 
defines optimum solution for the convolution weight matrix W. 
We may notice that for a solution a matrix inversion will be 
required. Although matrix R is generally of a smaller size than 
matrix H the inversion may still remain an ill-conditioned problem 
and the solution for W unstable. That is the reason why special 
inversion techniques should be employed to solve the mentioned 
problem. 

4. SIGNAL MATRIX AND CORRELATION 
ESTIMATES 
To approach the optimal filtering problem we will first need a 

good estimate of the correlation matrix R and cross-correlation 
vector p. Suppose our knowledge of a specific distortion process 
is limited to a single original and a single degraded image. With 
convolution filter matrix of M x M, M = 2k + 1 elements only 
inner (N — 2k) x (N — 2k) elements of the reconstructed image 
will be properly defined. Stacking all existing input filter values 
together we may define an (N — 2k)2 x M input signal matrix as: 

X = [x(k, k), x(k+ 1, k), . . . , x(k, k+1), . . . , x(N — k, N— k)]T

with already defined input signal vector 

x(x, y) = [g(x — k, y — k), g(x — k + 1, y — k), . . . 

. . . ,g(x,y), . . . ,g(x+k,y+k)]T. 

A good estimate of the correlation matrix is a product 

R=  1 XT •X. 
N —M+1 

Similarly, an estimate for the cross-correlation vector as re-
quired for the normal equation can be expressed as 

1 XT •d p N —M+1 

with 

d = [f(2,  2) f(2, 3) . . . f(2, N-1) . . . f(3, 1) . . . f (n-1, _1)]T. 

Ignoring constant scalar premultiplications, the normal equa-
tion is finally expressed as 

XTXwo = XTd 

wo = (XTX)-1XTd. 

5. SINGULAR VALUE DECOMPOSITION 
The next necessary step is to define a stable inversion process 

for the matrix R = XTX. There are some well known procedures 
with stable behaviour even for nonfull rank correlation matrices. 
In general, those methods attempt to perform inversion for the 
problem up to its singularity but avoid instability beyond that [5]. 
One of the possibility is a so-called SDV pseudo-inversion. 

Furthermore, it is not recommended to calculate a straight 
inverse of R-1  = (XTX) -1 . In the inverse, the (N —M+1)2 x 
M signal matrix X is premultiplied by its transpose XT, and later 
in the expression, XTd is premultiplied by the mentioned inverse. 
The algorithm may posses more sensitivity than already inherited 
in the problem. For signal matrix X with linearly dependent 
columns, we may have an infinite number of solutions for optimal 
W [1]. 

It is best to simply formulate the solution for W as 

wo = X+d, 

where pseudo-inverse X+ is defined in terms of the products 
of the singular-value decomposition of X. The procedure is 
numerically stable and its solution is unique in that its vector norm 
is minimum [1]. 

With singular-value decomposition 

UTXV = E 
1 

E- [S 0l 
0 0 

S = diag(ű1 , . .. , űM2) 

the pseudo-inverse X+ is defined as 

X+ = Vf

EtUTl 
L S+ 0 J 0 0 

E_ 
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S = diag(o1 r ... , rM2 ) 

o+ = 1 1/Űi~ o; ~ O i o, Q.i = o . 

Finally, convolution operator W can be created by restacking the 
values of the vector 

M 2
— ~ uTd 

w — ' vi 
űi 

i-1 

back to the M x M matrix form: 

w(1) . . . w(M) 

W= : : 

w(M(M — 1) + 1) . . . w(M2 ) 

The non-iteratively calculated filtering parameters are optimal 
for the specific image/distorted image combination. They may be 
directly applied in a classical two-dimensional convolution filter. 

6. IMPLEMENTATION OF THE PROCEDURE 

The final intention of the paper is to show the effectiveness the 
suggested method on real images. 

Fig. 2 represents sharpening of blurred images using two-
dimensional least-square SVD algorithm. The original image is 
shown on Fig. 2a. The image was blurred using a 5-by-S low-pass 
convolution filter. Some uncorrelated noise has been added at 
the end of the blurring procedure (Fig. 2b). Image has been 
restored using a 7-by-7 adaptive algorithm; the result is shown 
on Fig. 2c. The results of the inverse filtering of the same image 
are presented on Fig 2d. From the result we can deduct that 
the proposed algorithm is far less sensible than classical inverse 
filtering procedure. The image blurred without presence of noise 
and the noiseless image sharpened by using 2D LS SVD algorithm 
are shown on Figs. 2e and 2f, respectively. 

The same procedure applied in noise removal is shown on 
Fig. 3. From the images it is clear, that the 2D LS SVD algorithm 
does not converge to expected low-pass solution. A big amount 
of the uncorrelated noise has been successfully removed from the 
image preserving sharp edges of the image. The softening of the 
image contours is a common problem when low-pass filters are 
used for noise removal (Fig. 2d). 

7. COMMENTS 

The paper shows that the Wiener filtering principle can suc-
cessfully be implemented in linear algebraic image restoration. 
Methods well known from the linear algebra theory may be ap-
plied instead of classical methods based on Fourier transforma-
tion. 

Applying SVD to an entire signal matrix X is a powerful, yet 
computing and storage domanding task by itself. This is not the 
only existing solution of the normal equation. The idea opened 
for further work is to apply an updating matrix reduction method 
that may lead to the same result with a more optimal computing 
power consumption. 
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Fig. 3. Removing of noise using 2D LS SVD algorithm. (a) noisy 
image, (b) original image, (c) a, 2D LS SVD filtered (d) a, low-pass 

filtered) 

[4] R. C. Gonzales, R. C. Woods: Digital Image Processing, 
Addison-Wesely Publishing Company, 1992. 

[5] H. C. Andres, B. R. Hunt: Digital Image Restoration, hentic~ 
Hall, Englewood Cliffs, New Jersey, 1977. 
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1. INTRODUCTION 

Active contour models (known as "snakes" [1]) can easily be 
applied to deformable objects tracking in the 2D spatial domain. 
But they yield good results only in relatively simple contexts, for 
instance when the tracked object moves on a uniform or low-
contrasted background [2], or when its shape is rather smooth 
(like cells [3]). In this paper, we consider the most general case 
of the spatio-temporal segmentation of deformable objects moving 
on a complex background. 

In the next section, the tracking is performed with a classical 
active contour model. Thus, the different problems that may arise 
will be listed. The general "Adjustable Polygons" model is then 
introduced. Its application to object tracking is finally discussed. 
For a better object detection on a complex background, the 
external energy field of active contour models is extended. So, 
for a given current frame, this term stresses the object that was 
segmented by a corresponding adjustable polygon in the previous 
frame. 

2. OBJECT TRACKING WITH USUAL 
ACTIVE CONTOURS 

Basically, an active contour is a curve {v(s) = (x(s), y(s))} 
that can move over the image by minimizing its energy E* defined 
by: 

E* _ (Eint (V(3)) + Eext(V(3)))ds . 
Curve 

The internal energy, which call be written: 

E  (v) = a. 
dv 2 d2 v I +$.
ds ds2

2 

serves as a smoothness constraint (the first-order term controls 
the curve elasticity, the second-order term its flexibility); the 
external energy, E (v) = —IDI(v)I 2, pulls the active contour 
towards nearby edges of image I. 

The active contour model we used here was the "B-snakes" 
model [4], where the curve is composed of B-spline functions 
which interpolate a set of control points {v). Thus, this model 
makes it possible to develop a corner in the curve using a 
triple control point (whereas a basic snake cannot overcome the 
smoothness constraint). 

Fig. 1. B-snakes tracking. (a) Frame I I; (b) Frame Is (white: 
converged B-snake;; black. initial B-snake;; black crosses: initial 

control points in the frame) 

However, B-snakes shown unsatisfying tracking results when 
used in a rather complex image sequence (Fig. 1), mainly for the 
following reasons: 

a) The value of coefficient $ (a can be set to 0) is very difficult 
to find (particularly on the objects corners) because a strong 
smoothness leads to a loss of the strong curvature points, 
whereas a weak smoothness provides a bad description of edges 
(noisy oscillations). Furthermore, in many cases, there is no 
satisfactory value to be found. This is the main restriction for 
the use of snakes in most applications. 

b) The two problems of the tracking by active contours appear 
and remain unsolved: 
• Attraction of the snake by a "wrong" edge, which belongs to 

the background or to another object (appears on the right 
side of the large rectangle in Fig. la). This is a normal 
behaviour of the snake, as the interfering edge may yield a 
higher contrast than the object border. 

• Snake divergence when the contrast between the back-
ground and the object lowers (see the small rectangle in 
Fig. ib). This happens when an object moves onto a part 
of the background having a luminance close to that of the 
object. In this case, Eeat weakens because of the low con-
trast, so E;nt becomes predominant and makes the snake 
leave the object edges. 

Some tried to solve these two problems by adding a temporal 
smoothness constraint [2], [5], but it reinforces the difficulties 
described in point a). 

3. THE "ADJUSTABLE POLYGONS" MODEL 

In order to overcome the weaknesses mentioned above, a novel 
active contour model, called "Adjustable Polygons", is introduced. 

This model represents a polygonal contour, which is a set of 
several "active" segments {pi, . .. , p„ }. It allows not to consider 
any smoothness constraint, because of the segments own rigidity. 
The active contour energy in this model is the mean external 
energy Eext computed along every segment. The convergence 
of an adjustable polygon towards the object edges is achieved in 3 
steps: 

a) First, the energy is minimized for each segment independently 
(Fig. 2). For every segment, a rectangular window is first 
constructed, named "convergence window". Then, the initial 
segment p; = [v;v;+I] is transformed into an articulated two-
segment active curve {[v;S;], [S;v;+I]} which moves onto the 
edges detected in this convergence window. Points v; and v ±1
can can move on the window itself (so that the active curve does 
not shrink), and the new point S; can move anywhere inside 
the window (see Fig. 2a). This new point is created to take 
into account possible deformations of the object border. 

b) Then, in order to restore the continuity of the polygonal 
border, all the initial vertices, such as point v; in Fig. 3, must 
be moved to cope with both resulting segments on their left 
and on their right. So the end vertices of adjacent segments 
are reaccorded geometrically (see Fig. 3). 

c) Finally, useless vertices are eliminated (those which are aligned 
with their neighbours or are too close to them). 
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(a) (b) 

Fig. 2. Convergence of an "active segment" in the Adjustable Polygons model. (a) Convergence window;; (b) An active segment converging to 
a real contour 

(a) 

(b) 

Fig. 3. Geometrical restoration of the polygonal border continuity. 
(a) Case of colinear resulting segments v~ is placed in the middle of 
[v v:+t ]; (b) Case of non-colinear resulting segments v: = p; R±1 

This model provides a better segmentation; the adjustable 
polygons are positioned accurately on the edges and corners of the 
objects (compared to B-snakes). But they can still be attracted 
by an interfering background edge. In order to overcome this 
attraction by a neighbouring contour with stronger energy (that is 
stronger contrast), a new energy Eext was introduced. 

4. MODIFICATION OF THE EXTERNAL ENERGY 

In order to push a segment onto the contour of a given object, 
we use the local texture characteristics m and a this object, 
computed in a confined area along the segment. 

The statistical parameters m and o (i.e. the mean and standard 
deviation of the gray-levels) of the tracked object in the segment 
neighbourhood, are determined in the current frame (time t) of 
the sequence, where the object is already segmented. In the 
next frame (time t + 1), the probability of every pixel to be an 
object's one (assuming that the texture locally follows a Gaussian 
law N(m, a)) is computed. Finally we consider the gradient 
ON(„ti o)(x, y) of this probability field. The real object contour 
is stressed by this process. 

For each pixel in the convergence window of a segment, the 
expression of the new external energy field is then given by: 

Eext(x, )] — [ION(m,o)(x, y)i . I DI(x,  y)I21. 
Fig. 4 provides an illustration of this on the entire image, for 

the upper rectangle. For every pixel, the probability of belonging 
to the rectangle is shown on Fig. 4a. The gradient of this 
probability field is then computed (Fig. 4b). 

c (M 

Fig. 4. (a) Probability field and (b) gradient ON(,,, o) for the upper 
rectangle 

5. RESULTS AND DISCUSSION 

The result of the final "Adjustable Polygons" model, with the 
new expression of Eext , are presented on Fig. 5 (the occlusion 
areas were not treated in this case). Both problems of the 
tracking by active contours are solved: 
• Interfering background edges are attenuated by the texture-

based external energy field. To make a comparison with Fig. 1, 
the right side of the upper rectangle is accurately segmented, 
in spite of a more contrasted chessboard edge being very close. 

• An active segment divergence in edgeless area can be avoided 
easily: if its energy decrease is too slight during the minimiza-
tion process, it is kept on its initial position. 

Fig. 5. Adjustable Polygons tracking (crosses: polygonal contour 
vertices). (a) Frame II; (b) Frame Is 

Let us notice that these results could be achieved in a simple 
way because we considered several local minimizations instead of 
a global one as it is the case for any other active contour model. 
Also, the minimization process described in section 3 can be easily 
parallelezed. 

Fig. 6. Adjustable Polygons segmentation from regions predicted 
shape (black points: vertices). (a) Prediction; (b) Adjustment 
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The model was recently included in an object-oriented image 
sequence encoder [6], where it yielded a satisfactory behaviour. 

Fig. 6 shows the segmentation of three moving regions by 
adjustable polygons, starting from the regions predicted position 
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1. INTRODUCTION 

The class of fast translation invariant transforms (CT —
Certain Transforms) [1] is well known in the field of pattern 
recognition which may be used for position invariant pattern 
classification problems. The class CT originated from rapid 
transform (RT) developed in [2]. The RT results from a minor 
modification of the Walsh —Hadamard transform (WHT). The 
signal flow graph for the RT is identical to that of the WHT, 
except that the absolute value of the output of each stage of the 
iteration is taken before feeding it to the next stage. This is 
not an ortogonal transform, as no inverse exists. RT has some 
interesting properties such as invariance to cyclic shift, reflection 
of the data sequence, and slight rotation of a two-dimensional 
pattern. Various properties of RT have been developed in [2], 
[3], [4]. RT was used in recognition of alphanumeric characters 
[2], [5], [6], robotics [7] and scene analysis [4], [8]. With 
the help of additional data, however, the original signal can be 
recovered from the RT sequence [9], [10], [11], so it is possible 
to compute inverse rapid transform (IRT). Then IRT may be 
used for one- or two-dimensional signal coding and nonlinear 
filtering [11]. In some applications (character recognition), it 
is required that the transform be noninvariant under reflection, 
however, RT is invariant under reflection. The modified rapid 
transform (MRT) was presented to break undesired invariances of 
the RT [12], which leads to a loss of information about the original 
pattern. This is achieved by combining the RT with preprocessing 
steps using a neighbour operator. If the neighbour operator 
is asymmetric, the undesired invariance under reflection can be 
overcome with only one preprocessing step. Thus the MRT can 
distinguish many more patterns from one another than the original 
RT can. 

The programme code CT-CAD was developed as a CAD 
system for projecting pattern recognition systems with use of RT, 
MRT and other transforms members of the class CT for invariant 
feature selection and use of IRT for one- or two-dimensional 
signal coding and nonlinear filtering. 

In the following, short outline of the class CT and properties 
of MRT and IRT are first reviewed; then the applications of CT, 
MRT and IRT in pattern recognition and DSP are presented. 
Finally, the developed programme package CT-CAD will be 
outlined. 

2. THE CLASS OF FAST TRANSLATION 
INVARIANT TRANSFORMS 

Regarding only finite discretized patterns we use the following 
vector notation for one-dimensional patterns: 

x = {z,}, s = 0, 1, . . . , N — 1, (1) 

where N = 2"' and n is a positive ingeger. For the uniform 
division of a vector in m subvectors we choose the following 
notation: 

x= 

Xi/m 

X2/m 

Xm/m 

, mis divisor of N, (2)) 

where xi/m denotes the i-th of subvectors containing N/m consec-
utive elements of x. A transformed vector will be written as 

X = (3) 

where r E CT. The one-dimensional class of transform CTN may 
now be defined recursively [13] as (Fig. 1) 

1 
fi(XI/z,Xz/z) _ XI/z z = X~2~ _ ..., 
f2(X1/2 X2/2) _  2/2

(4) 

where fI , f2 are arbitrary commutative operators. Similary 
recursive definition may be used also in two-dimensional case 
CTN X N The more useful members of CT are the transforms 
RT, NT, MT, OT and BT defined with the choosing of pairs 
of commutative operators (Table 1). The class CT may be 
generalized to GCT [13]. With the use of a set of symmetric 
operators we may extend the transform patterns of arbitrary 
lengths, where N is no a power of 2. In particular, when N = T', 
GCT results in CT. 
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g x_[~ ~ xu~ 

Fig. 1. The recursive definition of the class CT 

Table 1. Class of fast translation invariant transforms 

Transform 

Operator 

NRT N QT NNT N MT N BT 

f1(a,b) a+b a+b max{a,b} avb amb 

f2(a,b) a — bl (a —b)2 min{a, b} a A b amb 

Patterns real- 

valued 

real- 

valued 

real- 

valued 

binary- 

valued 

integer-

valued 

The most interesting properties of CT is the translation 
invariance. The class CT maps the complete set of translations 
of a pattern x into one point of the transform domain 

r(ir(x)) = r(x) = z, Hr E CT, (5) 

where ir(x) denotes the complete set of elements generated from 
(x) applying all operators of the set of translation operations. A 
class CT is not only invariant to translations, but also to a more 
general class of permutations, which want to reduce the complete 
set of invariants of a pattern x under the class of transform CT 

1rCT(x) = {x~lr(xt ) = r(x), Ur E CT}. (6) 

The subset of these permutations are the cyclic as well as the 
dyadic permutations. The reflection or mirror pattern is an 
exceptional element of the class of dyadic permutation, then CT 
is invariant of reflection of input patterns. 

3. MODIFIED AND INVERSE RT 

The modified rapid transform (MRT) [12] was presented to 
break undesired invariances (invariance to reflection) of the RT 
which leads to a loss of information about the original pattern. 
This is achieved by combining the RT with preprocessing steps 
using an asymmetric neighbour operator . This operator is used 
to break undesirable invariances but keep the shift invariance of 
MRT. 

Signal graph of MRT (Fig. 2) results from signal graph of RT 
with adding in general k preprocessing steps x' = ax. This maps 
the element x(i) of input vector x to element x'(i) of vector x' 
by working on elements x(i), x(i + 1) and x(i + 2) 

x'(i) = .fo(x(i), x(i + 1), x(i + 2))• (7) 

Operator fo may be realized in the following simple manner [12] 

x'(i) = fo(x(i), x(i+1), x(i+ 2)) = x(i)+Ix(i+1) — x(i+2)I• 
(8) 

For two-dimensional patterns one can use either one-dimen-
sional RTs in sequence, for the horizontal (x) and vertical (y) 
directions, or one two-dimensional RT. Than we can choose the 
following symmetries of the neighbour operators: 

fá : x' (i,)) = x(i,7) + Ix(i + 1,7) — x(i + 2,7)I (9a) 

fo : x'(i, j) = x(i, j) + x(i, j + 1) — x(i, j + 2)1 (9b) 
fo+y : x'(1,7) = x(i,1) + x(i +L,j)  — x(i  +2,.7)I+ 

+ x(i, l + 1) — x(i, j + 2)1 
fp b :x'(i,7) =" L(i,))+;r,(i+1,9)_x(i 1

(9c) 

(~d) 

where x'(i, j) and x(i, j), i, j = 0, . . . , N — 1 are pixels of the 
desired preprocessed and input two-dimensional patterns. The 
concept of modification can be used for all transforms from the 
class CT based on two commutative operators. So the class 
of modified certain transforms (MCT) may be created. The 
efficiency of the modification may be different for each transform. 

k iden6cel preprocessinp steps 

x 

x(I. ) )—.f) fo(xt9,x(I.,).xp.$)) 

x(i.2)' ~ 

MRr(lq

RT 

Al') 

Al,) 

pa(n.xm) 

Fig. 2. Signal flow graph of the modified rapid transform 

Even if RT is nonlinear and thus noninvertible transform, with 
computation of additional data in transform process of RT it 
is possible to compute inverse RT (IRT) [9], [10], [11]. Thus 
additional data are known as a matrix of states K. For one-
dimensional RT the matrix of states may be computed as follows: 

k(i, r — 1) = 0, if x(r -1) (i) - x(r -1)(i + N/2) < 0 

k(i, r — 1) = 0, if x(' —1)(i) — x(r'1)(i + N/2) > 0, (10) 

where x(r -1) (i) and x(r -1)(i + N/2) are values of input vector 
x after r — 1 steps of RT transform process. The dimension of 
binary matrix K is n x N/2. From transform coefficients of the RT 
z = RT{x} and its matrix of states K we can obtain the original 
input data x, with use of IRT defined as follows: 

= x (2i) + (-1) (1+k(i,n—r+1))
x(r) (2i + 1) (11) 

+ N/2) = x(r)(2i) + (-1)(1+k(i,n- r+1))x(r)(2i + 1), 

where i = 0, 1, . . . , N/2 — 1 and r = 0, 1, . . . , n — 1. After n 
inverse steps (11) and dividing the resulted data by N we obtain 
the original input vector x. 

4. CT, MCT AND IRT APPLICATIONS 

Let first consider the applications of CT and MCT in pattern 
recognition. The basic block scheme of the recognition system is 
on Fig. 3. It contains the following sub-systems; 
• Original digital picture preprocessing system CSPO-II [14] was 

used to accepts the physical input picture and then transducer 
it into a measurable matrix of NxN pixels. 

• The CT processor according to its function may be also called 
a feature extractor. A two-dimensional CT or MCT of all 
prototypes is taken in this stage. Than feature selection is 
carried out in the CT or MCT "spectral" domain, on various 
basis (maximal value of spectral coefficients, variance zonal 
sampling and inter class standard deviation). 

• The selected CT or MCT i'eatures of patterns are in the 
teaching process feeded into the memory. Thus the memory 
unit learn apriori knowledge of each class before the system 
can be used to make any decision. In the recognition process 
the selected CT or MCT features are feeded into the classifier, 
which discriminates each pattern and assigns a category (class) 
to it by some decision rule. We used simple classifiers based on 
Euclide or maximum absolute distance. 
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Fig. 3. Basic bloc of the recognition system 

RT and IRT may be used for coding and data compression. 
Application of RT to signal x we obtain transform coefficients z, 
which are together with the matrix of states K transmitted to the 
decoder. With reduction of the number of used transform coef-
ficients in transmitter we may reduce the needed data flux. This 
concept may be used for coding one- or two-dimensional signals 
and various coding schemes may be considered [15]. For the sim-
plicity we consider the block scheme of IRT coder with reduction 
of transform coefficients and number of transmitted fields showed 
on Fig. 4. Input digital image is divided into blocks of pixels, 

INPUT 
r  -

DIGIT. 
VIDEO 

BLOCK RT SELECTION  ~ 

v 

MATRIX 
of 

STATES 

CHANNEL 

i.e. vectors which are input of RT processor. The processor 
compute transform coefficients of these vectors and appropriate 
matrices of states of each block. Data flux needed to transmission 
of these vectors and matrices may be reduced with reduction of 
used (transmitted) transform coefficients. Further reduction of 
data flux may be obtained with reduction of transmitted pictures 
of the picture sequence. It means that we transmit only reduced 
number of transform coefficients of some choosed pictures and 
matrices of states of all pictures from the sequence. 

AT COEF. 
REDUCTION  ~ FIELD 

SELECTION 

MUX 

RT CODER 

CHANNEL 
CODER 

CHANNEL 

r 

J 

CHANNEL 
DECODER DEMUX 

MATRIX 
of 

STATES 

- 
AT COEF. 
BUFFER 

IRT BLOCK 
REGISTER 

IRT DECODER 

 ~ BLOCK 
SEQUENCER 

OUTPUT 
DIGrr. 
VIDEO 

L 
Fig. 4. Block scheme of IRT co7c ec wtt relc úctiori oj~[ráns~órm cóe ~énts án~núm~er o~transm~te~c fields 

The quality of the coding/decoding process of using IRT may 
be evaluated in signal (image) or spectral domain. The processed 

signals may be compared with using simple Euclide distance or 
signal to noise ratio (SNR). 
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5. PROGRAMME PACKAGE CT-CAD 
DESCRIPTION 
The programme code CT-CAD was developed as a CAD 

system for projecting and evaluation pattern recognition systems 
with use of transforms members of the classes CT or CTM for 
invariant feature selection and use of IRT for signal coding and 
nonlinear filtering. The CT-CAD is running on IBM PC AT 
compatibles with 640 kByte memory and DOS 4.xx or higher. 
System components require standard VGA 16 colour graphics 
display. For selecting components uses Microsoft Mouse Menu 
software and a two-button Microsoft Mouse compatible. Input 
signals may be from CSPO-II, files on floppy discs or generated by 
embedded signal generators. Output results are given on display, 
as files or may be printed on standard printers. The CT-CAD is 
controlled by several pull-down menus. The working core of the 
CT-CAD may be divided to two parts: 
• Pattern recognition — deals with design and evaluation tailored 

pattern recognition systems with use of invariant features based 
on he choice of fast translation invariant transforms members 
of the class CT or MCT and its selected spectral coefficients 
and desired classification method. The menu flow of this 
part of CT-CAD is shown on Fig. 5a. The system is capable 

Project

= is 'P rn Ed. 

. . ... 

Patterns 
Mask 
Classlticator 
Recoanitlon 
Histogram 
Show 
Save

to evaluate recognition efficiency of the proposed feature 
extraction scheme, its dependence on the number of selected 
features and influence of noise as well as various (geometric) 
distortion of input patterns. The system quality is expressed by 
histograms and confusion matrix. 

• Digital signal processing (DSP) with use of IRT — deals 
with projecting and evaluation of fast coders for one- or two-
dimensional (image) signal coding and nonlinear filtering for 
general applications. The menu flow of this part of CT-CAD 
is on Fig. Sb. Various coding schemes can be chosen, including 
coding of image sequences. Proposed coding  schemes may be 
evaluated in signal or spectral domain (using Fh1). Numerical 
characteristics of the proposed scheme are given in data flux 
reduction (compared with PCM), signal distortion and SNR. 

6. CONCLUSION 
The application of fast translation invariant transforms mem-

bers of the class CT or MCT in pattern recognition was described. 
Inverse rapid transform may be used for one- or two-dimensional 
signal coding and nonlinear filtering. The new programme code 
CT-CAD was developed as a programme package for projecting 
and evaluation of these pattern recognition and coding systems. 
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Fig. 5a. Menu flow of programme package CT-CAD: pattern recognition 
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1. INTRODUCTION 

OCR is an active area of research for its importance and 
urgency. Recently, information processing is sped up dramatically, 
yet inputting data via the keyboard is virtually unchanging. The 
keyboard, even for the fastest typist, became unacceptable bottle-
neck. Commercial OCR systems, though still intolerably erratic, 
appeared in many languages. 

Arabic is widely used language of a continuous literary heritage 
of 1.5 thousand years and an audience of 200 hundred million. 
Moreover, Arabic alphabet is used by another 200 hundred 
million in different languages. However, research in machine 
recognition of Arabic characters does not match this widespread 
use, though gaining ground gradually. The main reason for this 
lag is the unwieldy nature of Arabic script. The script is cursive 
in both handwritten and typewritten forms. The characters are 
very slender and oftenly similar with many dots around. In many 
cases the difference between two character shapes (sometimes 
more) is only a dot (or a maximum of 3 dots) above or beneath 
the character body. Probably to streamline a faster handwriting, 
the shapes of the characters change according to their position 
in a word. While the essence of the character is maintained for 
human recognition, the shape is geometrically so different that 
it warrants a separate consideration for machine to pick it up. 
Table 1 presents Arabic characters and their different shapes. The 
Extended Set consists of 60 character shapes, 29 of them are 
those of the Basic Set. The other 31 are their shape variants as 
well as those modified by the stress mark, hamza. Because the 
hamza can not be segmented safely from the characters that it 
modifies, we considered those characters in separate classes. 

Table 1. 
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OCR systems consist broadly of two parts; a feature extractor 
and a classifier. The first part is the most difficult to realise, 
since it very much depends on the nature of the feature that 
might be so fuzzy to define or difficult to extract with a reasonable 
cost. Usually to extract features, preprocessing and segmentation 
stages are indispensable. Every stage is a field of research on its 
own right. 

For the classification part, different techniques have been tried. 
Recently, neural nets have showed promising results. They have 
been tried for classifying alphanumeric characters in different 
European and Asian languages. Our objective in this paper is 
to use the traditional MLP with its backpropagation learning 
algorithm to classify a handwritten Arabic characters. Since, as 
we mentioned above, Arabic script is cursive, we assume that the 
characters are already segmented and we present them to our 
network in this form. Segmentation stage is beyond the scope of 
this paper. 

2. FEATURE EXTRACTION 

The segmented handwritten characters are scanned into binary 
image of 300 dpi resolution. As it can be seen from Table 1, using 
a simple pixel representation as feature input to the classifier is 
not viable since the difference might be as small as a dot. Besides, 

the fine discriminating parts would need a very high resolution to 
accommodate. This, of course, will increase the number of inputs, 
and consequently the size of the network. More time would 
be needed for both training and recognition. Instead, we used 
Fourier Descriptors (FD's) augmented by Topological Descriptors 
(TD's). The shape of each character is traced by a contour-
following algorithm that produces the outer boundary in a form of 
a polygon. By following the boundary of the polygon in clockwise 
direction a complex periodic function u(1) = x(1) -I- jy(1), with 
a period L, is obtained. The Fourier Descriptors defined on this 
function are: 
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This formula is transformed to the following algorithm [2]. 
Assuming that the polygon is approximated by m points 

Po, P1,•• • ,Pm-1=Po, 

where PO is the starting point. We obtain the Fourier Descriptors 
as: 
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As it can be seen from Table 1, some characters have almost 
identical shapes. This means that their FD's are similar. To 
differentiate between these similar shapes, a set of TD's is 
considered. It is observed that the number and position of dots 
is a good measure that discriminate between characters uniquely. 
An algorithm that works in association with that of FD's identifies 
the dot or cluster of dots and their relative position to the body of 
the characters. Thus, the input is represented by a feature vector 
of 43 elements; 40 of them is FD's and 3 TD's. The FD's were 
given as real numbers, while TD's in binary coded numbers. 

Table 2. 
No 

1 
2 

3 
4 

Feature 

No dots 

Pattern 

000 

One dot above 001 

One dot beneath 010 

Two dots above 011 

5 Two dots beneath 100 

6 
7 

8 

Three c!ot, above 101 

Hamza (cluster) above 110 

Hamza (cluster) beneath 111 

Three bits were sufficient to accommodate all possible varia-
tions in the topological feature space as shown in Table 2. 
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3. EXPERIMENTATION 
A data base of 1800 segmented handwritten characters is 

obtained from 10 different writers, where every one wrote the 
Extended Set three times. The shapes were scanned with a 
resolution of 300 dpi. A shape matrix of 60 x 60 pixels were 
used by the feature extracting algorithms to obtain the FD's 
and the TD's. The size of the segmented character — though 
handwritten — is approximately equivalent to 15 points of printed 
type. The large size of the shape matrix places a heavy burden 
on the feature extraction stage. However, this price can not be 
avoided if we were to obtain a faithful feature representation. 
The features are presented to the network in a vector of 43 
elements. Thus, the network has 43 inputs. The number of 
hidden units is 45 and the output is 60. The database is divided 
evenly (900 characters) between the training set and the testing 
set. Training took a total of 90 thousand passes with a hundred 
pass for each character shape. Since rejection is practically 
more important than misclassification, we minimized the latter by 
placing a restrictive criterion on output levels. The highest output 
is considered a reject if it does not exceed a given threshold ti 
or that the differen'e between the two highest levels is smaller 
than a threshold t2. Otherwise the character is classified to the 
class associated with the highest activation level. The learning 
rate ,t and the momentum rate cr were set to 0.9 and 0.65 
respectively. The recognition rate without rejection was 90.09 % 

and misclassification rate was 9.01 %. While with rejection 
recognition was 84.3 %, misclassification was 1.7 % and rejection 
was 14 %. 

4. ANALYSIS AND CONCLUSION 

Since there is no objective measure of good handwriting, it is 
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