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EDITORIAL

M ost characteristics of analog systems are non­
linear, thus it is expedient to review occassionally 
the progress in the field of nonlinear circuits. This 

area was previously reviewed by L. O. Chua in 1984 [1]. 
At that time, the main problems were circuit analysis, sta­
bility, existence and uniqueness of the solution, classifica­
tion of nonlinear circuits, etc. However, bifurcations were 
also mentioned as a possible direction of further research.

Since then, to put it simply, the progress can be charac­
terized by two major steps. In addition to some results in 
the above mentioned classical problems, valuable re­
search has been carried out in the area of chaotic oscilla­
tions. Subsequently, the attention partially shifted to neu­
ral networks.

In the theory of chaos, the goal was to obtain exact con­
ditions for the existence of chaos. Moreover, several 
simple circuits exhibiting chaotic oscillations have been 
investigated, and simplified geometrical models for 
chaotic attractors have been constructed. The theory cul­
minated in the classification of chaotic attractors. The 
achievements in this field were reviewed in 1988 [21, and 
a new journal entitled “Bifurcation and Chaos' was 
launched in March 1991.

In the field of neural networks, the emphasis was on the 
analysis of various neural structures such as Hopfield nets, 
perceptrons and cellular neural networks, and on the in­
vestigation of some useful properties of neural networks 
such as their information storing capability, robustness, 
stability, signal to noise ratio etc. These properties were 
utilized in solving practical problems as speech proces­
sing, picture transformation, character recognition and 
several other problems in the field of artificial intelligence, 
where parallel computing is essential.

Following a rapid increase in the number of papers 
dealing with neural networks (marked by the appearance
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of the new journal “Neural Networks” in 1988) the topic 
has recently been getting less attention. A possible reason 
for this is that technological progress, like results in quan­
tum-effect devices research [4], enables conventional 
digital computers to become still strong competitors of 
neural network based analog computers during the forth­
coming decade. Nevertheless, for certain practical prob­
lems such as character recognition, neural computing al­
gorithms implemented on digital conqputers have already 
proved their relevance. The area of neural networks was 
reviewed almost annually in several periodicals (see for 
example [3]).

This issue of the Journal on Communications is in­
tended to illustrate, within our possibilities, that the topic 
of nonlinear circuits lives on in spite of the smaller interest 
towards classical circuit theory. In the selection of the 
papers, we were looking for a proper balance between 
traditional and new areas, theory and practice, and, 
besides selecting papers of widely recognized specialists 
in nonlinear circuits, our purpose was to introduce some 
results by talented young researchers. In order to meet 
these requirements four areas have been chosen:

• investigation of existence and uniqueness of the solu­
tion of nonlinear resistive circuits,

• dynamics of nonlinear circuits, including chaotic os­
cillations,

• computer simulation of nonlinear circuits, and
• some practical problems in the application of neural 

networks.
The guest editor hopes that the readers will find this 

issue useful and wishes to express his gratitude to the con­
tributing authors for their cooperation.

J. LADVÁNSZKY

[3] “Neural Networks”, special issue, edited by N. El-LeithyandR. W. 
Newcomb, IEEE Trans, on CAS, May 1989

[4] Capasso, F., S. Sen, L. M. Lunardi, and A. Y. Cho, “Quantum 
Transistors and Circuits Break Through the Barriers”, IE E E  Cir­
cuits and Devices, May 1991, pp. 18—25.
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ON THE SOLUTION OF NONLINEAR RESISTIVE
NETWORKS
MARTIN HASLER

DEPARTMENT OF ELECTRICAL ENGINEERING 
SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE 

1015 LAUSANNE, SWITZERLAND

The existence and uniqueness of the solution of a nonlinear resistive cir­
cuit does not depend on the precise parameter values and on the pre­
cise form of the characteristic of the nonlinear resistors if certain topo­
logical conditions are satisfied. It is shown how these conditions are ex­
pressed in terms of signs of voltages and currents, thereby giving them 
an intuitive meaning. The relation to our previous approach which is 
slightly less intuitive but algorithmically more efficient is established. 
Other applications of the same criteria are mentioned.

1. INTRODUCTION
Electronics courses teach the students which circuits 

perform what functions. However, no profound explana­
tion is given. There is a wide gap between basic circuit the­
ory and electronics. Filling this gap remains an important 
theoretical task. Indeed, if this gap were filled, circuit the­
ory would be more far-reaching and electronics more sys­
tematic. This paper gives an account of research efforts di­
rected to this goal. They represent only one step in this di­
rection and most of the work remains to be done.

The notion of circuit has many facets. It may designate 
on the one hand a physical object and on the other hand a 
model of that same object. On the model side all parame­
ters, such as resistances, semiconductor parameters, etc. 
may be specified, or the circuit may be described by the 
kind of constituents it is composed of and by their connec­
tions. This last characterization is often referred to as cir­
cuit topology, or circuit structure. Studying a circuit at this 
level means looking for circuit properties that do not de­
pend on element values and other circuit parameters. 
Such properties are usually referred to as topological 
properties. Stating that a ciruit can perform a given func­
tion (e.g. amplification) is a topological property, because 
varying the circuit parameters will not alter the qualitative 
nature of the function, at least if the parameter variations 
are not too large.

Probably the most basic question is how many equilib­
rium points, called DC-operation points, a circuit has. 
Many signal processing functions require a unique DC- 
operation point. Among them a re : amplification, ampli­
tude limiting, memoryless logic operations such as OR, 
AND, etc. Others rely on many DC-operation points, e.g. 
flip-flops and static memories in general.

Experience with electronic circuits over the years has 
convinced the engineers that certain circuit topologies al­
ways have a single DC-operation point, without ever hav­
ing seen a proof of this fact. The efforts of Sandberg, Will- 
son, Nielsen [1], [2] and later of Nishi, Chua [3], [4] have 
led to existence and uniqueness theorems for DC-oper- 
ation points. Even though they constitute remarkable 
achievements, they still do not belong to engineering cur­
ricula. The reason might be that the matter is too complex 
for a basic circuit theory course. In this paper, we present

our own approach to the same problem [5], [6], with spe­
cial emphasis on the concrete meaning of the different 
graph-theoretical constructs. By this we hope to convince 
the reader that the subject is not as involved as it might 
seem, and that insight can be gained into the properties of 
nonlinear circuits, not only through the theorems them­
selves but also through their proofs.

The graph-theoretical criteria for the existence and the 
uniqueness of the DC-operation point that will be intro­
duced can be checked for small circuits by inspection. For 
larger circuits, combinatorial algorithms have been de­
veloped. This leads to a new kind of software, namely 
computer programs that determine qualitative proper­
ties. To be honest, it must be admitted that our algorithms 
have exponential complexity in the number of resistors 
and therefore are not able to cope with very large circuits. 
It may well be, however, that special algorithms can be de­
veloped for a restricted class of circuits, e.g. all-transistor 
circuits, which have lower complexity.

2. STANDARD EQUATIONS
In this Section, we introduce the circuits we consider 

and the system of equations that describe them. Since we 
are only interested in static properties of dynamic circuits, 
namely the number of DC-operation points, we can re­
strict our attention to resistive circuits. To a DC-operation 
point of the dynamic circuit corresponds a solution of the 
resistive circuit obtained by removing the capacitors and 
short-circuiting the inductors. This solution is composed 
of constant voltages and currents. Therefore, in the sequel 
all voltages and currents will be constants rather than 
functions of time.

A circuit is a connection of circuit elements. We admit 
the following elements which are all 1-ports.

a) V-resistors
They obey a constitutive relation of the form

*' = g(v) I1)
where g is continuous, increasing but not necessarily 
strictly increasing, and defined for all real voltages v. The 
symbol of a V-resistor is represented in Fig. 1.

b) I-resistors
They obey a constitutive relation of the form

v = h(i)  (2)

where h is continuous, increasing but not necessarily 
strictly increasing, and defined for all real currents i. The 
symbol of an I-resistor is represented in Fig. 2.
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c) Voltage sources
As usual, a voltage source is described by the constitutive 
relation

v =  £  (3)
where £  is a constant. The symbol is given in Fig. 3.

d) Current sources
As usual, a current source is described by the constitutive 
relation

i = I (4)
where /  is a constant. The symbol is given in Fig. 4.

e) Nullator
A nullator is described by the two constitutive relations 

v = 0  (5)
/ = 0  (6 )

and represented by the symbol Fig. 5.

f) Norator
A norator has no constitutive relation. It is represented by 
the symbol of Fig. 6.

1  1 1 1 1 !
О 0  8T T I  T V i

Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. 

Remark 1 :
a) These 6 basic elements are sufficient for resistive cir­

cuits in the sense that all static devices that can be de­
scribed by lumped constants can sufficiently well be mod­
eled by a connection of the 6 elements. To illustrate this, 
we give the circuit models of a voltage amplifier with a 
nonlinear characteristic (Fig. 7) and the Ebers-Moll 
model of a bipolar npn transistor (Fig. 8 ).

• * c z > _ X T <30~ r _ c - b T  ■.
vln **9(v) v R Я  vout=-Rg<vin)

-.____ T_. . Jt__ SL,
Fig. 7.

r o o -------  й  ■■■
°— у  i — ° == °— — -j-------С О — — °

z s  М П  z í

1 т  V V  т
Fig. 8.

In Fig. 7 the nonlinear resistor is a V-resistor, whereas the 
linear resistor can be classified as a V- or an I-resistor. In 
Fig. 8 , the nonlinear resistors are diodes which are V-re- 
sistors.

b) The voltage source is a special V-resistor, namely 
with a constant function g. Nevertheless, it is advanta­
geous to introduce a special category for this element. The 
same remark applies to the current source.

Definition 1
A nonlinear resistive circuit is a connection of elements 
that belong to the above introduced six types. The circuit 
parameters are the functions g and h that describe the 
nonlinear resistors and the values of the voltage and cur­
rent sources. A  nonlinear resistive circuit structure is a 
nonlinear resistive circuit where the circuit parameters are 
not specified. More precisely, a nonlinear resistive circuit 
structure is a graph whose branches are labelled by the six 
element types.

Definition 2
The standard equations of a nonlinear resistive circuit are 
the Kirchhoff voltage and current equations together with 
the constitutive relations ( 1)—(6 ) of the circuit elements. 
A solution of the circuit is a set of branch voltages and 
currents that satisfy the standard equations.

Remark 2
a) If there are as many nullators as norators, there are 

2b standard equations where b is the number of branches 
of the circuit graph, or, equivalently, the number of circuit 
elements. There are also 2b unknowns, the branch volt­
ages and currents. If the number of nullators and norators 
is not equal then the number of equations and unknowns 
does not match. Therefore, we assume throughout this 
paper an equal number of nullators and norators.

b) Given a circuit, its solution is computed by some nu­
merical algorithm, either by a Newton—Raphson or a ho- 
motopy method [7]. There remains, however, the ques­
tion how many solutions there are. Usually, this question 
cannot be answered reliably by numerical computations. 
Furthermore, such a computation deals only with a spe­
cific set of parameters. The criteria we discuss in this paper 
are of a quite different nature. They allow to establish the 
existence and the uniqueness of the solution for a whole 
class of circuits. In the end, they lead to combinatorial al­
gorithms. The idea is that the combinatorial algorithm 
should precede the numerical algorithm in the analysis of 
a circuit. Together, they give reliable information on the 
behavior of the circuit.

3. ORIENTATIONS
Suppose we are not interested in the precise solution of 

a circuit but only in the sign of the circuit variables. As we 
shall see, this rudimentary information about the solution 
is what we need for qualitative analysis. From a more 
practical point of view, it might be useful for circuit test­
ing.

For each voltage vh we introduce the variable
vk = s ig n (v j (7)

and for each current ik the variable

4 =sign(A) (8 )
where

r +  1 for X > 0
sign(x) =  < 0 for X = 0 (9)

 ̂ — 1 for X < 0

Thus, vk and ik can take the values+ 1 ,-1  and 0. Note that 
the sign of a voltage or current is always defined with re­
spect to an arbitrarily chosen reference direction on the
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corresponding branch of the circuit graph. Hence, vk can 
be identified with an orientation as follows : If vk =  1, the 
branch is orientated as its reference direction, if vk = — 1, 
the branch is orientated against its reference direction and 
if vk =  0, the branch is not orientated. Proceeding in this 
way, a set of branch voltages {vk} leads to a partial orienta­
tion of the branches, defined by {vk\. If this orientation had 
been chosen as the reference direction, all voltages vk 
would be nonnegative. The same procedure can be ap­
plied to a set of currents as well.

If we start from a circuit solution, the voltages and the 
currents in general lead to different partial orientations of 
the branches. Similarly, the voltages of different solutions 
lead in general to different partial orientations and the 
same is true for the currents.

Definition 3 
Consider a graph G.

a) A  partial orientation of the branches of G is a voltage 
orientation, if there is a set of branch voltages {vk} that sat­
isfies Kirchhoffs voltage laws such that \vk} is precisely 
this partial orientation.

b) A  partial orientation of the branches of G is a current 
orientation, if there is a set of branch currents {ik} that sat­
isfies Kirchhoffs current laws such that {4} is precisely this 
partial orientation.
In Figs. 9 and 10, a current and a voltage distribution are 
represented that satisfy Kirchhoffs laws. The corre­
sponding orientations are marked by arrows. Note that 
the two orientations differ on two branches. One branch is 
not orientated in the current orientation and two branches 
in the voltage orientation.

The next definition refers to circuits rather than graphs 
because the constitutive relations of the elements play a

Fig- 9.

Fig. 10.

role. Actually, it is tied to circuit structures rather than cir­
cuits because the existence of a circuit is required, but no 
constraint is imposed on the circuit parameters.

Definition 4
Consider a nonlinear resistive circuit structure S. A 

voltage orientation and a current orientation of the graph 
of S are incrementally compatible if there is a circuit C 
with structure S and two solutions {v^b, and 
{v i?\i } of C such that Л vk and Aik are the correspond­
ing partial orientations, as defined by (7) and (8), where 
A vk = v — у jj.2) and Aik =  i jb — i

In Fig. 11, a nonlinear resistive circuit structure is rep­
resented whose graph is the same as in Figs. 9 and 10. In 
Fig. 12, a nonlinear resistive circuit is represented whose 
only nonlinear resistor has the piecewise linear character­
istic of Fig. 13. This circuit has the structure of Fig.
11.Two solutions are indicated in Fig. 13, one below the 
other. Subtracting the lower solution from the upper 
yields the voltage and current increments given in Figs. 9 
and 10. Therefore, the voltage and current orientation 
marked in Figs. 9 and 10 by arrows are incrementally 
compatible with respect to the nonlinear resistive circuit 
structure of Fig. 11.
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Remark 3
a) If V k1) and v f t  satisfy Kirchhoff s voltage laws then so 
do A vk and thus A vk is a voltage orientation. Similarly for 
the currents.
b) The trivial partial orientation, where no branch is 
orientated, is both a voltage and a current orientation. 
Furthermore, the trivial voltage and the trivial current 
orientation are incrementally compatible for any non­
linear resistive circuit structure. Indeed, take any solution 
(v,i) of any circuit with structure S and set v(I) =  v(2) =  v, 
j(i) =  ;(2) -  i which implies A \ = A\ =  0.

The question now arises whether it is possible to char­
acterize the voltage and current orientations without ref­
erence to actual voltages and currents and whether it is 
possible to express incremental compatibility without in­
troducing circuit parameters and corresponding solu­
tions. Are there analogs off Kirchhoff voltage and current 
laws and constitutive relations for the A v̂ ’s and the A ik’s ? 
Surprisingly, the answer is negative for Kirchhoff s laws 
and affirmative for the constitutive relations. This will be 
discussed in sections 4 and 5. In particular, we shall see 
that the characterization of voltage and current orienta­
tions are of basic graph theoretical nature rather than of 
arithmetic form, as is the case for Kirchhoff s laws.

4. VOLTAGE AND CURRENT ORIENTATIONS
Definition 5

Consider a partially orientated graph. A loop (cutset) is 
uniform if all of its orientated branches are similarly di­
rected around the loop (within the cutset).

We now give two equivalent characterizations of volt­
age and current orientation. The first requires the absence 
of certain uniform loops and cutsets, the “bad” loops and 
cutsets, and the second the presence of certain other uni­
form loops and cutsets, the “good” ones.

Theorem 1 
Consider a graph G.
a) A partial orientation of G is a voltage orientation if 

and only if there is no uniform loop that contains at least 
one orientated branch.

b) A partial orientation of G is a current orientation if 
and only if there is no uniform cutset that contains at least 
one orientated branch.

Theorem 2 
Consider a graph G.
a) A partial orientation of G is a voltage orientation if 

and only if each orientated branch is part of a uniform cut­
set composed exclusively of orientated branches.

b) A partial orientation of G is a current orientation if 
and only if each orientated branch is part of a uniform 
loop composed exclusively of orientated branches. 
Theorem 2 is illustrated in Figs. 14 and 15 for the current 
and the voltage orientation of Figs. 9 and 10. The required 
uniform loops and cutsets are indicated by distinet lines.

Proof o f theorems 1 and 2
1. “Only if" part o f theorem 1

Suppose {vk\ is a voltage orientation of G. Take it as a 
reference direction of the orientated branches and take 
any reference direction for the remaining branches. By 
definition, there is a set of voltages {v*) such that (7) holds.

Fig. 14.

Hence, vk = 0 whenever branch к is not orientated and, 
due to the choice of reference direction, vk > 0 whenever 
branch к is orientated. Suppose there is a uniform loop 
with at least one orientated branch. Kirchhoff s voltage 
law for this loop is

E h = o  ( i o )
loop

But since all vk > 0 and at least one vk > 0, the LHS of 
(10) is positive and thus (10) cannot hold. We conclude 
that there is no uniform loop with at least one orientated 
branch.

The proof for the current orientations is dual.
QED.

2. “I f” part o f theorem 2

Consider a partial orientation of G such that all orien­
tated branches take part in a cutset composed only of 
orientated branches. Take this orientation as a reference 
direction for the orientated branches and choose any ref­
erence direction for the other branches. Let Cbe the set of 
all uniform cutsets composed exclusively of orientated 
branches. For each с e C consider the set of voltages 
defined by

v to ( ß \  _  { £  if branch к is part of с , ̂
* 1 ' 1 0 otherwise ^

where E is any positive constant voltage. The cutset c 
divides the set of nodes into two subsets. The branch volt­
ages v](c)(£ )  derive from the node potential where one 
subset is at potential E and the other at potential zero. 
Hence, they satisfy Kirchhoff s voltage laws. Finally, we 
define

vk( E )=  £  v ft(E )  (12)
C G C
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Then {vk(E)\ also satisfy Kirchhoff s voltage laws. Fur­
thermore, vk(E ) is a positive multiple of E for each orien­
tated branch, and thus positive, and 0 for all non orien­
tated branches. Hence, {v*(E)} coincides with the original 
partial orientation which implies that this orientation is a 
voltage orientation.

The dual proof applies to the partial orientation with 
the „good” uniform loops. Here, we define

h ( i ) =  Y  w )  (13)
/ e  L

where L is the set of all uniform loops composed only of 
orientated branches and

ui) — I I  if branch к  is part of / /^4 ,
'  '  1 0 otherwise ^

sively of orientated branches and a set of I Cl positive 
voltages Ec such that

r ^ v P ( £ () (15a)
с е  C

where (Ec) is given by (11).
b) Let {ik} be a set of branch currents that satisfy Kirch­

hoff s current law. Then there is a partial orientation of the 
branches of G, a set L of uniform loops composed exclu­
sively of orientated branches and a set of I L  I positive cur­
rent /) such that

4 =  X  (15b)
/€= L

where г [/>(/,) is given by (14).

Then 4(7) satisfies Kirchhoff s current law, it is a positive 
multiple of the positive constant I if the branch к is orien­
tated and 0 otherwise, and (4(7)} is the original partial 
orientation.

QED.

3. Equivalence o f theorems 1 and 2

The proof is based on the colored branch theorem [8], 
[9]. Consider any partial orientation of the branches of G 
and color the orientated branches green and the other 
branches red. Then, according to the colored branch the­
orem, each green branch either belongs to a uniform cut­
set composed of green branches, or a uniform loop com­
posed of green and red branches. Therefore, the condi­
tion that there is no uniform loop with at least one orien­
tated branch (theorem la)) is equivalent to the condition 
that each orientated branch belongs to a uniform green- 
only cutset (theorem 2a)).

Coloring the non orientated branches blue instead of 
red leads to the equivalence of theorems lb ) and 2b).

QED.

The next theorem is not needed in the sequel. Never­
theless, we think it is instructive in the present context.

It is a well-known fact in circuit theory that any set of 
currents that satisfy Kirchhoff s current laws can be de­
composed into a sum of loop currents. Indeed, it is suffi­
cient to choose a maximal set of independent loops. The 
sums of all possible loop currents then coincide with the 
set of all current distributions that satisfy Kirchhoff s cur­
rent laws. The dual statement is true for voltage distribu­
tions that satisfy Kirchhoff s voltage laws. A  maximal set 
of independent loops can e.g. be obtained by considering 
a complete tree. Its links generate such a maximal set.

The current distributions obtained in the proof of the 
“i f ’ part of theorem 2 are of a special nature. They are 
sums of positive loop currents of uniform loops. The ques­
tion now arises whether any set of currents that satisfy 
Kirchhoff s current laws can be decomposed in this way. 
The answer is affirmative. However, the partial orienta­
tion and thus the set of uniform loops has to be adapted to 
the set of currents. The dual properties hold for voltage 
distributions too.

Proof
We prove b) because a) can be obtained by a simple 

reasoning about the node potentials. A perfectly dual 
proof can also be given for a).

Let {4 } be a set of branch currents that satisfy Kirch­
hoff s current law and orientate the branches of G accord­
ing to {4}. Take this partial orientation as the reference di­
rection for the branches. With respect to this orientation 
we have ik > 0 for all branches. Let /b e  the branch with 
smallest positive current. Since this branch is orientated, it 
belongs to a uniform loop L; of orientated branches. 
Define a new set of branch currents

.  f 4 -  h if k  belongs to Lj
lk \ 4  otherwise ( i0 l

Then 4  ~ 4 -  0- It follows that ik satisfies again Kirch­
hoff s current law and that whenever ik = 0  we have 
4 = 0 .  Actually, in the new current distribution at least 
one more branch has zero current, namely branch /. An­
other way expressing lk is

h = h - i {t>4h) (17)
where (г)) is given by (14).

Now we can repeat the above construction. We first 
remove the orientation from the branches where ik > 0 
but 4 =0, in particular from branch /. Then we identify the 
branch/with the smallest current г/, define a new current 
distribution by (16), etc.

At each step in the iteration, at least one more branch 
has zero current. Thus, the iteration stops after a finite 
number of steps when all currents are zero. Since by (17) 
at each step we have subtracted a positive loop current, 
the original current distribution {4] is a sum of positive 
loop currents. The loops are uniform and composed of 
orientated branches with respect to the orientation of the 
corresponding iteration. But since subsequent iterations 
simply have less orientated branches, but otherwise coin­
cide with previous orientations, the loops are uniform and 
composed of orientated branches in the original orienta­
tion {4} as well.

QED.

Theorem 3 
Consider a graph G.
a) Let {vk\ be a set of branch voltages that satisfy Kirch­

hoff s voltage law. Then there is a partial orientation of the 
branches of G, a set Cof uniform cutsets composed exclu­

For the current distribution of Fig. 9, the partial orienta­
tion of the branches, the uniform loops and the positive 
loop currents are represented in Fig. 16. For the voltage 
distribution of Fig. 10, the partial orientation of the resis­
tors, the uniform cutsets and the positive cutset voltages 
are represented in Fig. 17.
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Fig. 16.

Fig. 17.

5. COMPATIBLE VOLTAGE AND CURRENT 
ORIENTATIONS

The compatibility condition for voltage and current 
orientations can be expressed by a set of equations that 
correspond directly to the constitutive relations of the cir­
cuit elements.

Theorem 4
Suppose a nonlinear resistive circuit structure S is 

given. A voltage orientation \Avk\ and-a current orienta­
tion {Aik} are incrementally compatible if and only if for 
each branch к that does not carry a norator one of the fol­
lowing conditions is satisfied :

a) If к carries a V-resistor

Avk =  Aik or Aik = 0 (18)

b) i. a carries an I-resistor

Ávk = Áik or Ávk = 0  (19)

b) If к carries a voltage source

Avk = 0 t (20)

c) If к carries a current source

0 ( 21)

d) If к carries a nullator

Ávk = Á ik = 0 (22)

Proof
“Only i f” part

Consider a circuit C with structure S, two solutions of C 
and their increments. Since the current in a V-resistor is 
an increasing function of the voltage, the current incre­
ment is either zero or it has the same sign as the voltage in­
crement. This fact is expressed by (18). Similarly for I-re- 
sistors. Relations (20)—(22) are evident.

QED.

“I f” part
Let a voltage and a current orientation of the graph G 

of S be given and denoted by {A vk\ and \Aik\, respectively. 
Hence there are voltages A vk and currents /láthat satisfy 
the respective Kirchhoff laws such that

Avk — sign (Avk) (23a)

Aik =  sign (Aik) (23b)

Suppose that for each branch, the corresponding condi­
tion out of (18)—(22) is satisfied, except for the norator 
branches where no condition is imposed. Then define the 
circuit C as follows. Take the graph G and introduce the 
nullators and norators where required for the structure S.

Furthermore,
a) on a V-resistor branch of S introduce a linear resistor 

with admittance Gk =  Aik/A vk if A vk Ф 0 and any posi­
tive value if A vk = 0. It follows from (18) that Gk > 0 and 
thus the linear resistor is a V-resistor.

b) on an I-resistor branch introduce a linear resistor 
with resistance Rk — A vk/Aik if Aik^  0 and any positive 
value if A ik =  0. It follows from (19) that Rk > 0 and thus 
the linear resistor is an I-resistor.

c) on a source branch of S introduce the corresponding 
source and set its value to zero. It follows that circuit C has 
structure S and that (Ay, Ai) and (v = 0, i = 0) are two 
solutions of C. The resulting increments are (A \, Ai)
themselves. Hence, [Av^  and {Aikj are incrementally 
compatible.

QED.

The compatibility conditions of the current orientation 
in Fig. 9 and the voltage orientation in Fig. 10 with respect 
to the nonlinear resistive circuit structure in Fig. 11 are 
readily checked.

It is easy to generalize our approach to include con­
trolled sources. The different definitions have to be modi­
fied to accomodate the new elements in an obvious way. 
Theorem 4 then has to be supplemented with the appro­
priate conditions.

A voltage controlled voltage source with a positive 
coefficient a whose ports are the branches j  and к obeys 
the constitutive relations

vk =  avj (24)
ij = 0 (25)

and leads to the incremental compatibility conditions

Avk =Avj (26)

Aij =  0 (27)
The other three types of controlled sources can be dis­
cussed similarly.
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It could be suspected that the ideal transformers and 
gyrators can also be embedded into this framework. It 
turns out, however, that this is not the case, because the 
transformation and gyration ratios appear simulta- 
neaously in two constitutive relations and therefore the 
proof of the “if” part of theorem 4 does not go through 
[6].

6. EXISTENCE AND UNIQUENESS OF THE SOLUTION
In this Section we answer the following question:

When do all circuits with a given nonlinear resistive 
structure S have exactly one solution?

A necessary condition follows immediately from def­
inition 4: The only incrementally compatible voltage and 
current orientations of S are the trivial ones where no 
branch is orientated. Indeed, if one of them were nontriv­
ial, there would be a circuit C with structure S and two sol­
utions of C such that the signs of the voltage and current 
increments coincided with the corresponding orienta­
tions. Hence, not all increments could vanish und thus the 
two solutions would have to be distinct.

We shall prove that this condition is not only necessary, 
but also sufficient. First, we treat the very special case 
where there are no resistors.

Lemma 1
Consider a resistive circuit structure S without resistor 
branches. All circuits with structure S have exactly one 
solution if and only if the only incrementally compatible 
voltage and current orientations are the trivial ones. In 
this case, the solution is a continuous function of any 
source value.

Proof:
By the above arguments, we only have to prove the “if’ 

part and the continuity. Suppose that the only incremen­
tally compatible voltage and current orientations are the 
trivial ones.

Assume there is a circuit C with structure S which has no 
solution or more than one solution. Since C is a linear cir­
cuit, it is described by a system of linear equations whose 
determinant is zero. Set the source values to zero. The re­
sulting system becomes homogeneous and since its deter­
minant is zero, it has an infinity of solutions. This cannot be 
the case, however, because the voltage and current incre­
ments between any two different solutions would lead to 
nontrivial incrementally compatible voltage and current 
orientations. Thus, any circuit with structure S has exactly 
one solution. Furthermore, the solution is an affine function 
of any source value and therefore continuous.

QED.

Theorem 5
Consider a nonlinear resistive circuit structure S. All cir­
cuits with structure S have exactly one solution if and only 
if the only incrementally compatible voltage and current 
orientations are the trivial ones. In this case, the solution is 
a continuous function of any source value.

Proof
Again, we only have to prove the “i f ’ part of the theo­

rem. The proof goes by induction on the number TV of re­
sistors. It is illustrated in Fig. 18. For N =  0, theorem 5 re­
duces to lemma 1. Let us suppose that the theorem holds

for nonlinear resistive circuit structures with up to N  — 1 
resistors, and let S be a structure with /Vresistor branches. 
Suppose that the only incrementally compatible voltage 
and current orientations of S are the trivial ones. Let C be 
a circuit with structure S. We have to show that C has 
exactly one solution.

Remove a resistor from C. Suppose it sits on a L-resis- 
tor branch к  of S. If it were an /-resistor branch, the proof 
would be analogous. Consider the characteristic of the re­
sulting one-port P.

For each current /there is exactly one admissible volt­
age V = /( / ) .  This can be seen by terminating this one- 
port P by a current source of an arbitrary value /. The cir­
cuit C' obtained in this way has structure S' that is identical 
to S except that branch к is now a current source branch. 
Any voltage and current orientations that are incremen­
tally compatible with respect to S' are also incrementally 
compatible with respect to S, because on branch к condi­
tion (21) is required for S', which implies condition (18) 
required for S. Consequently, only the trivial voltage and 
current orientations are incrementally compatible with 
respect to S'. Since S' has only N  — 1 resistor branches, C' 
has exactly one solution by the induction hypothesis. Fur­
thermore, this solution is a continuous function of /. Thus, 
/( /)  is well-defined for all /  and continuous.

The function /  is increasing. If this were not the case, 
there would exist /, < / 2 with / ( / i ) > / ( / 2). Terminate 
one-port P by a resistor with a characteristic that is a 
straight line through the points ( / ( / ) ,— If), (/ ( / 2),— /2) 
in the (V ,— /)-plane. Due to the above inequalities, the 
slope of this line is positive and thus the resistor is a V-re- 
sistor. Therefore, the resulting circuit C" has structure S. 
However, the solutions of C' with source values /, and / 2 
constitute two distinct solutions of C". The corresponding 
increments generate a nontrivial incrementally com­
patible voltage and current orientation which is in contra­
diction with the hypothesis.

Now let us return to the original circuit C. It can be con­
sidered as the one-port Pterminated by the original K-re­
sistor whose constitutive relation is, say, ik=g( vk). By ex­
pressing a solution of C by the port variables ( V, /), we 
have

~ I - 8 ( V )  (28)

У - К П  (29)
or

£ ( /( / ) ) + /=  0 (30)
Since the LHS of (30) is a strictly increasing continuous 
function of /, with limit ± ®as / — ± equation (30), 
and thus C, has exactly one solution.
Finally, we have to show the continuity of the solution as a 
function of any source value E. Let us denote the unique 
solution of (30) by /(£ ) . Hence

g ( /( /(£ ) ) )+ /(E )  =  0 (30a)
Let us further denote the characteristic of the one-port P, 
taking account o f  the parameter E, by

F = / ( / ,£ )  (31)
By the induction hypothesis, / ( / ,£ )  is continuous both in 
/and E. Let E, and E2 be any two values for E  and sup­
pose that / ( E ,) < /(E 2). Then

0 < / ( £ , ) - / ( £ ;) =  g ( /( /(E 1),£i)) ~
-  g (/(/(£ 2),£ ,)) +  g (/(/(E 2),E,)) -  g ( fiI (E2),E2)) < 

< g (f(I(E 2),El)) — g ( /( /(£ 2),£2)) (32)
JOURNAL ON COMMUNICATIONS 8



structures' circuit C'
Fig. 18.

The last inequality holds because g(/(.)) is an increasing 
function. The continuity of / ( / ,£ )  on E then implies the 
continuity of 1(E).

QED.

Remark 4
a) In [6 ], theorem 5 has been proved by relating first 

the nonlinear problem to the corresponding linear prob­
lem and then by proving the theorem for linear circuits. 
While this intermediate step is of interest by its own, the 
above approach represents a shortcut.

b) Again in [6 ], theorem 5 has been generalized to re­
sistors that are neither voltage nor current controlled, to 
resistors with decreasing characteristics and to linear and 
nonlinear controlled sources.

c) Finally, we refer to [6 ] for examples that illustrate 
theorem 5. They are discussed in terms of another topo­
logical criterion, but the two approaches will be related in 
the next section.

7. VARIANTS OF THE TOPOLOGICAL CRITERIA
To determine whether or not a given nonlinear resistive 

circuit structure has nontrivial incrementally compatible 
voltage and current orientations is a task that is in prin­
ciple of exponential complexity in the number of 
branches. Indeed, there are 3b possible partial orienta­
tions of the graph, where b is the number of branches, and 
thus 32b possible pairs of partial orientations. For each 
pair one has to check whether

•  the first is a,voltage orientation
•  the second is a current orientation
•  the two partial orientations are incrementally com­

patible.
Evidently, this is not a clever way to proceed and it is 
worthwile to spend some effort in trying to improve the 
method. Actually, the original criterion used in [5] is 
based on single partial orientations of the resistor 
branches. Using this criterion, we only have to consider 3N 
orientations, where N is the number of resistors. The com­
plexity is still exponential, but with a much smaller expo­
nent. Theorem 6 below relates the two approaches.

Definition 6
Let S be a nonlinear resistive circuit structure. A partial 
orientation of the resistor branches is uniform, if every 
orientated resistor

a) belongs to a uniform loop composed exclusively of 
orientated resistor, voltage source and norator branches, 
and

b) belongs to a uniform cutset composed exclusively of 
orientated resistor, current source and norator branches. 
Note that this definition does not distinguish between 
V-resistors and I-resistors.

Definition 7
Let S be a nonlinear resistive circuit structure. Consider a 
voltage orientation {Av^ and a current orientation \Aik\ 
that are incrementally compatible on S. The correspond­
ing reduced nonlinear resistive circuit structure S' and the 
associated partial orientation{Ark} of the resistors of S' are 
obtained as follows. Set Ark=  0 for the norator, nullator 
and source branches of S. For a resistor branch к of S pro­
ceed as follows:

•  If Avk=Aik, set Ark=Avk.
•  If Avk = 0 , but Aik Ф 0, set Ark =0  and transform the 

resistor branch into a voltage source branch.
•  If Aik=  0, but Avk Ф 0 , set Ark=0 and transform the 

resistor branch into a current source branch.
We say also that {Avk}, [Aik\ extend{Ark}.

Theorem 6
a) Let S be a nonlinear resistive circuit structure and 

suppose we have a voltage and a current orientation that 
are incrementally compatible on S. Consider the reduced 
nonlinear resistive circuit structure S' and the associated 
partial orientation of the resistors of S'. This partial orien­
tation is uniform.

b) Let S' be a nonlinear resistive circuit structure and 
suppose we have a uniform partial orientation of the resis­
tors of S'. Consider any nonlinear resistive circuit struc­
ture S that is identical to S', except that certain voltage 
source and current source branches of S' are, respectively, 
I-resistor and V-resistor branches in S. Then there is an in­
crementally compatible voltage and current orientation 
on S which extends the given partial orientation of S'.

Proof
Let \ Avk\, {Aiki denote the voltage and current orientation 
of S and {Ark\ the partial orientation of the resistors of S'.

a) We first prove that every orientated resistor branch 
of S' is part of a uniform cutset composed exclusively of 
orientated resistors, norators and current sources.

Take an orientated resistor branch j  of S'. Then 
Ar=A Vj=Aij Ф 0. Due to theorem 2a), branch j  is part of
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a uniform cutset composed branches with nonvanishing 
voltage orientation in S. In {Ark\ the cutset remains uni­
form, bűt some branches have lost their orientation. 
These are the norator and the current source branches. In 
addition, the V-resistor branches with Aik = 0  and Avk AO 
have also lost their orientation, but at the same time, they 
have become current source branches. Hence, the cutset 
is uniform in S' and is composed only of orientated resis­
tors, norators and current sources.

In a dual fashion, we prove that every orientated resistor 
branch of S' is part of a uniform loop composed exclusively 
of orientated resistors, norators and voltage sources.

b) Starting from the orientation \Arf\, we construct 
{AiA  stepwise as follows. At each step we shall call the ac­
tual orientation O. At the beginning, О coincides with 
{^rk}.

Let / be an orientated resistor branch of S'. Then there is 
a uniform loop L'through /composed of orientated resis­
tor, norator and voltage source branches of S'. Orientate 
its norator and voltage source branches such that the loop 
remains uniform. We shall denote L' also by Lr

Next consider an orientated resistor branch m of S' that 
does not belong to L'j. Consider the loop L'm through m 
that is uniform in \Ark\. Orientate the norator and voltage 
source branches that belong to L'm, but not to L', in the 
sense of L'm. Note that L'm might not be uniform in O, be­
cause of the branches in L' П L'm. However, L'm\ L'j can be 
completed to a uniform loop Lm with respect to О by tak­
ing other branches of Lj because from any node in L'j there 
is a directed path leading to any other node of L'.

Then take an orientated resistor branch of S' that does 
not belong to L'j U L'm and repeat the process. We can 
continue in this way until there is no orientated resistor 
branch left. Now we have to show that О is a voltage 
orientation on S. By construction, any branch that be­
longs to a uniform loop L'a with respect to {Ark} is orien­
tated and belongs to a uniform loop La with respect to O. 
There is no other orientated branch of О because such a 
branch would also have to be orientated in {Ark}, but all 
orientated branches of {Ark} are resistors and are part of 
one of these loops. Thus, by theorem 2b О is a current 
orientation which we denote now by JzhjJ.

Starting again from {Ark}, we construct the voltage 
orientation {Avk} in the dual way, using the uniform cut­
sets C’a with respect to \Ark\ and transforming them into 
the uniform cutsets Ca with respect to {A v*}.

Finally, we have to show that {A v and \Aik\ are in­
crementally compatible on S. For this purpose we have to 
distinguish the different kinds of branches.

•  If /  is a norator branch, there is no condition to check.
• I f  /  is a nullator branch, it does not belong to any loop

L'a or cutset C'a. Thus, it does not belong to any loop La or 
cutset Ca either, and A v = A i = 0.

• I f  /  is a voltage source branch, it does not belong to 
any cutset C . Thus, it does not belong to any cutset Ca 
either, and Av=i).

•  If /is a current source branch, it does not belong to any 
loop L’a. Thus, it does not belong to any loop La either, 
and Aij= 0.

• I f  у is a V-resistor branch on S, three different cases 
have to be distinguished. If/is  a current source branch on 
S', the above reasoning for current source branches ap­
plies, with the conclusion that Aij= 0. If /  is a resistor 
branch on S' with a nonvanishing orientation Arj, then this 
orientation is maintained through the extension process 
and thus A Vj=A ij A 0 . Finally, if /  is a resistor branch on S' 
with a Ar, = 0 , then the above reasoning for a nullator ap­
plies, with the conclusion that Avj=Aij=0 .

•If  /is an I-resistor branch, we apply the arguments that 
are dual to the V-resistor case.

QED.

Let us now try to use the partial orientations of the re­
sistors to prove that all circuits with a given nonlinear re­
sistive circuit structure S have exactly one solution. Ac­
cording to theorem 5, we have to prove that there are no 
nontrivial voltage and current orientations that are in­
crementally compatible on S.

In view of theorem 6 , we look for uniform partial orien­
tations of the resistors on S. Suppose we have found a 
nontrivial one. Then by theorem 6b), we can extend it to a 
nontrivial voltage and current orientation that are in­
crementally compatible on S, and by theorem 5, we con­
clude that there are circuits with structure S that have 
either more than one or no solution.

However, if there is no nontrivial uniform partial orien­
tation of the resistors in S, we cannot yet conclude that all 
circuits with structure S have exactly one solution, and this 
for two reasons:

1. There might still be a structure S' in which certain re­
sistor branches of S are replaced be the appropriate 
source branches, that has a nontrivial uniform partial 
orientation of the resistors.

2. There might be incrementally compatible voltage 
and current orientations on S where both orientations of 
all resistors are zero, but some other branches have non­
zero orientation. The associated partial orientation of the 
resistors would be trivial.
Both cases can be excluded if an additional condition is 
satisfied.

Definition 8
A pair o f conjugate trees of a nonlinear resistive circuit 

structure is defined by the following conditions:
a) The first tree is composed of all norator, all voltage 

source and some resistor branches.
b) The second tree is composed of all nullator, all volt­

age source and the same resistor branches as the first tree.
Note that the set of tree resistor branches identifies the 

pair of conjugate trees. Given a set of resistor branches, it 
may or it may not determine a pair of conjugate trees.

Theorem 7
Suppose S is a nonlinear resistive circuit structure 

which satisfies the following two conditions:
a) The I-resistor branches determine a pair of conjugate 

trees.
b) There is no nontrivial uniform partial orientation of 

the resistors.
Proof: cf. [5].

Using theorem 7, we only have to consider 3N orienta­
tions, where N is the number of resistors, but in addition 
we have to check whether there is a pair of conjugate trees. 
Fortunately, there is an algorithm of polynomial com­
plexity that solves this problem [6 ], [10]. Thus, the main 
computational burden remains the search for orienta­
tions.

There is another reason for considering pairs of con­
jugate trees. It has been shown in [ 11 ] that the circuits that 
have more than one, but a finite number of solutions have 
a nonlinear resistive circuit structure that

•  has a pair of conjugate trees as required by condition 
a) of theorem 7, and
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•  has a nontrivial uniform partial orientation of the re­
sistors.
Hence, the circuit structures that can be used for static 
memories must belong to this class.

8. CONCLUSION
We have shown how the existence and uniqueness 

problem for the solution of nonlinear resistive circuits is 
linked to the signs of voltage and current increments. The 
material presented has been published before, mainly in 
[5] and [6 ], but a few additional results are included, in 
particular, a result that establishes more precisely the 
criteria based on a single partial orientation of the resistor
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COMPLEX DYNAMICS IN SIMPLE ELECTRONIC
CIRCUITS

MACIEJ J. OGORZALEK
IMISUE

DEPARTMENT OF ELECTRICAL ENGINEERING 
ACADEMY OF MINING AND METALLURGY 

KRAKÓW, POLAND

In this review paper we present an engineer’s view on complex dynami­
cal properties encountered in simple electronic circuits. We discuss the 
properties of circuit behaviour that indicate complex behaviour and 
chaotic motion: sensitive dependence on initial conditions, fractal 
structure of limit sets, basin boundaries and bifurcation parameter 
space. Brief overview of mathematical concepts and methods of anal­
ysis is included. Several examples of circuits exhibiting complex behav­
iour are presented. These include: chaotic autonomous RC circuit; digi­
tal filter exhibiting fractal structures of trajectories and fractal proper­
ties of the parameter space; digital phase locked loop displaying chaos; 
neural-type oscillator showing transition to chaos under external exci­
tation.

1. INTRODUCTION
Most of existing electrical and electronic equipment 

consists of devices, circuits and systems which in nature 
are nonlinear. Electrical and electronic engineers are used 
to dealing with complicated systems although they usually 
extract only simple features such as steady solutions or 
periodic behaviour, perhaps most interesting from the 
point of view of practical applications. As pointed out by 
T. Matsumoto in his review paper [45], evidence shows 
that there is no reason why oscillations in circuits should 
be periodic or noise should be an unpredictable feature.

It is a natural way to explain system behaviour with the 
aid of simple mathematical models. It was something of a 
surprise for researchers to find out that such simple mod­
els could also display extremely complex (We use here the 
adjective complex to describe behaviour of simple sys­
tems which involves some hard to describe and not just 
random structures. This should not be confused with the 
notion of complex systems ie. systems consisting of a very 
large number of components whose behaviour arises from 
the combined effect.), exotic, seemingly random behav­
iour, as appeares to have been first observed by Yoshisuke 
Ueda in his early experiments with the Duffing oscillator 
[68 , 69]. During the last decade, there has been an enor­
mous increase in quantity of publications concerning 
complex phenomena. The research has been concen­
trated in two directions: development of theory and ap­
plications. Mathematical studies provide a unifying 
framework for understanding the complex phenomena.

Why is chaos important for an electrical engineer?
Firstly, a wide variety of examples (real circuits, not 

analog computer models) show that, because of the inher­
ent nonlinearity of decives used to build a circuit, chaos is 
likely to occur, if not in normal modes of operation than 
under small deviations from the desired conditions. Sec­
ondly, if one accepted that chaos is possible in electric sys­
tems then it becomes important to understand the under­
lying mechanisms and predict what features might cause

malfunctioning of the circuit, and on the other hand, what 
features could be useful in applications and whether 
chaotic phenomena could be controlled (turned on and 
off) by tuning some approprietly chosen parameters.

Chaotic mathematical models are necessarily nonlin­
ear but may take many different forms. To make this 
paper self-contained, let us briefly review some basic no­
tions. Throughout this paper, we will consider determinis­
tic dynamical systems i.e. systems whose dynamical 
behaviour is governed by a set of equations giving the time 
evolution of the state of the system from a knowledge of its 
previous history. Of particular interest in electrical appli­
cations are the following types of systems:

•  autonomous differential equation of the form:

^ - / ( * ( 0 ) ( 1)

with an initial condition x(tf,) = Xq,
•  nonautonomous, periodically forced differential 

equation of the form:

^ - / ( * ( 0 . 0  (2)

where x(t0) = x0, and = f( .,t  + T) is periodic 
with period T.

In the above mentioned two cases, x(r) e Rn is called the 
state of the system, and function f :R n -*■ Rn (f:R n XR-+ Rn) 
is called the vector field. Solution Ф,{х0) of equation (1) 
or (2) with initial condition Xq is called a trajectory (or an 
orbit).

•  difference equation of the form :

* ( * + l ) « g [ * ( * ) [  (3)

where x(k)  e Rn(k  e Z+ is called the state of the system 
function g : Rn — Rn is called the vector field. Sequence 
of points xv х, =  g [x;_x] i — 1,2 .... аз is called a trajectory 
(orbit).

Asymptotic behaviours of solutions of dynamical sys­
tems as t -*■ °o will be of our primary interest. (In practice 
such behaviours are called the steady state.) Asymptotic 
behaviours could be extremely rich and complicated ([9], 
[10], [11], [38], [59]). There is a necessity to find the fea­
tures that differentiate one kind of solutions from another.

Throughout this paper for characterisation of system’s 
behaviour, we shall use the following mathematical con­
cepts [34]:

•  Invariant set
A subset S c  Rn such that: Ф,(х) e S V x e S W e R is 
called the invariant set.
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•  Limit set
T he set of all points p satisfying : 3 {i,}: Ф,.(x),roo -* p, 
where p is called the co-limit set of point x.
The set of all points p satisfying: Э {i,j : Ф,.(х),,__ю — pis
called the a- limit set of point x.
Typical examples of limit sets are: equilibrium points, 
limit cycles etc.

•  Attractor (attracting set)
The set- A  c  Rn is called an attractor if there exists its 
neighbourhood U such th a t: V x e U :  Ф,(х) e U for 
t £  0 and Ф,(*),-«, — A

•  Domain (basin) of attraction
The set A a =  Uti0 Ф,( U) is called the domain of attrac­
tion of attractor A

Having the above considerations in mind, let us look at 
typical types of behaviour encountered in nonlinear elec­
trical circuits. [9]—[10], [36], [38], [59]:

•  Here are some examples of nonlinear autonomous 
circuits:

— All solutions tend to the unique equilibrium point. 
Typical amplifiers, filters etc. should behave in this 
manner.

— All solutions tend to one of several equilibria. This is 
the normal regime for memory cells, flip-flops etc.

— All solutions tend to the unique periodic state. Elec­
tronic oscillators belong to this class.

— Some solutions tend towards a periodic state, some 
converge to one of equilibrium points. This is 
usually a simple but abnormal mode of operation of 
oscillators (latch-up).

— Some of the solutions or all of them do not converge 
to an equilibrium, periodic orbit or a quasi-periodic 
one. All solutions are bounded, System behaves in a 
random way — it is chaotic.

— There exists a possibility of coexistence of many so­
lutions mentioned above. The actual solution de­
pends then on the choice of initial conditions and 
could be constant, periodic, quasi-periodic or 
chaotic.

— There exists as well the possibility of divergence of 
solutions.

•  Typical types of behaviour encountered in nonau- 
tonomous nonlinear circuits driven by a periodic signal of 
period T are:

— All solutions converge towards a unique periodic 
solution of period T. Signal processing circuits, 
power systems normally behave in this manner.

— A ll' solutions converge towards a unique peri­
odic solution of period T. (e.g. frequency
dividers and multipliers, rectifiers, PLLs etc.)

— All solutions tend towards one of many peri­
odic solutions of period T (higher har­
monics or sub-harmonics)

— Solutions are chaotic — there is no synchronising ef­
fect of the external signal whatsoever.

General methods for designing nonlinear circuits with 
prescribed type of behaviour do not exist. Usually it is a 
matter of experience of the engineer/designer to give the 
correct answer. But in many cases, even a simple signal 
processing system is designed by trial-and-error. Exist­
ence of chaotic solution from the engineer’s point of view

is just another nuisance, causing malfunctioning of cir­
cuits. Thus the efforts in research should be concentrated 
on developing methods of recognizing, anticipating and 
avoiding chaotic behaviour. There were several attempts 
made in this direction (see e.g. [37]). In the next Section, 
we shall discuss the problem of recognizing chaos among 
other types of motions on the basis of observations and 
measurements.

2. RECOGNIZING COMPLEXITY AND CHAOS
Already Poincaré in his works concerning the qualitative 
theory of differential equations noticed that even simple 
physical systems whose dynamics are described by such 
equations can exhibit extremely complex behaviour 
which is neither periodic nor quasi-periodic. Solutions of 
these systems behave in an apparently random manner. It 
should be stressed, however, that being solutions of dif­
ferential equations, they are uniquely determined by ini­
tial conditions.

There is no commonly accepted definition of a chaotic 
solution. Classification of orbits proposed by Birkhoff [7] 
enables us to place the chaotic orbits among other types of 
trajectories. Classification of trajectories is the following:

•  constant trajectories (limit set — point)
•  periodic orbits (limit set — closed curve)
•  quasi-periodic orbits (limit set — torus)
•  recurrent trajectories (Cantor-like limit set — 

strange attractor; (Cantor set is a nonempty set having 
neither internal nor isolate points)).

Following such a classification, chaotic orbits belong to 
the last group — they are bounded, unstable and possess a 
limit set having a Cantor-like structure often called a 
strange attractor.

In a more colloquial meaning, we call chaotic all trajec­
tories that are not divergent, are highly irregular and do 
not possess any periodicity in time.

Many authors accept the intuitively simplest definition 
of chaos — a solution which is not a fixed point or periodic 
or quasi-periodic orbit. Unfortunatelly such a definition 
does not specify any properties of chaotic oscillations. 
Thus we do know what it is not but the answer to the ques­
tion what it is remains open.

The adjective complex is often used to describe not 
only chaotic behaviour but also the structure of the par­
ameter or initial condition spaces which even in the case of 
non-chaotic attractors could have an extremely compli­
cated structure characterised by fractal dimension. (The 
notion of fractal dimension will be clarified in the next 
Section.)

From the engineer’s point of view often without mathe­
matical .proofs, the following typical behaviour observed 
during experiments in deterministic dynamical systems is 
indicating complex or chaotic behaviour:

•  Sensitive dependence on initial conditions [34], 
[36], [45]

this means that despite the fact that two trajectories 
start from initial conditions lying very close to each 
other (See. Fig.l) they will eventually separate as 
time goes on and will be totally different (but they re­
main bounded.). This property is very important 
from the practical point of view. Usually the initial 
state of the system cannot be specified with infinite 
precision. This applies both to measurements taken
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Fig.l. Illustration o f the sensitive dependence on initial conditions.
Two trajectories starting from  inital conditions very close 

to each other will eventually separate but always remain bounded.

with some error e and computer experiments af­
fected by finite wordlength, rounding and truncation 
errors in operations done in the processor, integra­
tion errors etc. Below some fixed level, we are not 
able to distinguish between two different initial con­
ditions. Thus we can understand how two trajec­
tories, starting from apparently identical initial con­
ditions, diverge from each other — it is impossible to 
predict trajectory behaviour over long periods of 
time no matter how precisely we fix the initial condi­
tions in experiments — solutions of the deterministic 
system behave in a random way, they are chaotic.

•  Fractal basin boundaries
In nonlinear dynamical systems possessing more 
than one attractor, uncertainty in initial conditions 
often leads to uncertainty in the final asymptotic 
state (it should be stressed that this property differs 
from the sensitivity to initial conditions in which case 
the asymptotic state was unique — but chaotic). The 
sets of points belonging to the boundaries between 
the domains of attraction of each of the attractors 
have fractal dimension. In measurements, this means 
that even though the attractors are simple (asymp­
totic behaviour is not chaotic), results of experiments 
appear random due to uncertainty in initial condi­
tions.

•  Fractal structure o f the parameter plane
In experiments we sometimes find extremely com­
plicated patterns in the bifurcation parameter (sys­
tem parameters controlling changes in dynamic be­
haviour are called bifurcation parameters) space — 
existence regions of distinct trajectories are inter­
wound, often forming infinite structures of diminish­
ing sets; there are domains in the parameter space 
where it is not any more possible to specify the type 
of behaviour due to uncertainty in system parame­
ters.

3. QUANTIFYING COMPLEX BEHAVIOUR
•  Classification

Refering to the classification given by Birkhoff, by 
having some experience it is possible to distinguish 
between different types of solutions on the basis of 
their phase-portraits or time evolution (taken e.g. by 
means of an oscilloscope):
— to the first category belong all trajectories which 
converge towards a point on the phase portrait or a 
constant value in the time evolution;
— second type of trajectories correspond to closed 
curves observed on an oscilloscope;
— phase portraits of the quasiperiodic orbits in a 
“regular” way fill densly a torus-like object;
— solutions that behave in a highly irregular way in 
the observation time interval can be considered 
“practically chaotic”. This class of solutions takes 
into account feasibility of observation and measure­
ments — periodic solutions with periods longer than 
available observation time, behaving in an erratic 
way during this period are “practically chaotic”
([31]).

•  Universal “routes” to chaos
Detection of one of the known universal “routes” to 
chaos when varying system parameters: i.e. period 
doubling sequence [1], [2], [17], [26], period adding 
sequence, intermittency, torus breakdown [16], 
[20], [34], [47], [48]. Universality refers to the fact 
that similar quantitative behaviour of systems de­
pend rather on some general system properties and 
not on detailed physics or paticular model descrip­
tion. We will discuss this problem in more detail for 
period doubling sequences encountered in Example 
1. (See [ 19] for a collection of papers on universality 
in nonlinear dynamics.)

There are several quantitative ways for the dynamical 
characterization of systems. The most interesting con­
cepts are the following.

•  Lyapunov exponents [12]
The concept of Lyapunov exponents is the follow­
ing : In an n-dimensional system we observe evo­
lution of an infinitesimally small ball of initial condi­
tions in a long time interval — after a time t, the ball 
deformates into an ellipsoid, i-th Lyapunov expo­
nent A, is defined by the length z, of the i-th principal 
axis of the ellipsoid :

я ' =  T log2 f (ö )  (4)

if such limit exists. Lyapunov exponents define the 
time average of squeezing — stretching properties in 
different directions of the nonlinear system phase 
space. They are generalizations of eigenvalues in lin­
ear systems (for linear systems, Lyapunov exponents 
equal eigenvalues).
A system is considered chaotic if at least one Lyapu­
nov exponent is positive. This property is often 
chosen as the definition of a chaotic system. Exist­
ence of a positive Lyapunov exponent quantifies the 
above mentioned sensitive dependence on initial 
conditions.

•  Dimension o f attractor [24]
Many authors consider the appearance of a so-called 
strange attractor as the criterion of chaos. A  strange 
attractor is a specific kind of an attracting limit of tra­
jectories characterised by their fractal dimension. 
The concepts of dimension are used also for charac­
terisation of the basins of attraction and bifurcation 
parameter sets — their fractal dimension, even in the
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case of normal attractors (like points or closed or­
bits) is considered as a measure of complexity. There 
are several definitions allowing the calculation of 
dimension sets characterizing system behaviour 
(limit sets, basins of attraction or their boundaries, 
bifurcation parameter spaces etc.):

•  Capacity or “box-counting" dimension
This is the most natural and simple concept of a 
dimension. It was initially introduced by Kolmogo­
rov as follows:

dr = limf-0
In N(e) 
In ( 1 /e) (5)

where we imagine a covering of the space by 
n-dimensional cubes with edge length e • N(e) is the 
minimum number of such cubes needed to cover the 
set. The dimension of an attractor defined in this 
manner has an interesting interpretation. If we are 
interested to identify the position of the attracting set 
with the precision e then it is sufficient to specify the 
position of N  cubes needed to cover this set. From 
equation (5) we have for small £ : In N ( e) ~  d c  In (1 / 
e). Thus the dimension specifies the quantity of in­
formation needed to localize the attractor with the 
required accuracy. Capacity can be considered as a 
simplified version of the Hausdorff dimension [24]. 
To define the Hausdorff dimension of a subset (at­
tractor) in an n-dimensional Euclidean space, we in­
troduce a covering of the space by n-dimensional 
boxes of variable edge length £,. Let us introduce:

/d = lim /d(£) (6 )

where ld(e) =  in f 2 p f  and the infimum extends to 
all possible coverings satisfying £, < e. Hausdorff 
proved that there exists a critical value d = dH above 
which ld =  0 and below which ld — 00. This critical 
value dH is called the Hausdorff dimension. 
Information dimension is again a generalization of 
capacity. For an attractor, it takes into account the 
relative probability of a trajectory passing through 
each box belonging to the covering:

d, = lim , 4 (7)' £-0 In ( l /£ )
where

1 (e )  =  P, ln - j -  (8)
/-i '

and P, is the probability of a trajectory staying in the
i-th box. 1(e) gives the amount of information which 
we gain during a measurement (observation) of the 
system with an accuracy of £.

•  Entropy [72]
In probability theory, entropy is the amount of infor­
mation gained (or uncertainty removed) in an ex­
periment. Entropy of a dynamical system is a 
measure of uncertainty of forecasting the future be­
haviour of the system in its time evolution on the 
basis of the observation taken during a time interval. 
For example in systems having simple attractors like 
points, limit cycles or quasiperiodic orbits, we ob­
serve the “loss of memory” in terms of initial condi­

tions. Many trajectories, starting from initial condi­
tions outside the attractor, eventually converge to­
wards the attractor (e.g. for a system having only one 
attracting point, all trajectories will converge to this 
point — the entropy of such a system is zero). In a 
chaotic system, we have a reversed situation: nearby 
trajectories starting from initial conditions separated 
by a very small distance lead to totally different 
asymptotic behaviours. In such a regime, the longer 
we take the observations the more information we 
gain about the system’s behaviour.
Thus positive entropy could be considered as a crite­
rion of chaos in the system. (We omitted here the in­
volved mathematical tools needed to introduce the 
entropy. Interested readers should consult Piesin 
[60] and Young [72]).

•  Auto-correlation function
The auto-correlation function constitutes another 
way of quantifying the property of sensitive depend- 
ance on initial conditions. It is a measure of similarity 
of the trajectories at time t and (t +  r). The temporal 
auto-correlation function is defined as follows:

h
A C ( t ) — j  x ( t ) - x ( t  +  z ) d t  ( 9 )

Changing t we can determine the measure of self­
similarity for a trajectory during its time evolution. 
The Wiener-Khinchin theorem gives a direct link be­
tween the states of A C( z) and the Fourier transform 
of the power spectra of x(t). For signals which are 
constant, periodic or quasiperiodic in time, the 
power spectra is formed of distinct rays, and 
A C (r) Ф 0 for z — oo. This means that periodic and 
quasiperiodic orbits maintain their internal simi­
larity during the time evolution. For a chaotic signal 
we have broad — band, contiuous power spectra and 
A C( z) =  0 for r  -*• °o. The internal similarity of a 
trajectory diminishes in time and goes to zero for dis­
tant time instants. This property of chaotic signals 
was used by Ünal in his computer verifiable criterion 
of chaos existence [70].

The above mentioned characterizations, although in­
tuitively simple, are extremly difficult in real applications. 
Calculation of Lyapunov exponents or attractor dimen­
sions, despite elegant algorithms developed (see e.g. 
[58]), still causes many problems. Cost of such calcula­
tions is high and, on the other hand, interpretation of re­
sults is difficult.

Various characterizations of dynamical systems in 
terms of their asymptotic behaviour are given in the fol­
lowing Table ([59]).

To study complex (chaotic) behaviour and understand 
underlying mechanisms, three types of analysis are made:

•  laboratory experiments in a real circuit (including 
analysis of experimental data),

•  simulation studies (including calculation of bifurca­
tion diagrams, Lyapunov exponents, dimension of 
attractors etc.),

•  mathematical reasoning
Having introduced some concepts useful for identify­

ing complex phenomena from experimental data, let us 
next briefly review the main mathematical tools used for 
the analysis of systems that behave in a complex way.
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Classification of attractors
Asymptotic behaviour Type of attractor~ — :----------------n=—----------- :-------  Lyapunov exponents Dimensionof trajectories Continuous system Point mapping J v
Equilibrium point point — 0 > Aj > . . .  > An 0
Periodic orbit closed point A, =  0
Subharmonic curve set of points 0 > A2 ^  ^  An 1

Quasi-periodic torus closed curve Aj =  A2 =  0, 2
(two-periodic)___________________________________________ 0 > A3 > . . .  > An________________________
Qusai-Periodic k-torus к- l  torus Aj =  . . .  =  Ak =  0, к
(k-periodic)_____________________________________________ 0 > Ak+1 > . . .  > An______________________
Chaotic Cantor like set Cantor like set At > 0, 2 ] A; < 0 non integer

4. MATHEMATICAL METHODS
Experiments alone cannot give a convincing evidence of 
chaotic behaviour. Only when combined with rigorous 
mathematical reasoning can experimental results be con­
sidered as meaningful.

During the last decade, we observed a mass of publica­
tions offering mathematical methods for the analysis of 
chaotic systems. There are a number of works presenting 
the state-of-the-art in this subject and a unified approach 
to chaotic systems [6 ], [361, [45], [51], [53], [59], [65].

Many systems, totally different from the physical point 
of view, share the same mathematical models. Because of 
this, qualitative analysis is usually carried out for a whole 
class of systems, not only for a particular case. An analysis 
of this kind has been done e.g. by Komuro [42] and other 
authors ([ 12], [14] — “double scroll family , [61] — hys­
teresis based chaos generator family etc.)

Mathematical studies led to the elaboration of a stand­
ard set of mathematical “tools” [34], [35], [72] useful in 
the analysis of chaotic systems. Most of these methods 
come from qualitative theory of ordinary differential and 
difference equations and bifurcation theory [34], 40]. 
An excellent account of these methods can be found e.g. 
in the monographes of Guckenheimer and Holmes [34], 
Thompson and Stewart [6 6 ],'Devaney [20], Bergé et al. 
[5]. Most popular and widely used are methods con­
nected with the analysis of special types of trajectories — 
homoclinic ones (i.e. trajectories doubly assymptotic to 
an equilibrium point) [46]. Shilnikov’s method for autono­
mous systems [28], [29], [46], [64] has been generalized 
by the researchers from University of Nice (C. Tresser 
[67]), as well as Glendinning [29] andGaspard [28]. This 
method is most widely used for proving the existence of 
chaotic motion (e.g. for the double scroll circuit [12])

Melnikov’s method is widely used for investigating the 
strange behaviour in forced systems. Different versions of 
this method are described in Wiggins’ book [71] and 
works of Gruendler [33] and Salam [63].

The point mapping methods (see e.g. Nejmark [50]) 
allow the reduction of dimensionality and application of 
results known for low-dimensional discrete systems (for 
some applications, see e.g. Mira [47]).

Finally let us mention some other methods used in the 
analysis of chaotic systems:

•  symbolic dynamics [39], [49J used for the descrip­
tion and classification of orbits in an invariant set;

•  Knot theory [39] used for classifying various types of 
orbits using so-called templates (“knot holders”), 
and proving the existence of Smale’s horseshoes;

•  cell-to-cell mappings [41] for global analysis of invar­
iant sets, basins of attraction, basin boundaries etc.;

•  unstable cycle expansions [18] used for the charac­
terisation of attractors through identification of un­
stable orbits.

In the author’s opinion, the evidence of chaotic behav­
iour should be given by the results of both experiments 
and mathematical analysis.

Results of laboratory experiments alone are not suffi­
cient as there are always uncontrollable disturbances, ex­
ternal noise etc. Accumulation of errors can strongly af­
fect outcomes of simulation studies. On the other hand, 
one can always argue that the analyzed mathematical 
models are always simplified and could not reflect exactly 
all properties of real physical systems.

5. EXAMPLES
In this Section, we shall describe some results of experi­
ments and analysis for chosen circuits to show how the ap­
proaches, briefly reviewed in previous Sections, could be 
applied in real situations.

5.1 Example 1 —  autonomous RC chaos 
generator
Let us consider the third-order RC ladder network with a 
nonlinear voltage controlled voltage source in the feed­
back loop. The circuit diagram is presented in Fig. 2. Its 
dynamics are described by an ordinary differential equa­
tion of the form

p -= A x (t)+ B F [C Tx (t)] (10)
where:

Г -= 1 - +  ̂ 1 -  - 1-  0 1R.C, +  R2C\ R2Q U

A = - J -  +  — 1—
Ri Q  U2 Rt, c 2 R3 c2

0 - ± -  - ^ = L
u r 3c3 R3c3

— 1—  0
B =  R' Cl C =  0 

0
0 1
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_ \т $ о  for |ст|<  o hpl 
^° \т хо for |ст|>  стЬр J  ̂ ^

аЬр — coordinate of the break-point of the piecewise-li- 
near characteristic (see Fig. 2).

This system can also be interpreted as a linear system 
(RC twoport) described by a transfer function of the form

=  ( 12)

where
D (s) = s3 Cj C2 C3 +  s2 ( G, C2 C3 +  G2Q C 3 +  G2C,C3 +  

+ G3ClC3+ G 3C1C2) + s(G ,G 2C3+ G 1G3C3 + 
+ G, G3 C2 +  G2 G3 C3 +  G2 G3 C, +  G2 G3 C2) +  
FG j G2G3

with a nonlinear feedback F(o).

Fig. 2.a) Circuit diagram o f the autonomous RC chaos generator, 
B) characteristic o f the nonlinear element.

The piecewise-linear characteristic has been chosen 
for simplicity of calculations. Qualitatively similar results 
are obtained e.g. for a cubic function

F ( ct)  =  ct( űc)2 +  bo +  c) .

parameters along a variety of periodic and seemingly 
complex aperiodic trajectories, we observed “fuzzy” ones 
as shown in Fig. 3. All Figures show Xj—xx plots taken in 
our laboratory test circuit. Photograph (c) has been taken 
in the case of an inversed nonlinear characteristic.

Existence of complicated orbits has been further con­
firmed by simulation studies, moreover we were able to 
observe in detail the route leading from periodic behav­
iour in the circuit to the erratic one when changing para-

Results o f laboratory tests
Using a standard op-amp implementation of the nonli­

near characteristic, we made several laboratory experi­
ments in a real physical circuit. When changing circuit

Fig. 3. Typical complex, aperiodic trajectories observed 
in a laboratory circuit. A ll displays show x2 — x, plots. Display (c) 

was observed in the case o f an inversed nonlinear characteristic.

(hor. scale x, — ^ ■ vert- scalex i —
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Fig. 4. C2 bifurcation diagram 

(forfixed R I= R 2= R 3—1Q, C, = C3 = IF, 
m0= —33,03; m ,= 330,0; obp=0,2).

Fig. 5. Cj bifurcation diagram 
(for fixed R ,= R 2= R 3=1Q, C2=C3=1F, 

m0= —33,03; m ,= 330,0; obp=0,2).

meters. Typical bifurcation diagrams obtained are shown 
in Figs. 4 and 5. Following the changes of bifurcation pa­
rameter values, we observed very interesting bifurcation 
phenomena for system orbits. The most common phe­
nomenon is the Hopf bifurcation — birth of a periodic 
orbit in the system (points HB on the diagram).

The next phenomenon is called pitchfork bifurcation — 
a periodic orbit splits into two orbits of the same period 
(poins PB on the diagram).

The most interesting is the so-called period doubling 
sequence (Feigenbaum [8,26]) — an infinite sequence of 
bifurcations in which the period of the orbit doubles (be­
ginning of the sequence is marked PDS on the diagram). 
Feigenbaum found an interesting scaling property for 
successive period doublings: if the i — th doubling takes 
place for the bifurcation parameter value then a univer­
sal constant exists:

ő =  lim i“ i+1 Ц' = 4.6692016 ___  (13)
i -  00 fi'l+2 M i+l

For the system under consideration, we estimated the 
Feigenbaum constant on the basis of the first four-period 
doubling parameters ó '=4.612 which is very near the 
universal constant.

Detailed properties of period doubling behaviours can 
be found in the works of Feigenbaum [26], Alligood and 
Yorké [1], Crawford and Omohundro [17].

Several other bifurcation phenomena can be found on 
our diagrams, e.g. periodic windows in the chaos range, 
crisis [8], [30], remerging sequences [54] etc.

All bifurcation phenomena found in our studies give 
strong evidence that the circuit is indeed chaotic: it be­
haves in a typical, universal way experienced in many 
chaotic systems.

Calculation of Lyapunov exponents and dimensions of 
the attractor give further evidence of chaotic behaviour — 
we found for a wide range of parameters (on the basis of 
time series calculations) one positive exponent, and 
dimensions of observed attractors between 2.12  and 
2.193.

Apart from simulation and laboratory tests, we were 
able to confirm by a rigorous mathematical proof that our 
system is chaotic in the sense of Shilnikov (in [52] we dis­
cussed the existence of homoclinic orbits in the system 
and its implications for trajectory behaviour).

As an alternative method of rigorous mathematical 
analysis, we proposed a one-dimensional model of system 
dynamics (10) [55], [56]. Analysis of the one — dimen­
sional map [56] gives further confirmation of the chaotic 
motion — the proposed squeezed spiral map satisfies the 
fundamental Li-Yorke theorem [44].

5.2 Example 2  —  second order digital filter
Our second example is a second-order digital filter real­
ized in direct form as shown in Fig. 6 . Depending on the 
actual characteristic chosen for realisation of the overflow 
operation, this filter can exhibit extremely complex be­
haviour.

Fig. 6. Second order digital filter

Equations describing its dynamics (with zero-input) 
are of the form

* i(* +  1) =  *2(*) (14)
%(!(+  1 )=  F[bxl (k )  + ax2(k)\ (15)

where a,b e R, F: R -* R, F(o) =  odor o\ < 1, 
F(a) =  1 for a > 1, F(a) = — 1 for о  < — 1.

Chua and Lin [13] analysed this system in the case of 
the 2’s complement (modulo) nonlinear characteristic. 
They discovered that in some parameter ranges, the digit­
al filter with modulo arithmetic can behave in a strange 
manner generating chaotic oscillations and fractal pat­
terns. One of such fractal trajectories composed of similar 
ellipses is depicted in Fig. 7.

We found in our earlier studies that possibilities of 
complex filter behaviour exist in the case of saturation [27].
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Fig. 7. Typical trajectory o f the second order digital filter 
with 2 ’s complement arithmetic displaying self-similat patterns.

a

Fig. 8. Two-parameter bifurcation diagram 
for the digital filter employing saturation, 

a) Asymptotic stability triangle and regions o f existence 
o f periodic orbits with different rotation numbers (Arnold tongues) 

b) further details of the structure o f the largest “circular” region.

We carried out a detailed study of filter behaviour for dif­
ferent values of parameters a and b. This study enabled us 
to draw the diagram shown in Fig.8 . The variety of 
possible periodic orbits is astonishing. Regions of exist­
ence of various periodic trajectories form so-called Ar-

-0.10 4-m-n-r , I I I.................... ................ PTTTT.........-2 60 -160 -0 60 0.40 140 2 40
P A R A M E T E R  A

Fig. 9. Rotation number as a function o f parameter A, revealing 
a typical devil’s staircase structure.

nold tongues. It is easily seen that these tongues do not 
overlap. Even more interesting is the existence of the infi­
nite sequence of “circular” regions of periodic orbits 
within which one can clearly distinguish smaller similar 
structures which we call „sausage structures“. These re­
gions of existence of periodic orbits with different rotation

, Fknumbers (rotation number is defined a s :p — limk _
and gives a characterization of orbits of the map F) form in 
fact a fractal structure — they fill entirely the subregions of 
the parameter space but when approaching the line 
b = — 1, their number tends to infinity — thus by specify­
ing the parameters a and b with finite accuracy, we are un­
able to specify the type of periodic orbit observed in the 
filter.

When we fix one of the filter parameters while changing 
the other, interesting changes of dynamic behaviour of the 
filter can be observed. We constructed diagrams to show 
how the rotation number changes when varying a for a 
fixed b value. These diagrams reveal the devil’s staircase 
structure as shown in Fig. 9. Zooming-in in this picture 
shows the repetition of finer structures of this kind. 
Changes of rotation numbers obey the Farey’s rule [47]

P- -  P ± L  -* -  etc. 
q q +s s

Chua and Lin [13] applied symbolic dynamics for the 
analysis of filter dynamics in the case of 2’s complement 
arithmetic and confirmed its chaotic behaviour.

We should stress here that our experiments in the case 
of saturation arithmetic so far confirmed existence of 
periodic orbits of an arbitrarily chosen period, and exist­
ence of quasi-periodic orbits but no chaotic ones. The 
fractal structure of the bifurcation plane indicates com­
plex behaviour. Partial analytical results have been ob­
tained by means of the point mapping method [57] but we 
were not able to prove chaotic behaviour in this case.

5.3. Example 3 —  Digital Phase Locked Loop
As our third example, let us consider a digital phase- 
locked loop (DPLL) with positive going zero crossing de­
tector. The system diagram is shown in Fig. 10.

Dynamics of this circuit has been analysed in a number 
of papers [32], [43]. The authors considered in particular 
a one-dimensional model of dynamics of the system de­
scribing correspondence between consecutive instants of 
sampling the input signal (closing of switch SW) :
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Fig. 10. a) Block diagram o f the DPLL, 

b) characteristic o f  the VCO.

Fig.ll. Bifurcation diagram for the D PLL. Principal A rnold  tongues 
are indicated. Labels 1 to 18 show positions 

o f operation points for which phase-plots have been measured.

Figs. 11 and 12 show results obtained via experiments 
in a real physical DPLL [32]. Fig. 11 shows the bifurca­
tion diagram. Regions of principal periodic oscillations — 
Arnold tongues of the type 1/1, 2 /1 ,3 /1 ,4 /1 ,1 /2 ,3 /2 , 
5 /2 ,4 /3  — are depicted. It is worthwhile pointing out that 
in this case, the Arnold tongues intersect which seems un­
likely in the plots presented for the digital filter in the pre­
vious Section. Intersection of Arnold tongues means 
coexistence of various periodic orbits, and gives indica­
tion for existence of chaotic behaviour. Labels 1 through 
18 indicate points for which phase plots presented in Fig. 
12 have been measured by means of an oscilloscope.

In [43], the authors have carried out a detailed analysis 
of the DPLL proving existence of chaotic oscillations ana­
lytically, thus the results of experiments are fully con­
firmed mathematically.

5.4. Example 4 —  single neural cell
Chaotic motion has also been observed in simplest neural 
networks [3], [62]. Even single neural cells with inertial 
feedback driven by a periodic input function, can exhibit 
chaotic behaviour. Let us consider a single neuron with 
feedback, as shown in Fig. 13 [3].

Dynamics of this simple circuit are described by a sec­
ond-order differential equation with a periodic driving 
function :

d 2U d U
LC—̂ — b /?C—̂  +U = V  =  tan h(ßU) +  a cos (óit)

(17)
where: tan h(ßU) defines the nonlinear characteristic of 
the neuron and a  cos (cot) is a periodic driving current 
added at the input of the cell.

.... .

q

"o.O 0.2 0.4 0.6 0.8
ai1.0

Fig. 14. Bifurcation diagram for the single neural cell driven 
by a sinusoidal input.

Ъ\ 7i| ril Щ °/l|______
Fig. 12. Phase plots (Lissajous figures) observed 

on the oscilloscope for various D PLL parameter values.

T ( t ) = t +  l  +  A bp{2nx) (16)
where : r  =  wt 4 is the normalized time and b =  —  is 

2 л  Q
the normalized frequency of the input signal A  Vp(ojt) 
(where p  is periodic with period T : р(2л\т +  1]) =
— p (2лт) ; the output of the VCO is a periodic signal 
U [ 0(/)] whose frequency depends on the input voltage :

- f f  = Q 1 +  u ^  and A is the relative amplitude of
the input signal).
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Fig. 15. Chaotic trajectory observed in the neural cell 
fo r a —0.55, ß=2.0, -  R/L= 0.2, w=0.8.

dU/dt

-- 1---- 1----1----1----1---- '----1---- '----1---- '----1---2.5 -1.5 -0.5 0.5 1.5 2.5
Fig. 16. Poincaré section o f the attractor observed 

fo r 0=0.55, ß = 2 .0 ,~  R /L=0.2, (o=0.8.

U
7s

When changing the amplitude of the input signal, the 
circuit undergoes drastic changes of behaviour becoming 
finally chaotic for a = 0.511. Changes of observed dy­

namic behaviour are reflected in the bifurcation diagram 
shown in Fig. 14.

Typical chaotic trajectories observed in the circuit for 
a =  0.55 are depicted in Fig. 15. The following figure 
(16) shows a Poincaré section of the attractor (ie. the 
points of intersection of system trajectories with consecu­
tive planes separated by 2 л  in the driving function phase).

It is worthwhile pointing out that the autonomous sys­
tem (a  = 0 ) is completely predictable — it typically pos­
sesses two stable stationary points attracting all system 
trajectories (this corresponds to “on” and “off’ states of 
the neuron) — see [3]. Addition of an external forcing 
term can produce erratic, pathological behaviour, and ex­
treme sensitivity to changes of initial conditions. The situ­
ation becomes even more complex in higher order circuits 
consisting of interconnections of neural cells containing 
many feedback loops (see [3] for stability analysis of two 
coupled neurons).

6. CONCLUSIONS
In addition to different types of analyses described in this 
paper, we should also mention our first attempts in the 
area of chaos applications. Let us list the most promising 
ones :

•  random number generators [15), [21],
•  applications of chaotic models in short-term fore­

casting [25],
•  pattern and picture analysis and data compression 

using models generating fractal structures (iterated func­
tion systems [4]),

•  computer graphics and animation [4].
Finally, let us mention first attempts to chaos-free de­

sign methods for electrical and electronic circuits and sys­
tems. New topological methods for proving existence and 
uniqueness of solutions of nonlinear circuits [37] con­
stitute a first step towards avoiding complex behaviour. 
Ünal [70] proposed a computer verifiable criterion for the 
existence of chaotic behaviour.

Our review presents only selected aspects and methods 
of chaotic and complex behaviour in circuits and systems. 
The number of problems being unsolved is still greater 
than those that are solved and well understood — this fact 
gives further stimulus for scientists.
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A NEURAL NETWORK APPROACH 
TO ALGORITHMICAL PROBLEMS

JÓZSEF SIMOLA
SOFTWARE ENGINEERING STUDENT, FACULTY OF ELECTRICAL ENGINEERING, TECHNICAL UNIVERSITY OF BUDAPEST

In this paper a way of solving difficult algorithmical problems by a highly 
interconnected network having nonlinear analog amplifiers is de­
scribed. A circuit construction to solve the NP-complete maximal inde­
pendent point problem is also presented.

1. IN TR OD UCTIO N
Several algorithmical problems belong to the class 

comprising NP (Nondeterministic Polynomial)-complete 
problems. For an exact computation solution, these re­
quire a computation time which increases as 
exp(const*N) where N is the size of the problem. This in­
volves a rapidly prohibitive cost as N increases. Problems 
belonging to this class can be transformed into one an­
other during a time interval which can be expressed as a 
polynomial of the problem size. The solution cannot be 
found rapidly in an algorithmical way but if we had a guess 
we could check that in polynomial time. Therefore, meth­
ods capable of forecasting a guess of the solution are of 
great importance.

In the literature, neural networks have been already 
used for finding a solution of another NP-complete prob­
lem [2 ].

In this paper, a new problem, the maximal independent 
point problem is introduced. This is easier to solve by the 
Hopfield network because the problem configuration and 
the Flopfield network match each other.

In Section 2, the Hopfield-network is discussed. In Sec­
tion 3, the problem is introduced and the new method is 
provided. Conclusions can be found in Section 4.

which is a Ljapunov-function of the system. The network 
seeks the minima of this function in the state space which 
is the interior of an N-dimensional hypercube determined 
by the output limits V=0  and 1 of the amplifiers. It can be 
shown that with 0 diagonal elements, these minima occur 
at the corners of the cube. The network thus provides dis­
crete answers and can be applied for solving algorithmical 
problems by constructing an adequate function corre­
sponding to the problem.

V
n e u r o n

V a m p l i f i e r

•  r e s i s t o r  i n

Vо i n v e r t i n g  a m p l i f i e r  

Tjj n e t w o r k

2. THE HOPFIELD-NETWORK
The analog network, as described in previous papers by 

Hopfield [1], [2], is shown in Fig. l.a. The processing ele­
ments are nonlinear analog amplifiers having a sigmoid 
input-output relation F = g (n )  as shown in Fig. l.b. The 
input current of the j t h  amplifier is provided through the 
externally supplied input current J- and the Тц conduc­
tances that connect the output of amplifier j with the input 
of amplifier i. Each amplifier has an inverted output as 
well in order to obtain negative and positive output cur­
rents from the same processor. In this way, the negative 7jj 
conductances can also be realized through resistors. Thus 
the Tjj matrix defines the connections between the ampli­
fiers, and the /  vector determines the external input cur­
rents.

If the 7jj matrix is symmetrical, its diagonal elements 
( 7j;) are 0 and the gain of the amplifiers is high. The stable 
states of the network comprising N processors then occur 
at the local minima of the quantity

N  N  N

£ - t X  Z  W / - Z  (ui-i j- 1 i-i

Fig. l.a. The Hopfield-network. The circles at intersections 
correspond to resistive connections (T).,s). 

Connections between inverted outputs and inputs represent 
negative (inhibitory) feedback

и

Fig. l.b. The nonlinear monotonic input-output relation 
o f the amplifiers [2]
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3. THE MAXIMAL INDEPENDENT POINT PROBLEM
One member of the NP-complete class is of our special 

interest. This is the maximal independent point problem: 
Find in an undirected graph the biggest size point set in 
which the points are not connected (e.g. there are no 
edges among these points at all).

The network minimizes only its Ljapunov-function so 
the problem must be described in terms of this function by 
choosing the Т-ц matrix and the /, vector. The output of the 
ith amplifier can represent the i th point of the graph. If the 
point is within the set then the V- output should be 1; and 0 
otherwise. The graph is characterized by its adjacency ma­
trix Ay; the Лу element of the matrix is 1 if the i and j points 
are connected, and 0 otherwise. The Тц matrix and the It 
current vector will represent the adequate network for the 
problem. As seen before, we must fulfill two conditions. 
First, the point set should be independent, and second, it 
should be maximal size. Let’s select ТЦ= К  Ay where 
К < 0. So the first term of Eq.( 1) will be zero if and only if 
there are independent points in the selected set. Other­
wise the sum is greater and this would violate the minimiz­
ing demand. The second term of Eq. (1) should minimize 
the E function by maximizing the size of the set. This can 
be achieved by choosing I= L  where L > 0. So the more 
outputs are set to 1 the more negative is the second term. 
E has a form given by
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In that way, a Ljapunov-function of the problem has 
been constructed. Weighting К and L, we can find the 
trade-off between the two conditions.

A PASCAL program has been written [3] in order to 
simulate the network. The result has been checked by 
solving the problem in algorithmical way. Having ana­
lyzed the results of the simulations we found that the net­
work works perfectly. Experiments with a ten point graph 
gave a hit rate of about 99 per cent. The remainder pro­
duced a suboptimal solution where the size of the set was 
not maximal. Networks of up to 100 amplifiers can be 
simulated in this way.

4. CONCLUSION
A new method for solving the NP-complete maximal 

independent point problem (defined in section 3) has 
been given. This problem matches well the Hopfield-net- 
work. With a guess given by the neural network and by al­
gorithmical checking, the method can provide a fast solu­
tion of the problem. With computer simulation of the net­
work we learnt the basic properties of the new solving 
method. Several technical problems lead to NP-complete 
problems, and by solving one of these, a fast solution can 
be achieved for the whole class.

[3] Simola, J., “Analog neural network for solving algorithmical prob­
lems,” Scientific Student Conference Study, Tutor: Dr. Edit Halász, 
Inst, of Communication Electronics, Technical University of Bu­
dapest, 1990, (in Hungarian).
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New software called TINA has been developed for nonlinear circuit ana­
lysis and design. In addition to the usual DC, AC, Transient, Fourier and 
statistical analysis the program has several unique features. The op­
timization allows the user to specify a desired quantity, then the pro­
gram finds the nominal value and sensitivity of a selected component 
that m eets this specification. With the built in measurement interface 
one can compare the simulation with the reality and then tune, test or 
troubleshoot the circuits in the same integrated environment. Combin­
ing analysis, measurement and optimization parameter extraction and 
sophisticated automatized measurements can be carried out. User 
defined models can be added to the program to fulfill special require­
ments.

INTRODUCTION
Computer programs for design and analysis of elec­

tronic circuits are used for several decades and a number 
of excellent programs are available worldwide [1]—[6]. 
However, the autors’ idea to create an integrated environ­
ment for simulation and measurement required the devel­
opment of a totally new program based on modern circuit 
theory and software technology. Taking advantage of a 
new development many special features (word processor 
and DTP interface, optimization, statistical analysis, har­
monic analysis and Fourier transformation, user defined 
device model facility, etc.) have been implemented which 
are not all present—especially not in integrated form—in 
other programs. In this paper we shall mainly concentrate 
on the new features while giving a description of the whole 
system.

1. GENERAL FEATURES
In TINA circuit diagrams are designed in an easy-to- 

handle schematic editor. Once the circuit has been cre­
ated DC, AC, transient and Fourier analysis can be car­
ried out, the results are graphically presented on the 
screen. The built in word processor of the system allows 
the user to add text to the circuit diagrams or to the results 
in order to create complete documentation or educa­
tional/ training material. The circuit diagram as well as the 
results can be directly printed on many printers or saved 
into disk.

TINA allows stepping of component values, model 
parameters and of temperatures. The results may be 
plotted as a family of curves. During the DC analysis com­
ponent values and model parameters can be swept i.e. al­
tered continously. A special feature of the program is the 
optimization. Specifying a desired quantity (voltage, cur­
rent, power, frequency, etc.) in the circuit, prompts the 
program to find the value (resistance, capatitance, etc.) of 
a selected component that meets this specification.

Tolerances can be assigned to all circuit components 
and their parameters. Monte-Carlo and worst case ana­
lysis are available to statistically test circuit performance.

If a TINA-Lab measurement card is connected to the 
system, the user can compare the simulation with the re­
ality. The TINA-Lab cards will provide the same excita­
tion which was used during the simulation and read back 
the response of the circuit. An IEEE-488 interface is also 
in development to establish connection with external in­
struments.

In addition to the standard models built-in for all the 
semiconductor components, the user can develop and 
add his own models to the system. A library of procedures 
is available providing an interface to the system.

The described features of the system are shown 
in Fig. 1.1.

2. THE SCHEMATIC EDITOR
From the point of view of the user one of the most im­

portant part of the system is the graphic circuit editor. 
With the aid of this editor the circuit components can be 
choosen from the component catalog and are positioned 
by the cursor keys or a mouse and rotated and/or mir­
rored appropriately. The schematic editor can be addi­
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Fig. 1.1. The block diagram o f TINA



tionally used to generate input files for PSpice [1]. Once 
the circuit scheme is edited the graph of the circuit will be 
generated, and an internal netlist will be provided show­
ing component types and values between the automati­
cally numbered nodes.

The following standard elements are allowed:
•  Passive elements: resistor, capacitor, inductor, 

coupled inductors
•  Independent sources: voltage and current sources, 

waveform generators
•  Controlled cources: All four kind of controlled sour­

ces (e.g. current controlled current source, voltage 
controlled current source, etc.)

•  Instruments: voltage-, ampere-, impedance-, and 
wattmeters

•  Ideal operational amplifier
•  Operational amplifier
•  Semiconductor devices: diode, bipolar transistor, 

enhancement- and depletion-mode MOSFET, 
P-channel and N-channel JFET.

The screen format of the schematic editor with a part of 
the component list is shown in Fig. 2.1.

Fig. 2.1. The editor screen with a differential amplifier

3. DC, AC, TRANSIENT AND FOURIER ANALYSIS
The basic algorithm of the program is the modified 

nodal analysis method, targeting the direct determination 
of the following quantities:

•  Nodal potentials
•  The current of those components where the current 

cannot be expressed directly with the voltage drop. 
Such components are for example: independent or 
controlled voltage sources, amper meters, coupled 
inductors, output of operational amplifiers, etc.

The advantage of this procedure lies in giving correct 
results even if the above mentioned components are in­
serted—as opposed to the traditional method of nodal 
potentials which cannot be applied in such cases or gives 
only approximations ([7], [8 ]).

DC Analysis
For linear circuits the automatically generated linear 

system of equations is solved by Gaussian elimination. In 
the case of nonlinear circuit components the Newton— 
Raphson method is applied. First the difference of the 
right and left sides of the system of nonlinear equations is 
computed, based on an initial approximation. Next the li­
nearized system of equations is solved giving an estima­
tion for eliminating the error. This procedure is repeated 
until the error is lower than a predefined threshold. The 
Newton—Raphson method provides quick convergence

in the vicinity of the solution but needs careful handling 
far from the solution. In TINA a number of analysis par­
ameters can be accessed through a menu and with the ap­
propriate choise of them quicker convergence can be 
achived.

In addition to the determination of nodal voltages 
TINA allows the calculation of the transfer characteristic. 
The transfer characteristic of the previous differential am­
plifier is shown in Fig. 3.1.

- 3 00 . 0  - 180.0  - 6 0 . 0  60.0  180.0  300
O u tpu t  v o l t a g e  In p u t  v o l t a g e  CmUD

CUD

Fig. 3.1. D C  transfer characteristic o f the differential amplifier 
in Fig. 2.1.

A special feature of the DC-transfer characteristic cal­
culations that the independent variable can be not only an 
input voltage or current but also a parameter of any com­
ponent, while the output can be a quantity displayed by an 
instrument (e.g. impedance-meter, power-meter, etc.). 
Fig. 3 .2 /b  shows the output voltage and the power dissi­
pated by the pass transistor in a regulated power supply 
(Fig. 3 .2 /a) as function of the load resistance.

Power n»t»r, 1 ,, ,V  Л. HI/Mir«
10- В _* [ W) 2N4231A Gfl/Ground

-C3-----------Ф -----\  j(--------------V--------- JU/Junper
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i UH/Uolt Meter
-------------------- — — I ftH/ftnper Meter
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_________________________ I RE/Resistor

J* 1 Cft/Capac i tor
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4 ^  T  L Л ' T Cl /Coup led Inductors

CS/Current Source

- Г BZD23-C7U3 Л

R e g u l a t e a  p o w e r  s u p p l y

Fig. 3.2a Regulated power supply with the power meter measuring 
the dissipated power o f the pass transistor
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Fig. 3.2b Output voltage and dissipated power as a function o f the 
load resistance

27 VOLUME XLII JULY 1991



АС Analysis
When analyzing a linear AC network, TINA first com­

putes the impedance of reactive (L and C) components 
and the complex peak values of exciting voltages and cur­
rents, and then solves the resulting system of complex li­
near equations consecutively at different frequency 
points resulting the amplitude and phase characteristics.

In case of non-linear networks first the DC working 
point is to be determined. Then the substituting linear net­
work is defined around the working point, by calculating 
the actual differential conductances, capacitances and in­
ductances. After this preparation the analysis proceeds in 
the way described for the linear networks.

As an example of AC analysis the Bode amplitude and 
phase diagrams of the above differential amplifier are 
shown in Fig. 3.3a and Fig. 3.3b.

R e s u l t  o f  AC a n a ly s is  -  A m p l i tu d e  c h a r a c t e r i s t i c s70.0

60 . 0

50. 0

40 . 0

100,0 1 .0k  10.0k 100.0k 1 .0M

F reque nc y  CHz]

Fig. 3.3 a Am plitude diagram

i0.0
Gain

CaB]

R es u l t  o f  AC a n a ly s is  -  Phase c h a r a c t e r i s t i c s

Fig. 3.3b Phase diagram

Transient Analysis
State equations are drawn up for the voltages of capaci­

tors and the currents of inductors. The equations are 
solved by the backward-Euler method. In the case of non­
linear circuits currents and voltages of non-linear resistive 
components should also be determined by the Newton— 
Raphson method which means an internal DC iteration at 
every time step. It may occur that this DC iteration does 
not converge within the allowed maximum iteration num­
ber. In such cases the program tries to achieve conver- 
gency by halving the time step.

In Fig. 3.4 the transient response of the differential am­
plifier is shown with a square wave excitation on the input.

R e s u l t  o f  TR a n a lys is  -  Response in t im e  domain

CU1 Fig. 3.4. Transient response o f  a differential amplifier 
Another example of the transient analysis is the Tunnel 

diode oscillator shown in Fig. 3.5.

0 .0  100.0  200.0  300.0  400.0  500.0
Output c u r r e n t  Time Cns3

Fig. 3.6. Waveform o f a Tunnel diode oscillator

After executing the transient analysis the user can draw 
and evaluate either the discrete or continuous Fourier 
spectrum, obtained by using the Fast Fourier Transfor­
mation (FFT) method.

Let us examine the above oscillator through Fourier 
analysis. In Fig. 3.7 the Fourier spectrum of a 2 ps long 
sample is shown. Running the crosshairs on the spectrum 
we can read the base frequency at the first f Ф 0 maximum. 
We also see the higher harmonics maximums at integer 
multiples of the base frequency.

We can read from the picture that the base frequency is 
at 7.47 MHz. Of course the base‘frequency could have 
been computed directly from the waweform as well.

Now knowing the base frequency compute the harmonic 
distortion of the waweform. The value of the first five har­
monics and the harmonic distortion are shown in Fig. 3.8.
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Fig. 4.2. Results o f optimization

This cumbersome procedure can be avoided with TINA 
through its built in optimization feature.

Consider the emitter follower in Fig. 4.1 loaded with a 
resonant circuit [5]. With the given nominal values the 
voltage of the emitter is 4.24 V. Suppose that the required 
value is 5 V and we want to achive this goal by changing 
the value of R2. In the optimization mode one can select 
the emitter voltage as a target and the R2 resistor as a goal 
(Fig. 4.1). The program will provide the a resistor value of 
R 2=2.7  kQ and the absolute sensitivity: 878 pV/i2. 
(Fig. 4.2.)

5. WORST-CASE AND MONTE-CARLO ANALYSIS
These analyses allow to evaluate the effect of compo­

nent tolerances. Note that sophisticated tolerance 
schemes are allowed e.g. nonsymmetric distributions, 
semiconductor components coupled through group toler­
ance including negative tracking as well.

In the worst-case analysis TINA provides two meth­
ods: an analytic and stochastic approach. If the analytic 
method is chosen the program calculates all the possible 
component value combinations. For a small number of 
components this method is fast and accurate, however for 
a large number of components it slows down. In this case 
the stohastic method is to be used and the program will 
choose parameter values randomly at the end of the toler­
ance band. One can choose between the two methods 
considering that the number of necessary analyses in the 
analytic method increases as a power of 2. For example if 
we study the effect of tolerances on two components it 
needs four analyses and even study on six elements need 
64 analyses only. Above that number of components, we 
arrive to the usual range of the stohastic calculations 
where these methods are faster.

The Monte-Carlo analysis calculates component par­
ameters in the tolerance band and in its vicinity using the 
uniform or Gaussian distribution functions.

As an example take the circuit in Fig. 4.1. and examine 
by the Monte-Carlo analysis. The emitter voltage is set to 
5 V using the result of the above optimization. Suppose 
that the resitors RI, R2 have 20% tolerances with Gaus­
sian distribution. Calculate the distribution of the emitter 
voltage for 1000 random cases. The distribution is shown 
in Fig. 5.1. On the horizontal axis the emitter voltage on 
the vertical the relative frequency for the different bars of 
the diagram are shown.

[XI 1.0 3.0 9.2 24.1 49.1 73.3 90.8 97.8 99.4 100.0

2.77 3.00 7.24

Fig. 5.1. Monte-Carlo analysis with 20% independent tolerance

Evaluating the distribution we consider emitter volt­
ages between 4 V and 6 V are still acceptable. The result of 
such an evalutation is:
Nominal value: 5.0 V 
Mean value: 5.015 V
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Standard deviations: 0.683 V 
Production yield: 86.1%
Faulty product: 13.9%

Suppose now that due to technological reasons the 
tolerance of the components consists of a 15% independ­
ent and a 5% group tolerance (tracking). In other words 
5% of the deviation from the nominal value will change 
together for the concerned components. The distribution 
yielded by the Monte-Carlo analvsis is shown in Fie. 5.2

R*li

IV. 1 0.2
2.93

0.4 3.7 13.2 33.9 39.5 83.0 93.2 98.7 100.0

3.00 6.60

Fig. 5.2. Monte-Carlo analys with 5%  group tolerance

The result of the evaluation of this distribution with the 
same condition:
Nominal value: 5.0 V 
Mean value: 4.993 V 
Standard deviations: 0.53 V 
Production yield: 94.8%
Faulty product: 5.2%

As it could be expected the range of the emitter voltage 
deviation is less and the production yield is greater since 
the tracking has a certain compensation effect on the base 
current.

Finally suppose 5% negativ tracking between the two 
components. It means the R2 is greater by 5% then R1 is 
less by the same percentage.

The result of the evaluation is:
Nominal value: 5.0 V 
Mean value: 4.992 V 
Standard deviations: 0.567 V 
Production yield: 92.1%
Faulty product: 7.9%

In this case the tracking enhances the dependance of 
the base current on resistors, the production yield is less.

6. DEVICE MODELS
TINA has a number of sophisticated models for the dif­

ferent semiconductor components. The user can choose 
an appropriate model for the application or using the user 
defined model facility can create and add a new model. 
The hierarchy of the models will be illustrated through the 
operational amplifier for which already four different 
models are available at present.

Ideal operational amplifier
The simplest way of modelling an OP AMP is the ideal 

operational amplifier. It is defined by infinite amplifica­
tion, zero voltage and current on the input and there is no

restriction for the output. For a number of DC applica­
tions it is a good approximation, note however that offset 
currents and voltages cannot be modelled. It also works 
well for many AC and transient circuits but it does not 
work for a number of active filters. It is also not appropriate 
for oscillators where the saturation effects of the OP AMP 
play important role. In Fig. 6 .1a integrator circuit is shown 
and its response to a square wave excitation. For small fre­
quencies all four modells will give similar result.

Fig. 6.1. Integrator circuit with ideal OP AMP

R e s u l t  o f  TR a n a ly s is  — Response in  t im e  domain

Output v o l t a g e  Time [ u s ]  и 1.0
CUD

Fig. 6.2. Time response o f  the integrator

Linear OPAMP model
The linear OPAMP modell of TINA is described 

through the following parameters:
Open loop gain 
Input resistance [Q]
Output resistance [fi]
Dominant pole [Hz]

The equivalent circuit of the model is shown in Fig. 6.3.
Out

This model gives good results for many active RC ap­
plications. As an example consider the circuit in Fig. 6.4. 
The amplitude characteristic is shown in Fig. 6.5.
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Fig. 6.5. Calculated, amplitude characteristic

Standard non-linear OPAMP model
In the standard non-linear model of TINA the follow­

ing parameters are included [9]:
A 0 open loop gain
R{ input resistance
Rg output resistance
Fpeak maximum output voltage
Sr maximum slew rate
f x dominant (first) pole
/ 2 second pole
FIOO input offset voltage at 27° C
/ IB0 input bias current at 27° C
/,00 input offset current at 27° C
f)vi0 temperature coefficient of the input offset

voltage
D current doubling coefficient

Constants
T0 input 21° C 
R 1 100 kQ
R2 100 kQ
gml = gm2 0.1 mS 
c 0.99

The equivalent circuit of the model is shown in Fig. 6 .6 .

Fig. 6.6. The equivalent circuit o f  the standard nonlinear 
OPAMP model o f TINA

This model includes saturation effects, it is appropriate 
for DC, AC analysis and certain transient processes can 
be also modelled with it. However it is not appropriate for 
modelling comparators due to the phase shift produced 
by the RC model of the dominant pole. A more complex 
model suitable for all cases is the OPAMP macromodel is 
described in the next section.

The OPAMP macromodel
The macromodel of OPAMPs in TINA is based on 

[ 10], [11]. The explanation of the name is that the model 
is somewhat similar to the original IC but it contains much 
less PN junctions. This model gives fairly good results for 
most applications and solves the above mentioned prob­
lem too. Using this model is very time consuming and the 
determination of the parameters is hard. However in ad­
dition to the accuracy it is a great advantage that the par­
ameters of this model are often supplied on diskette di­
rectly by the manufacturers. The equivalent circuit of this 
model for NPN inputs used in TINA is shown in Fig. 6.7, 
for more details we refer to the literature.

7. USER DEFINED MODELLING
In addition to the available device models in TINA the 

user can design and add her/his own device models to the 
system by using a set of procedures and the TURBO 
PASCAL compiler. One can either add an additional 
model to an existing device (e.g. add a Tunnel diode 
model to the existing normal diode model) or define a to­
tally new element including its new graphics symbol (e.g. a 
triode). The defined new models or components become 
integral part of the program since the built components 
and models have been defined with the same tools. As an 
examples of the user defined modelling consider the de­
finition of the Tunnel diode used in para. 3. which is 
usually not part of the system.

The equivalent circuit of the diode is given in [ 12], [ 13 ].
The current of the Tunnel diode consists of two parts:
An ideal diode current:

I= Is  *Exp(U/Ut—l ) (7.1)
An Esaki current [ 13]:
0 , if U> Urn
1 = K ( U m -U )2 * th ( U/2Ut) , if Um> U> 0 (7.2)
(K  * Um2/2Ut) * U , ifO>U

Where Ut is the thermic potential, Is, К and Um are 
parameters, U and /  are the voltage and the current of the 
tunnel-diode respectively.
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The main steps of defining the new model:
Define the number of components in the equivalent 

circuit:
SetNoOfElements(3);

Define the topology of the equivalent circuit between 
nodes Pnode and Nnode:

CreateConductiveBranch(l, Pnode, Nnode, Nonlinear);
CreateConductiveBranch(2, Pnode, Nnode, Linear);
CreateCapacitiveBranch(3, Pnode, Nnode, Linear);
Calculate the current of the diode:

PROCEDURE Tunnel Eval;
BEGIN

U : =  GetVoltage(Pnode, NNode);
Id : =  IdDiodeCurrent(U, Vt, Is, gd);
Ie : =  EsakiCurrent(U, Vt, Vv, K, ge);
I : =  Id+Ie 

END;
Where the functions IdDiodeCurrent and EsakiCur- 

rent realise the current formulas (7.1) and (7.2) and their 
derivates.

Connect the new model with the system:
SetModelRoutine(Tunnel Eval);

wing that the forward voltage drop on the diode heavily 
depends on this parameter. Using optimization with the 
condition to match the calculated and the measured cur­
rent in one point we could not only get a good agreement 
between the simulated and measured data but also deter­
mine the reverse current of the diode (10 pA) which was 
not given in the catalog and would have been very hard to 
measure directly.

Fig. 8.2. DC transfer measurement with TINA

8. MEASUREMENTS FROM TINA
From TINA in addition to the computer simulation the 

user can directly control the measurement of the circuit 
under development. TINA provides two tools to do that. 
One way is on use a TINA-Lab measurement card de­
signed and tailored specially for TINA available as an ex­
tension card for IBM PC compatible computers. Another 
way is to control external instruments through an IEEE- 
488 interface. In this article we describe the measurement 
with the TINA-Lab card only. The IEEE-488 measure­
ments will be a topic of a later publication.

The Block Diagram of the TINA-Lab 1 card is shown 
in Fig. 8.1.

With the TINA-Lab 1 card measurement of DC volt­
ages, automatic measurement of DC transfer characteris­
tic, logarithmic amplitude characteristics (Bode diagram) 
and transient recording can be carried out from TINA. 
The voltage range is 25 V the maximum frequency is 100 
kHz. A  family of further cards and external accesories is 
under development.

To demonstrate combined simulation and measure­
ment from TINA consider first the simple circuit in Fig. 
8.2 for wich we carried out a simulation and measurement 
of transfer characteristic. In Fig. 8.3 a number of simula­
tions are presented with different reverse currents sho-

Fig. 8.1. Block Diagram o f the T IN A -Labl measurement card
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Fig. 8.3. The forward voltage on the diode
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Fig. 8.4. The calculated and measured DC-transfer charachteristic
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Fig. 8.5. The calculated and measured Bode diagram
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Fig. 8.6. The calculated and measured transient response

The calculated and measured Bode diagram of the ac­
tive RC circuit (Fig. 6.4) are shown in Fig. 8.5. The agree­
ment between the measured and calculated data is rather
good.
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Figure 8.6  shows the transient response of the same cir­
cuit under a square wave excitation.

9. CONCLUSIONS
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MODELUNG OF НОТ-CARRIER INJECTION 
INTO SILICON-DIOXIDE

T. KOCSIS
TECHNICAL UNIVERSITY OF BUDAPEST, DEPARTMENT OF ELECTRON DEVICES 

H—1521 BUDAPEST, HUNGARY

Hot-carrier effects leading to long-term instabilities have long been 
recognized as posing serious limitation on the reduction of feature size 
pushed forward in n-channel MOSFET VLSI. Channel hot-carrier injec­
tion into the gate oxide can result in the degradation of device perform­
ance due to the trapping of carriers in the gate oxide and the generation 
of interface traps which lead to experimentally observed threshold volt­
age and transconductance changes. The phenomenon of channel hot- 
electron injection is also widely used as the programming mechanism in 
EPROM’s.
The lucky-electron concept is successfully applied to the modeling of 
channel hot-electron injection in n-channel MOSFET’s, although the re­
sult can be interpreted in terms of effective-temperature of hot-carrier 
as well.

1. INTRODUCTION
Silicon-silicon dioxide is probably one of the most 

extensively studied solid-state systems, largely because of 
its importance in the silicon transistor technology. One of 
the physical phenomena in the silicon transistor structure 
that is gaining attention in recent years, since advanced 
fine-line patterning technologies have made it possible for 
device miniaturization to approach its physical limits, is 
the emission of hot-electrons and hot-holes from the sili­
con substrate into the Si02 layer. However, the hot carrier 
induced damage had been known long before the sub­
micron region was entered. Beside being an interesting 
physical phenomenon in itself the emission of hot-carriers 
from Si into S i0 2 has found application in Electrically 
PROgrammable Memory (EPROM ) devices. When In­
sulated-Gate Field-Effect Transistors (IGFET) are used 
as memory devices, it is important to emit hot-electrons 
into the oxide layer more effectively.

It is known that in an IGFET, hot-eléctrons and hot- 
holes are emitted into the oxide layer when the potential 
difference between source and drain is sufficiently large. 
The very high electric fields and the large doping gra­
dients make theoretical and quantitative descriptions of 
the emission process extremely difficult. The high en­
ergetic electrons (and holes) can surmount the Si—Si02 
potential barrier 3.1 eV (4.8 eV) and then get trapped in 
the oxide. These charges inferfere with the control gate 
operation, and produce threshold shifts, transconduc­
tance changes, saturation current modifications, etc. 
which lead to the long-term instability and device degra­
dation. Therefore, it is quite important to understand the 
hot-carrier emission mechanism in order to control this 
phenomenon. It is clear that all of the changing device 
parameters can only be tolerated to a certain degree if the 
device is to operate properly in its circuit environment. 
For these reasons, long-term instability is a key to success­
ful design of a MOSFET in the submicron region.

2. MODELLING OF НОТ-CARRIER INJECTION
The lucky-electron model of channel hot-electron in­

jection can be described as follows. The scattering events 
are illustrated in Fig. 1. According to the lucky-electron 
model, an electron is emitted into Si02 by first gaining 
enough energy from the channel electric field to surmount 
the Si—S i0 2 potential barrier without suffering an energy 
stripping collision in the channel and then being redi­
rected toward the Si—Si02 interface. For the sake of sim­
plicity, the path of the electron from the bulk to the gate 
electrode can be split into four parts which are considered 
separately.

Fig. 1. (a) cross-sectional view o f the MOSFET illustrating the scatter­
ing probabilities in the model.

(b) Schematic illustration o f injected electron into the potential-distance 
space. The luckyelectron travels a distance d to gain the energy needed to 
surmount the Si—S i0 2 potential barrier. The conduction band for 

Si and SiO, are included.
(After Tam et al. [2])

From point A  to point B, the channel electrons gain 
enough energy from the high electric field near the drain 
to become hot. At point B, redirection of hot-electrons 
takes place by phonon scattering, and the electron travels 
perpendicularly to the surface. From В to C (which is at 
the surface) the hot-electron does not experience energy 
decreasing collision so enough energy remains to sur­
mount the potential barrier of Si—Si02. Between C and 
D, the electron does not experience any collision in the 
oxide image potential as well. D marks points in the oxide 
layer where the potential is maximal. When the electron 
reaches point D it can pass through the oxide toward the 
gate by the aiding electric field.
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Since these processes can be considered to be statisti­
cally independent, the total probability of the process is 
the product of the probabilities for all individual events. 
The consideration of the models can be split into parts ac­
cording to the two models. At first, the lucky-electron 
model will be presented, corresponding to the electric 
field consideration. This model requires the calculation of 
the electrical field, strictly speaking the highest field in the 
channel. This can be done by using analytical field model 
or 2-D or 3-D device simulations [2]. There is, however, 
another model, which is based on the effective tempera­
ture of the hot-electron.

3 .  T H E  PROBABILITY OF ACQUIRING KINETIC E N E R G Y  
HI GHER THAN THE SI L I C O N / S I L I C O N - D I O X I D E  
POTE NT I AL  BARRIER

3.1. Electric Field Concept
In order for the hot-electron to surmount an Si—S i0 2 

potential barrier фв, its kinetic energy must be greater than 
фв [ 2]. This kinetic energy is gained from the high acceler­
ating electric field of the channel near the drain by cover­
ing the distance between points A  and В  (Fig. 1). For the 
sake of simplicity, the accelerating electric field Ex is 
usually assumed to be constant, so the electron has to 
travel a distance if equal to фв /  q  • E x to become hot and to 
acquire this kinetic energy. The probability that an elec­
tron can travel this distance or more without suffering any 
energy robbing collision can be written as:

Рфв =A • exp (—d/X), (1)
where A is a constant of normalization, d  is the critical 
distance and A is some scattering mean-free-path of the 
hot-electron which will be discussed later. Flence

РфВ = A  ■ exp { - ф в / q  • E x • A), (2)
is the probability of an electron acquiring a kinetic energy 
greater than фв. If РфВ is investigated more rigorously one 
can see that this probability depends on the direction of 
the momentum of the electron because the electron must 
have a sufficiently large momentum perpendicular to the 
interface. Tam etal. [2] made a modification to take into 
account the effect of the direction of motion. An electron 
which has exactly the energy фв will be emitted only if its 
momentum is directed at an infinitesimally small solid 
angle perpendicular to the surface. Tam et al. assumed 
isotropic redirection scatterings, and considered only the 
geometry of the emission process.

According to [2], the modified probability function is 
given by

Р ФВ~ ® - 2 5 '  exp ( <PB/ q - E x ‘ X), (3)

where РфВ is the probability of an electron acquiring the 
required kinetic energy from the channel field and retain­
ing the appropriate momentum after the redirection colli­
sion. This function differs from (2) which was derived 
using a simpler assumption, and can be more accurate.

3.1.1. The Potential Barrier Height
The function which describe the potential barrier 

height фв between'Si—S i0 2 has three terms.
In the first term, the energy difference фт between the

Fig. 2. Schematic energy-band diagram of a MOSFET.

Si and the S i0 2 conductance band is taken into account 
(Fig. 2.):

Фв ~  Фт (4)
where фт  is 3.1 eV for electrons, and 3.8 eV for holes in Si

Ш, [3], [4]. However, the Schottky barrier lowering ef- 
t must be included to reach more accuracy. The 

Schottky effect is the image-force-induced lowering of 
the potential energy for charge carrier emission when an 
external electric field is applied [5].

This effect can be taken into account easily by introduc­
ing an additional barrier lowering term:

Фв= Фт ЛфВ\, (5)
with:

АфВ1 = ß  • J E ox , (6 )

where ß = ( q }/ 4 • л  • едхе0) 1/2 =  2.59 • 10_4e(V • cm ) 172 
for Si is a constant [2], [3], [6 ], Eox denotes the normal 
component of the oxide-field, and АфВ1 is the amount of 
the barrier lowering due to the image force which lowers 
the emission barrier between Si and Si02 as illustrated in 
Fig. 3.

The hot-electrons could be emitted by tunneling as well 
as by surmounting the Schottky-lowered barrier. How­
ever, over-the-barrier emission dominates at large volt­
ages at high emission probabilities, and the tunnel 
emission becomes appreciable and may even dominate at 
small voltages at low emission probabilities. Therefore, 
tunneling must be included in the model.

Fig. 3. Schematic energy-band diagram of a MOSFET, 
illustrating the Schottky barrier-lowering effect.
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The proper modelling of the tunnelling would require a 
detailed knowledge of the hot-electron energy distribu­
tion, especially at the top portion of the Scottky-lowered 
barrier. In the absence of such knowledge, and to keep the 
model simple within the lucky-electron concept, it shall be 
assumed that a hot-electron is considered emitted either 
when its energy allows it to be emitted over the barrier or 
when it could tunnel into the S i0 2 layer with sufficiently 
high probability. This assumption is equivalent to intro­
ducing an additional barrier lowering term to allow for 
tunnelling probability (Fig. 4.). This additional barrier

KTBAR3

Fig. 4. Schematic energy-band diagram o f a MOSFET, 
illustrating the effect o f hot-electrons tunnelling from  Si into S i02.

lowering term should be a function of the oxide field. Its 
functional form may be obtained from the following con­
sideration:

The probability for a hot-electron, having an energy W 
below the top of the barrier, o f penetrating into the oxide 
by tunnelling is given by

P T =  exp(— C  • W372 /  q  ■ E ox), (7)
where C = 4 - ( 2 -  m *)l/2/ 3 - h ,  h denotes the’Planck’s con­
stant, and m* is the effective mass of the carrier. For a 
fixed tunneling probability, after reducing we have

W  =  [ - q - E ox/ C - \ n { P T) Y ' K  (8 )
The second additional barrier lowering term needed to 

correct for tunnelling is proportional to £ 2( 3:

Афв2 =  а - Е 1 'х\  (9)
Unfortunately, there is not enough information about 

P T, for this reason a  must be determined by comparison 
with experimental results [6 ].

(a  e  1- 10"5e(V • cm2) 173 [3], [6 ]; 4 ■ 10“5е(У • cm2) 173 [2])
Including these two additional barrier lowering terms, 

the final form of <j>B is given as

Фв(Еох) - ф п - ß -  Е Ц 2- а  • ЕЦ 2 • (10)

3.1.2. The Mean-Free-Path Parameter
The electrons gain energy from the high field, but ine­

lastic scattering processes limit the number of electrons 
that attain energies significantly above the conduction 
band edge. When the electric field exceeds approximately

2-104 V /cm , optical phonon emission dominates the scat­
tering effects, and the electron’s velocity saturates. When 
the field strength reaches approximately 105 V /cm , the 
electron gains more energy from the electric field between 
scattering events than it looses when it scatters. For fields 
exceeding this value, the electron is no longer in thermal 
equilibrium with the lattice, and its energy relative to the 
conduction band edge begins to increase. When this en­
ergy reaches a threshold energy W„ impact ionization 
becomes a second important energyloss mechanism for 
the electron. Optical phonon scattering and impact ioni­
zation are well described in terms of mean-free-paths, 
denoted by XP and X„ respectively, and threshold energy 
W, of impact ionization.

When the kinetic energy of the hot-electron is less than 
W„ the impact ionization is negligible, and the dominant 
scattering mechanism for the hot-carrier is due to the opti­
cal-phonons. In this case, A is equal to the optical phonon 
scattering mean-free-path XP:

X =  XP . (11)

The kinetic energy being greater than Wp both of these 
two mechanisms play an important role in the scattering. 
Therefore, X can be expressed as

A- 1  =  X j 1 +  Я7 1, (12)

where X, is the impact ionization mean-free-path. The 
published values of A;are: 40 nm [7], 70 nm [2], 187 nm 
[8 ], and the typical value of VF7is 1.23 eV [2]. Moreover, a 
modified mean-free-path X was introduced in the paper of 
Tam et al. [2]: If the hot-electron kinetic energy W  is less 
than W,, the dominant scattering mechanism is the opti­
cal-phonon scattering. When the kinetic energy W  
becomes higher than W, (i.e .: Wt <  W < </>B), both the op­
tical-phonon scattering and the impact ionization are 
significant. Taking into account this, the probability func­
tion can be written as

P,B~exp(—W, / q -E-Xp)  • exp{ - { ф в - Щ / q E - X * )  (13)

where X* is the mean-free-path defined in (12). By substi­
tuting Wt =  у  • фв into (13),

Р ф в - е М - ф в / q -  E x) ■ ( l / X P+ ( l - y ) / y , ) .  (14)
An average mean-free-path X can be determined easily 

from this equation:

1 .. 1 , ( l ~ y >
X Xp X, (15)

It has to be noted that the influence of impact ionization 
is weighted by (1—y). The paramter yean be determined 
by comparing experimental results.

If the energy loss by impact ionization is assumed to be 
negligible, then X is equal to XP. Assuming the impact ioni­
zation to be temperature independent, the temperature 
dependence of the emission probability can be described 
by the temperature dependence of XP [8 ], [9]:

X p (T )  =  X0 - tanh ( Wop/2-kB ■ T) (16)

where A0 is the zero temperature limit of XP, Wop is the op­
tical-phonon energy, kB is the Boltzmann’s constant and 
Tis the absolute temperature. The typical values for A0 are 
10.6 nm [2], 10.8 nm [6 ], and for Wop0.063 eV [51, [6 ], 
0.070 eV [2].
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tem to the lattice. Its typical value is in the range of 0 . 0 5  to
0 .2  ps [1 0 ].
The average energy of an electron is given by

< W >  = y  - k B - T e. ( 2 4 )

By substituting ( 2 4 )  into ( 2 3 )  and reducing by k B, Te is 
given by

^ 2 - r ^ E - r ,  + n  (25)

In the paper of Hofmann et al. [4], the following equa­
tion was used to describe the nonlocal relationship be­
tween Te and the electric field distribution given by 
Takeda et al. [ 1 2 ] :

CO

T e{x )  =  - f  • “ Г “  f  E,  (X -  U)  '
j  K B  5

• exp ( - - | -  • и ■ rw• vsj • du, (26)

where Ef is the electric field component in the direction of 
local electron current flow, and vs is the saturation velocity 
of electrons.

An advanced model, was published by Hänsch et al. 
[ 13], [14] which is based on a self-consistent treatment of 
hot-electron transport in submicron devices. The local 
solution which provided a local mobility and carrier tem­
perature model was derived from the general balance 
equations for particles and energy.

The local effective-temperature of carriers is:

< 2 7 >

where TL denotes the temperature in equilibrium, r^isthe 
energy relaxation time, vsal a n d  p 0 denote the saturation 
velocity and low field mobility of electrons. The local mo­
bility is given by

"" ‘  l  +  [ l  +  (2 ■Л . % Ч „ ) гГ '2 <28)
In ( 2 8 )  F  represents the driving force for current J:

F n =  E  +  j - ■ - n \  ( 2 9 )

The driving force Fis appropriate to extend the drift-dif­
fusion current relation as:

j  =  q -  Hn -n -F „ ,  ( 3 0 )

These equations can be true in the general situation of 
an inhomogeneous electric field. With this model, hot- 
electron effects can be included in submicron device de­
sign, and this model allows a simple way to model mobility 
and electron temperature, which are important for device 
modeling.

3.3. Probability of Collision-Free Travel to the Barrier 
Peak

The probability of collision-free travel to the barrier 
peak can be split into two parts. At first the electrons have 
to reach the surface with sufficiently high energy to sur­
mount the potential barrier, and after this they have to 
pass through the insulator.
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3.2. Carrier Effective-Temperature Concept
The hot-carriers are not in thermal equilibrium with the 

lattice, in other words, the energy of hot-carriers is higher 
than the energy in equilibrium. The energy of hot-carriers 
can be described with the so-called Carrier Effective-  
Temperature Te. In several papers the following prob­
ability function was used to describe the probability РфВ 
[2 ], [1 0 ]:

РфВ ~  A  ' exp (—í V  kg TJ,  (17)
which is equivalent to (2) if the energy k B Te is assumed to 
be equal to q E xX. In this equation, the potential barrier 
height фв is the same as introduced in Section 3.1.1., kB is 
Boltzmann’s constant, and Te is the effective-temperature 
of hot-electrons, which is discussed in the next Section. 
However, some authors (i.e. Hofmann et al. [4] used the 
simple thermionic emission formula to describe this prob­
ability:

РфВ= А -  (kB ■ Tey /2 ■ exp ( ~ ф в / к в • Te), (18) 

where A is a factor of normalization.

3.2.1. The Relation of Carrier Effective- Temperature 
Versus Field

The kinetic energy of hot-carriers can also be described 
by using the effective-temperature Te of hot-carriers 
which can be obtained as a function of the electric field Ex. 
Several T f E )  functions have been published in the lit­
erature. The most simple approach is given by

Te"------- q ' Ek S ' k  • ( 1 9 )

Thus we have
p  ~  е - ф В / ч - Е х  х =  е - Ф В / к - т е  (20)

An improved approach for T ( E X) has been given by Bar- 
telnik e ta l.  [1 1 ]:

Г = - i __________________* _____________  (2 1 )
e k B 1/2 +  [ 1 /4  +  ( W0/r • Wr) ] 1/2 ’ 1 '

where:

" i ------ ■ ( 2 2 )

where Xr and Wr are the mean-free-path and the Raman 
optical phonon energy, respectively, and r is the ratio be­
tween the mean-free-paths for ionization scattering X, 
and Xr. Wr and Xr are practically the same as W„pand XP, re­
spectively.

Te(E )  can also be obtained from the well-known energy 
balance equation (see for example [1], [10]). The balance 
between the amount of energies can be written as:

d  < W >  <  W  >  ~  ~2 * кв ‘ TL
- — ^ -  =  0  =  q - v E - ----------------------------- ,(23)

where the first term on the right hand side is the amount of 
energy that an electron receives from the field in unit time, 
and the second term is the amount of energy that it looses 
to the lattice, v is the electron drift velocity which is de­
pendent on the electric field E, TL is the lattice tempera­
ture and r w is the energy relaxation time, which is the char­
acteristic time for the energy transfer from the carrier sys-
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3.3.1. Probability of Collision-Free Travel to the Inter­
face

After the redirection collision, the hot-electron must 
travel from point В to interface point C (Fig. 1.) without 
suffering any collision. The probability of a channel elec­
tron travelling to the interface from a depth у without any 
collision can be described as [2], [4]:

Р п = е х р ( - у Л ) , (31)
where A is the above defined mean-free-path of the hot- 
electrons.

While the place of redirection is unknown, this prob­
ability function must be weighted by the electron concen­
tration [2 ]:

+  00

I  n ( y )  • e x p  ( — y/X )  • dy  

P ti ~  +» (32)
I  n ( y ) - d y
0

where n (y) is the electron concentration at depth у and 
position X in the inversion layer. The electron concentra­
tion can be obtained by numerical device simulation.

3.3.2. Probability of Collision-Free Travel from the In­
terface to the Potential Maximum

If an electron is emitted into the S i0 2 layer, it travels 
against a restrain electric field (between the points C  and 
D  in Fig. 1.) and must reach the barrier maximum with 
enough energy to surmount. Hence, scattering inside the 
potential well reduces the emission probability of hot- 
electrons [2], [4]. This probability function is expressed as

Р р м = е х р ( - у 0 / Х ох), (33)
where Xox is the mean-free-path of an electron in the oxide 
layer, and y0 is the distance of the potential maximum 
from the interface (Fig. 3.). The typical value for Xox is 3.4 
nm in S i0 2 [4]. To lower the potential barrier by biasing 
the gate electrode, the image force also changes and 
moves the potential barrier maximum (Fig. 3.). For this 
reason, y0 is related to the oxide field E ox as:

y0 =  ( q /  16 • л  ■ eox ■ E ox) i n . (34)
This assumption is valid for electrons which reach the 
potential maximum and can reach the gate electrode, or in 
other words the electrons are not trapped in the insulator.
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