JOURNAL ON COMMUNICATIONS

VOLUME XLII

SEPTEMBER 1991

MICROWAVE INTEGRATED CIRCUITS

Editorial ... P. Gottwald 1

MMIC Activities and Trends in Europe .. F. Giannini 2
Discontinuity Problems of MMICs ... I. Wolff 12

Computer Aided Design Techniques for Integrated Microwave Oscillators B. Roth, A. Beyer 22

Products-Services

GaAs Products from Hungary .. B. Szentpáli 36

News – Events

US Seminar on Telecommunications .. 38

Book Reviews ... 39
Another problem which becomes more and more important at extreme operation speeds is the growing importance of circuit discontinuities. As geometrical dimensions decrease, the electromagnetic field distribution inside the integrated circuit will have more and more a two or even three dimensional character. On the other hand, decreasing dimensions result in extreme high field strength, leading to the necessity of nonlinear treatment in the computations. These are the basic arguments for the application of advanced CAD methods even at smaller integration scale, and this is the reason for presenting a review about the CAD techniques for integrated microwave oscillators and about the discontinuity problems in this issue.

The worldwide interest in the rapid progress in the field of MMICs is also reviewed. In addition to the two leading countries, USA and Japan, the well organized scientific programs show the particular attention for this subject, national programs and broad international cooperation are characterizing the answer of European countries to the MMIC challenge. The review paper presented in this issue focuses on the European trends and activities. In Hungary, considerable progress has already been made in the field of GaAs technology, together with the first steps in MIC an MMIC research. The research work started with the development of discrete GaAs devices which are mostly applied in hybrid microwave circuits in medium-sacle microwave modules. Special problems of the technology as e.g. the ohmic contact formation on compound semiconductors were studied in great detail.

In recent years, special attention was given for the light sensitivity of GaAs devices, and a picosecond optical switch (POS) prepared by MESFET technology was developed. Such switching device will form later on an important part of an integrated sampling unit which is now under development.

The Hungarian research work has been closely connected since many years, among others, with the research activities of German Universities (RWTH Aachen, University of Duisburg, Technical University of Darmstadt). By further intensification of present cooperations and extension of scientific connections to other European countries, we envisage an acceleration and broadening of our activities in this important field.

Péter Gottwald was born in Hungary in 1943. He graduated and took a Ph. D. in electrical engineering from the Technical University of Budapest in 1966 and 1978. He joined the Department of Electronic Devices of Budapest Technical University, and was a visiting scientist at the Technical University of Aachen (RWTH-Halbleitertechnik) and the Technical University of Duisburg (Halbleitertechnik) in 1978, 1986 and 1990. He has acted for many years as a consultant to the Research Institute for Technical Physics of the Hungarian Academy of Sciences. He teaches solid-state electronics, and his research interests are in the field of microwave solid-state devices, III-V semiconductor technology, theory of microwave and optical interaction in solid-state microwave devices and noise problems of III-V semiconductor materials.
The continuous growth in the MMIC field is shown by industrial and academic initiatives, programs at national level and the research trends and challenges. Aim of this contribution is to highlight the above features at European level and, thus, to forecast the near and medium term involvements in MMIC activities.

1. INTRODUCTION

The last five years have seen a world-wide growing of interest and activities in the field of microwave and millimeter wave monolithic integrated circuits (MMICs). The establishment of an affordable technology, in particular, seems to be the best way to acquire the performance requirements in terms of quality and reproducibility. Furthermore, the assessment of powerful hardware and software tools for computer-aided engineering can allow the achievement of an actual yield-driven optimization in the design of the MMIC under development.

These tools have been the challenging issues which have driven many national and international efforts in the GaAs MMIC arena.

The seven-years Microwave and Millimeter Wave Monolithic Integrated Circuits (MMIC) Program of the Department of Defense (DoD) of the United States [1], for instance, as well as the Japanese Scientific Computer Systems Program and the Future Electronic Devices Program of the Ministry of International Trade and Industry (MITI) [2], represent a remarkable demonstration of the ability of the advanced technology is highly encouraging for modules like phase shifters

2. THE EUROPEAN EFFORTS IN MMIC ACTIVITIES

Most of the studies presently performed by European teams in the field of monolithic microwave integrated circuits are generally related to different aspects of the design, manufacturing and testing procedures involved in the development of modules specially devoted to civil applications. In fact, satellites (DBS, DRS, GPS), communications (mobile telephone) and transport and domestic applications (automatic payment, identification badges, car anticollision radar, etc.) [5] will require large quantities of monolithic microwave chips so these new civil markets can represent unique opportunity for the European Industries in the Nineties.

Therefore, the establishment of advanced design tools, characterization methods and realization techniques for monolithic integrated modules appear to be the final goal of cooperative activities of the various partners.

The research and development activities of the various operating groups are shared by the following five fields:

1. Material characterization and fabrication techniques [6]—[9]
2. Design techniques [10]—[15]
3. Measurement strategies and techniques [16]—[17]
4. Advanced modelling [18]—[24]
5. Packaging techniques [25]

It is worthwhile noting that each of the above operating fields requires a continuous effort to be developed further, and every new achievement can normally represent an additional goal in the main project.

The practical implementation of monolithic integrated circuits, in fact, is rapidly changing all the perspectives of the microwave and millimeter wave electronics field.

The system engineer is becoming more confident with the use of GaAs MMICs in system design, so taking full advantage of the appealing features of monolithic approach.

It ensues that present principal trends in the MMIC scenario can be linked to the following aspects:

• A gradual substitution of hybrid subsystems and entire systems with the corresponding monolithic units. The improvement in MMIC technology, the increased single wafer dimensions, the establishing of the crucial process steps (so reducing the windows of performance, without a corresponding severe cutting of the final yield), represent favourable conditions for pushing the development of many system building blocks in a monolithic form.

• A development of monolithic units and subsystems of totally new concept and with a high level of functional integration. In a similar way as it happened with low frequency silicon integrated circuits, the suitability to use a great number of space-saving elements in MMIC technology is highly encouraging for modules like phase shifters.
3. EUROPEAN COUNTRIES AND MMIC PROGRAMS

An excellent opportunity of the cooperation at European level consists of the 7 programs of Esprit II Projects by CEE, related to the three-five components area, including the MMICs activities [3]. In Table 1. the above programs are summarized.

Following the positive experience of the 10 programs of the Esprit I Project, the European Community gathered 7 large international teams of universities, industries and research Labs deeply involved in a coordinate effort, to establish the proper level of knowledge to push ahead GaAs microwave and millimeterwave technology.

As it is easy to see, a large part of Western Countries are giving their contribution to different aspects of the MMICs activities.

The European Space Agency (ESA) activities in the MMIC area appear to be meaningful as well. These can be divided into the following main areas [29]:

- qualification for space application of European MMIC manufacturers (the so-called “capability approval”);
- realization of specific MMIC devices for future space applications (ESS, SAR 2000, DRS, ABFN, etc.) through contracts awarded to European industries;
- in-house activities for training and research.

The last one represents a significant contribution to the development of the "monolithic culture" in Europe. ESA, in fact, is carrying out an internal training exercise aimed at training ESTEC engineers and young graduates coming from all ESA member countries on design and test of MMIC devices.

Additionally, further remarkable activities in the MMIC field have been carried out at national level as described in the following.

3.1. Belgium

The MMIC activity is well represented by the program at IMEC (Leuven), presently based on submicron (0.5 to 0.25 μm) gate MESFET technology for low power applications. It is carried out in cooperation with the Belgian industry. Present realizations include LNAs operating around 15 GHz as well as mixer elements.

Efforts are also devoted to design techniques and modelling of microwave components. At the same time, an activity is being performed on the optimization of HEMT devices for MMIC applications. HEMT devices down to 0.1 μm gate lengths have been fabricated and characterized.

In the second stage of this project (1991), the above HEMT technology will be integrated into a complete MMIC process.

3.2. France

Several industries, organization and universities are involved in MMIC activities such as Alcatel Espace, CNES, CNET, Electronique Serge Dassault (ESD), Philips-LEP, Thomson and the University of Lille.

Philips-LEP and the Centre Hyperfréquences et Semi-conducteurs (University of Lille) represent the two largest laboratories working in MMICs. The latter, in particular, has worked on different aspects of III—V components, such as material epitaxy by molecular beam, 1D or 2D modelling of any kind of III—V microwave components, microwave measurements, etc.

Other laboratories, like the Institut de Recherche en Communications Optiques et Microondes, Limoges University, Ecole National Superieure de l'Electronique et de ses Applications, CERCY-POINTOISE, work on CAD and models for MMICs.

A common aspect in the various MMIC activities is an advanced technological capability and a continuous improvement of process toward higher frequencies and more complex circuit functions.

A CNES contract (1989—1992) has been awarded to Alcatel Espace and ESD, aiming the development and integration of MMIC T/R modules for an SAR antenna.

3.3. Germany

The country is deeply involved in MMIC activities. The Ministry of Defence (MOD) and the Ministry of Research are promoting and funding specific supercomponents design and fabrication in the frame of a National GaAs Program.

A strong cooperation has been settled between industries and research centers such as the Universities of Duisburg, Darmstadt and Munich, the Fraunhofer Institute, the Daimler Benz Research Institute and the SEL Research Institute.

The development of improved technological steps and the design and fabrication of both digital and analog monolithic subsystems represent the major aim of the joint efforts.

A further activity in MMIC is ongoing in the Academy of Sciences in Berlin. In particular, technological (E-beam, epitaxy, ion implantation) and device development (up to 0.3 μm gate length MESFET, HEMT, JBT) are focused for low noise and power applications.

3.4. Greece

The MMIC activity is mostly represented by the technological efforts provided by F.O.R.T.H. (Foundation for Research and Technology Hellas, Heraklion-Crete). In particular, major developments are concentrated on material and devices.

F.O.R.T.H. is well inserted in many ESPRIT programs, and is now pushing on its in-house capabilities in the field of monolithic design and test procedures.

3.5. Italy

An example of the importance of a coordinate activity in the field of monolithic integrated circuits is provided by the Italian program funded by the Consiglio Nazionale delle Ricerche in the frame of the MADESS finalized project (started in 1986).

The program has gathered many industrial and academic efforts, in particular represented by Selenia and Telelettra, the CRES Research Laboratory, the Universities of Bologna, Padova, Palermo, Pavia, Roma “Tor Vergata” and the Polytechnic of Torino.

All participants have been collaborating for four years in the establishment of capabilities in modelling, design test and fabrication of monolithic integrated subsystems in the 20—30 GHz frequency range.

More precisely, the studies are related to different aspects of the design, manufacturing and testing procedures
involved in the development of two particular demonstra­
tors: a 21—25 GHz monolithic 18 dBm power amplifier
(Gain: 12 dB; power added efficiency 20%) and 4 to 26.5
GHz (—6 dB) distributed amplifier.

3.6. Scandinavian countries
A coordinate activity in MMICs has been carried out in
the frame of NOGAP, a three-year program started in
1986. The program consists of a joint effort among indus­
trial companies and research institutes located in Finland,
Sweden and Norway.
The major tasks of modelling, design and evaluation of
MMICs have been shared among the three countries, with
the main aim of increasing the availability of GaAs tech­
nology to industry in the Nordic countries. USA foun­
dries are utilized as suppliers of the required technologies.
The results obtained through the program, which prob­
ably represents the first multinational trial of its kind in
Europe, and the synergetic cooperation between the Nor­
dic Countries on advanced technology are stimulating all
the partners in starting up a similar initiative, renewing
the efforts and the aims of the first one. Denmark, perhaps,
would be also included in the new program.

3.7. Spain
A national initiative utilizes the governmental funding
of the Commission International de Ciencia y Tecnologia.
The SSR Department of the Polytechnic of Madrid and
the Electronic Department of the University of Cantabria
participate in the program. The principal aim is the devel­
opment and dissemination of know-how in the design and
characterization of MMICs, including the training of two
University groups specialized in “Foundry Services”
monolithic design.
The definition of MMIC subsystems and circuits of
major interest for the Spanish industry, together with their
design, fabrication and testing are some of the specific
items under present consideration.

3.8. United Kingdom
MMIC activities are widespread and many industries as
well as universities are involved. Plessey, STC, Universities
of Cambridge and Glasgow and the University Col­
lege of London are some of these.
The main efforts are focused to the design and develop­
ment of circuits and subsystems in the microwave and mil­
imetre-wave frequency ranges.
A continuous and noticeable improvement has been
achieved in device, circuit and sub-system technology.

4. THE ROLE OF EUROPEAN INDUSTRIES IN MMIC
ACTIVITIES
Many European industries have been involved in
MMIC activities either in process and fabrication or in
CAD tools. Among others, the following appear to be
particularly active: Alcatel-Espace and Teleftra, Plessey,
Philips, LFP, Selenia, Siemens, Telefunken and Thomson.

4.1. Alcatel-Espace
Alcatel Espace (AES) has been present in the MMIC
market since 1986. The activities started with a complete
survey of GaAs foundries in Europe, USA and Japan,
soon followed by practical realization of AES own designs
by various manufactures [30], [31].
4.2. Telettra

Recently included in the Alcatel organization, Telettra has been a pioneer company in Italian MMIC activities. The main activity initially covered discrete MESFET power microwave transistors of which the Company uses several ten-thousand pieces per year for its own production of microwave Radio Links. The most representative devices in this sector are, at present, a 4W C-band MESFET, and a 100 mW K-band MESFET.

More recently (1987) the design and fabrication of MMICs was started, with the objective to use them in various telecommunication applications, thus improving performance, cost and reliability of systems. The main applications are again in Radio Links, but also in fiber optics circuits.

In Fig. 3., for example, a set of MMICs designed and developed for use at the receiving side of a fiber optic link (2.4 Gbit/s) is shown.

The three circuits are, respectively, a transimpedance amplifier, the function of which is to amplify the output signal of a photodetector, a general purpose amplifier, to further amplify the output signal of the transimpedance amplifier, and a limiter device to prevent circuit saturation.

Further monolithic chips developed at Telettra are depicted in Figs. 4 to 6.: a 4—8 GHz general purpose amplifier, a distributed amplifier and a transimpedance amplifier.

4.3. Plessey

Plessey Research and Technology is presently tasked with the development of advanced technologies, circuits and CAD tools. The aim of the company is to remain at the forefront of microwave applications, increasing the wide range of experience accrued in the last 15 years.

Following the realization of 1976 of the World's first GaAs MMIC, an X-band amplifier (6—12 GHz), Plessey has been assessing and developing new technologies and has been spending a considerable effort in research programs, as it is demonstrated by a total of over 500 scientist-years of GaAs research in the last 7 years.

Among the many different MMICs developed until now, achievements in following research topics appear to be particularly interesting.
High-packing density conventional and novel circuits (a standard feedback amplifier currently offered by Plessey was redesigned and realized with the use of stacked inductors and input and output lumped matching network with a 70% saving of the area of the original design).

Multifunction GaAs MMICs especially devoted to phased array applications (a 2 to 6 GHz phased array radar T/R module composing a 6 bit phase shifter with 20 dB gain and Tx/Rx signal routing has been realized on a 5.8 mm×1.9 mm single chip) [37] (Fig. 7).

4.4. Philips-LEP

MMIC activities at LEP are mostly focused in the direction of developing fairly complex functions [38]. Example of the achieved capabilities are both a 0.1—4.5 GHz quadrature phase-shifter (Fig. 9.) and an S-band QPSK modulator (Fig. 10.).

A further activity is exemplified by the development of HEMT-based MMICs [39] (Fig. 11.). An example is a...
cascode distributed amplifier in the 2 to 42 GHz frequency band, providing 6 dB gain. A further example is a two-stage reactive matched amplifier which provides 2.3 dB noise figure with 12 dB of associated gain at 15 GHz.

4.5. Selenia

Selenia's MMIC fabrication facility utilises both selective ion implantation and heterostructure growth by MBE for active layer formation. With these basic technologies, a wide range of MESFET and HEMT MMICs has been fabricated. Amongst the more conventional circuits such as oscillators and control devices, fabricated in Selenia, the family of MMIC amplifiers is of interest, in particular the X-band low-noise amplifiers (N.F. = 2.8 dB, Gain = 22 dB, and N.F. = 2.0 dB and Gain = 28 dB at 12 GHz), fabricated with MESFET and HEMT technology; the wide band travelling wave amplifier with approximately 6 dB gain in the 2 to 18 GHz frequency range (Fig. 12.); the cascadable wideband feedback amplifiers with either 10 or 20 dB gain in the 2 to 6 GHz frequency range (Fig. 13.); and finally the 1 Watt X-band power amplifier with 6 dB gain and minimum power added efficiency of 30% (Fig. 14.).

4.6. Siemens

Beside NEC, Mitsubishi and Avantek, Siemens is one of the largest producers of GaAs microwave devices. Presently, about 4 million MESFETs and 100,000 MMICs are fabricated per year.

An important technological aspect is the wafer production, and development through realization on a modern 3"-wafer line using cassette-to-cassette equipment, I-line wafer stepper lithography and a special gate technology (the so-called DIOM process).

The work is focused on microwave applications especially in the 1—20 GHz frequency range. An example is a broadband IF amplifier (CGY50) (Fig. 15.). It is a one-stage amplifier with a 0.1—24 GHz bandwidth, providing a low noise figure (~ 3 dB) and a very good linearity (F3 = 31 dBm). This device is claimed to be the first MMIC commercially available (since 1981) produced in high quantities.

Concerning the development project, special emphasis is directed to MMICs for mobile communications (0.9—2.5 GHz), C-band T/R radar modules and landing systems, DBS receiver chips and T/R radar modules in X-band. In C-band, a complete set of MMICs (LNA, VGA, phase-shifter, MPA, HPA) is available as laboratory samples. Examples are a 6-bit digital phase-shifter with 10 dB insertion loss (Fig. 16.); a 2 stage MPA (realized in DIOM technique), showing 16 dB gain and 3.6 W output power (at 1 dB gain compression) with 26% efficiency (Fig. 17.). Finally, very good results are claimed for
the first laboratory samples of an LBA/mixer for mobile (handhold) communications.
About 13 dB gain and 5.5 dB noise figure have been measured with good linearity (IP3 = 10 dBm) and isolation (LO/RF: 30 dB) at 0 dBm and 2.5 mA/3.8 V.

4.7. Telefunken
The company has acquired a wide experience in mm-wave sub-assemblies. The major technological highlight is a single process sequence for Schottky diodes and MESFET's, capable to integrate both diode mixers and MESFET amplifiers on a single chip. The technique makes use of deep implanted n+ wells underneath an epi MBE grown active layer used for the diode and the transistor (Fig. 18). In the latter case, there is no n+ buried layer but there can be holes for source grounding.

A 60 GHz receiver has been developed (Fig. 19) consisting of a single balanced mixer and a two-stage IF amplifier on a single chip. The 60 GHz input is detected by a diode with LO at 27.7 GHz multiplied by 2. The IF amplifier is at 4.5 GHz (chip size 4×4.5×0.15 mm, Fig. 20). Further components are under development at 30, 60 and 94 GHz in cooperation with Thomson-CSF.

4.8. Thomson
Starting from discrete microwave experience, GaAs integrated circuits were started at THOMSON COMPOSANT MICROONDES (TCM) in 1980. In mid 1984, the activity was merged with the corresponding teams
working at Central Research Laboratory of THOMSON CSF on monolithic and logic circuits.

Presently, two monolithic technologies based on ion implantation are available in a foundry: one for small signal and low noise applications, with an E-beam 0.5 µm gate length, and the other for power applications with a 0.7 µm gate length.

Further technologies based on molecular beam epitaxy layers are under development, one devoted to increase power capabilities to higher frequencies with a 0.5 µm gate length, the other to reach higher gain and lower noise figures at higher frequencies with a TEGFET (HEMT) technology, based on 0.3 µm gate length.

Using the same technology, discrete transistors are developed, delivering high power (1 W) up to 20 GHz, and satisfactory noise figure and gain at 40 GHz.

A library has also been developed, collecting models for passive and active components with linear and nonlinear characteristics. Part of the library is included in the Designer’s Handbook which is supplied to designers using the foundry.

By utilizing either the presently available technologies or those under development, about a hundred MMICs have been realized in the TCM lines, covering all kind of circuits between 0.5 and 60 GHz.

Amplifiers (small signal, low noise, variable gain, medium power or high power), phase-shifter (analogue or digital), switches, oscillators, mixers are examples of the performed realizations.

These circuits are utilized in different types of subsystems like phased-array antenna modules, ECM equipments, front-end receivers or transmitters for terrestrial communication links, etc.

Among the developed MMICs, the following are particularly interesting: a vectorial phase-shifter (Fig. 21.) providing continuous phase shift from 0° to 360° in X-band, with a bandwidth of 10% (chip size: 1 mm × 2 mm); a power amplifier (Fig. 22.) delivering 1.5 W in X-band with 15 dB gain, 20% efficiency (chip size: 4 mm × 2.8 mm); 7 chips for realizing a direct demodulation front-end receiver in the 5.9 to 8.5 GHz range (Fig. 23.); a low-noise amplifier, a 90° phase shift coupler, an in-phase coupler; 2 balanced mixers, a VCO and a buffer amplifier [40].

At the same location (Orsey), the Central Research Laboratory started in 1986 new activities in III—V components based on a long experience in material related topics.

These activities take place in the III—V Microwave Device Laboratory which claims a strong expertise in MBE and MOCVD epitaxial growth, characterization techniques and microwave advanced device processing, including fine-line electron beam lithography, ohmic contact technology, dry etching and dielectric deposition techniques.

Fig. 21. THOMSON X-band vector phase shifter

Fig. 22. THOMSON X-band power amplifier

Fig. 23. THOMSON 5.9 to 8.5 GHz direct demodulation front-end receiver

5. CAD ACTIVITIES

Finally, a short survey is given of the CAD side of the MMIC field. The development of powerful and highly accurate models, based on physical and electromagnetic approach, for both active and passive devices, is un-

Fig. 24. Stacked offset spiral inductor

1. simple corner and loss description,
2. improved description,
3. RF on-wafer measurement
doubtedly one of the most interesting achievements of European researchers.

As it is well known, all aspects which concern the circuit and component performance highly affect the time-to-market issue so that the availability of effective CAD packages plays a strategic role in the achievement of short turnaround time frames. Significant contributions to this field have been given by groups working in many universities. The groups operating at the University of Lille (France), for instance, and the Polytechnic of Torino (Italy) are continuously improving their physical modelling of GaAs MODFET's and MESFET's specially oriented to the integrated CAD environments [41], [42].

R. H. Jansen (Plessey Research Caswell Ltd, England), has demonstrated the superiority of new geometry oriented MMIC design concepts, and developed very powerful CAD tools which perform the electromagnetic full wave simulation of complex MMIC conductor geometries, including parasitic coupling. As an example, Fig. 24. shows the experimental and theoretical behaviour of a stacked overlay spiral inductor in the 1 to 20 GHz range [24].

Another interesting and very recent example of a European contribution in the field of advanced CAD simulation tools is illustrated in Fig. 25. (a, b), showing the results of an improved simulation of a single stub configuration realized on a 10 mil alumina substrate. The experiments were provided by Essof, and the theory was obtained with an advanced simulation tool, developed at the University of Roma "Tor Vergata", based on the e.m. approach illustrated in [22].

REFERENCES

6. CONCLUSIONS

The world-wide growing of interest and activities in the field of MMICs is now evident also in Europe. Some exciting opportunities in new civil markets like satellites, communications, transport and domestic applications, are strongly pushing on the establishment of an affordable technology and the contemporary assessment of powerful hardware and software tools for computer-aided engineering.

On the basis of similar American and Japanese experiences, many national and international programs have been started, giving a possibility to universities, industries and research labs to try new forms of collaboration and synergic cooperation. The first results are already demonstrating the validity of this kind of strategies and initiatives.

7. ACKNOWLEDGEMENTS

The realization of this review paper was made possible by the active contribution of a large number of colleagues who have been spending part of their valuable time in collecting and commenting the information here used by the author.

Thanking, all of them, a particular acknowledgement has to be paid to: J. Magarshack, G. Papageorgiou, G. Gatti, S. Iannazzo, A. Colquhoun, E. Pettenpaul, W. Menzel, I. Melhus, J. Perez Martinez, H. Meinel, C. Rumelhard, M. Van Rossum, J. L. Cazaux.

A comparison of different methods for the characterization of planar and coplanar line discontinuities is given, thereby describing the present state of the art in this area of integrated microwave circuit CAD. Three-dimensional quasistatic capacitance circuit models and three-dimensional full wave analysis techniques like the spectral domain analysis technique using roof-top functions, and the finite-difference time-domain technique are described briefly and compared with respect to their numerical efficiency and capabilities.

1. INTRODUCTION

Microstrip and other planar line discontinuities have been the object of investigation for more than twenty years, because they have an essential influence on the computer aided design and the technical realization of integrated microwave circuits. With the introduction of monolithic integrated microwave circuits (MMICs) into microwave techniques, the requirements for good models which describe the discontinuities accurately over a large frequency range have become even more urgent. During the last two years, the development of coplanar circuits by monolithic integrated techniques required new models for the description of discontinuities. Moreover, real three-dimensional field-simulators are needed for the accurate description of multilayer microwave circuits including e.g. airbridge techniques and other three-dimensional techniques. In this paper, three different techniques which have been developed lately will be described, and their application to discontinuity problems in microwave integrated circuits will be discussed.

During the last three years, interesting new techniques based on the spectral domain analysis technique with a roof-top function current density description and, alternatively, based on the finite difference time domain technique have been developed. These techniques are very promising by offering the analysis of arbitrary planar structures and circuits in a three-dimensional space. Multi-layered structures can be considered, conductor losses, dielectric losses and radiation losses can be taken into account, furthermore (this is very essential) the coupling of nearby discontinuities and line structures can be accurately calculated. The numerical expense of these techniques is still high, but there are techniques available to improve these analysis tools for future applications.

2. THREE-DIMENSIONAL QUASISTATIC ANALYSIS OF COPLANAR LINE DISCONTINUITIES

Line discontinuities appear in nearly every microwave circuit, and can be approximately described by lumped element equivalent circuits provided that their dimensions are small compared to the wavelength. For coplanar waveguides, this condition is fulfilled since the structure dimensions are almost independent of substrate thickness, and can therefore be chosen very small. Another interesting advantage of the coplanar waveguide is the small dispersion of its characteristic parameters due to the fact that the field is mainly concentrated in the spacings between the conductors, and does not change substantially with increasing frequency. This leads to the assumption that the frequency above which the static analysis of such structures is no longer valid is higher as in the case of a microstrip line. It is therefore of interest to test the validity of the static analysis results for coplanar waveguide discontinuities even at higher frequencies.

Several authors have reported on the calculation of equivalent capacitances for various discontinuities [1]—[3]. However, all these methods are applied to microstrip discontinuities only and cannot be implemented easily for other planar waveguides. Moreover, these methods do not consider the effect of metallization thickness of the conductors which, especially in the case of coplanar waveguide structures, can become comparable to the geometrical dimensions of the structure. The method presented in this paper is a general approach for finding the static capacitances of discontinuities as an abrupt change in conductor geometry. A three-dimensional finite difference method is applied to shielded coplanar structures, and the field distribution inside the shield is calculated using the successive relaxation method. The equivalent capacitances of the structure are then evaluated from the charge distribution on the conductors.

A program package has been developed which calculates the equivalent circuit capacitances of various ordinary discontinuities. The results for coplanar waveguide open-ends and gaps are presented in this paper. Since the equivalent parameters are calculated from the field distribution near the discontinuity, the method can be easily extended to any arbitrary configuration of conductors on substrates with one or two layers. Further applications are demonstrated for coplanar interdigital capacitors on ceramic and gallium arsenide substrates. The effect of conductor metallization thickness as well as the influence of the shielding are also discussed. Measurements are performed in a broad frequency range to verify the accuracy of the applied method.

2.1. Numerical Calculation of the Field Distribution

The three-dimensional method presented here is a modified version of the well known finite difference method described in [6]—[9]. The planar structure containing the discontinuity and the semi-infinite trans-
mission lines are surrounded by a shield of electric and magnetic walls. A magnetic wall is assumed where a transmission line intersects the shield (input and output ports).

In Fig. 1, for example, the planar waveguide consisting of two semi-infinite coplanar lines and a junction region between them is shielded by two magnetic and four electric walls. The magnetic walls are defined at suitable distances from the discontinuity beyond which the infinite line conditions are fulfilled and the perturbations due to the discontinuity can be neglected. The bounded region is then divided into elementary boxes using a three-dimensional non equidistant cartesian grid. The electrical potential can be assumed to be constant inside the elementary boxes and confined at the middle of the box. Since the structure dimensions are small compared to the wavelength, the grid-points on the metallization are assumed to be at a constant potential (Fig. 2.).

Using Laplace’s equation, the electrical potential at any point inside the shield can be written in finite difference form as a linear combination of potentials at neighbouring grid-points. The “relaxation method” is used for the solution of the resulting system of equations. The potential distribution inside the shield can be determined starting with assumed potential values at all the grid-points and modifying them as follows:

$$\phi_{\text{new}} = \phi_{\text{old}} - k \cdot R$$

where R is the difference between ϕ_{old} and the value given by (A10), and k is the relaxation constant which determines the speed of convergence. The optimal value of k is found here to be 1.8.

The accuracy of the calculated potentials depends on the number of iterations (n). This is demonstrated in Fig. 2. As shown in this Figure, 60 iterations are sufficient for an accuracy of better than 1% for the calculated equivalent capacitance of an open-ended line. The electrical field at any grid-point can then be calculated as

$$\overrightarrow{E} = -\nabla \phi.$$

The field distribution obtained in this way is used in the next Section to calculate the charge distribution on the conductors.

2.2. Evaluation of Equivalent Capacitances

For the following descriptions, let us consider the configuration shown in Fig. 3. The field distribution calculated in (2) is used to find the total charge on the inner conductor (Q_{total}), as well as the charge per unit length on the connected transmission lines (Q'). Q' can be obtained from the relation

$$Q' = \varepsilon_0 \int_C \vec{E} \cdot n \, ds$$

where C is the contour of the integration region which covers the conductor cross section at the plane of the magnetic wall (Fig. 3b). The total charge can be calculated by integrating the normal component of the electric field over the inner conductor:

$$Q_{\text{total}} = \varepsilon_0 \int_C \vec{E} \cdot n \, dA$$

The region of integration now covers the total conductor surface A (Fig. 3c). If the potential difference between the inner conductor and the ground planes is V, the capacitance associated with the discontinuity can be calculated from the difference between the total charge Q_{total} and the charge per unit length of the connected transmission line:

$$C_{eq} = \frac{(Q_{\text{total}} - 1 \cdot Q')}{V},$$

where l/w is defined as the distance between the back-transformed reference plane of the discontinuity (e.g. Fig. 3a) and the magnetic wall. The effect of shielding on the equivalent capacitance is studied for a microstrip open-end ($\varepsilon_r=9.8, h=0.635 \, \text{mm}$) with the following dimensions:

- width to height ratio: $w/h=4$,
- distance to the lateral electrical walls: $a/2=10 \, h$,
- distance to the upper surface: $b=10 \, h$,
- distance to the front electric wall: $b_1=10 \, h$,
- distance to the magnetic wall: $l=10 \, h$.

Each of the last four parameters is changed separately while the others are held constant, and the equivalent capacitance of the open-end is computed each time. As shown in Fig. 4., the distance to the magnetic wall l is the
critical parameter and must be large enough. The distance to the front electric wall l_2 has a small influence on the calculated results.

2.3. Testing Structures

In this Section, several open-ends and gaps in various planar waveguides on ceramic and gallium arsenide substrates are treated. The effect of finite metallization thickness is discussed in more detail in the case of gaps. Moreover, coplanar interdigitated capacitors of various dimensions are investigated, and their scattering parameters are computed and compared with measured values.

A. Open-Ends

As is well known, the open-end of a transmission line stores electrical energy and can be simulated by an equivalent capacitance C (Fig. 5.e). An extended length Al of the transmission line (Fig. 5.f) can also be used to model the open-end. The length Al is defined as the ratio of the equivalent capacitance to the capacitance per unit length of the line. In this paper, both C and Al are calculated and used for the discussion of the results.

Figure 5 shows the various open-ended structures which are investigated. To indicate the accuracy of the chosen method, the extended lengths of microstrip open-ends of various dielectric constants as a function of width to height ratio have been compared with results from a spectral domain analysis presented in [10]. The data calculated with the presented method are in good agreement with the accurate values based on fullwave calculations. The next test structure is the coplanar waveguide open-end of Fig. 5b. The field distribution of this structure in the conductor plane (Fig. 6.) indicates the scattering of the electric filed components of an assumed TEM wave at the end of the line. The calculated data of equivalent capacitances are plotted against the width to spacing ratio w/d for different substrate thicknesses (Fig. 7.). The equivalent capacitance increases steadily with the width of the inner conductor. The calculated data are in good agreement with experimental values which are evaluated from the scattering parameter measurements in the frequency range from 45 MHz to 26.5 GHz.
B. Gaps and Impedance Steps

Based on the two-port pi-network model shown in Fig. 8e, the equivalent capacitances of gap and impedance step discontinuities (C_{p1}, C_{g1}, and C_{p2}) can be calculated in two steps. At first, the potentials on the inner conductors are assumed to be $\Phi_1=\Phi_2=1$ V (see Fig. 1) and at the ground plane $\Phi_3=0$ V (even mode). In this case, the capacitances C_{p1} and C_{p2} can be calculated as follows:

$$C_{p1} = (Q_{total} - t_1 Q_1), \quad (6)$$

$$C_{p2} = (Q_{total} - t_2 Q_2). \quad (7)$$

In the second step, the conductors are assumed to be at potentials $\Phi_1=1$ V, $\Phi_2=-1$ V and $\Phi_3=0$ V (odd mode). Equations (6) and (7) are used again and the calculated capacitances in this case are called C_{g1} and C_{g2}. The series capacitance C_g can be determined as:

$$C_g = 0.5(C_{g1} - C_{p1}) = 0.5(C_{g2} - C_{p2}). \quad (8)$$

In order to investigate the dependence of the equivalent network parameters on various geometrical dimensions, different types of gaps in coplanar waveguides (Fig. 8b–8d) are treated. Fig. 9 shows the calculated capacitances of a structure as shown in Fig 8c, where the lines have the same w/d-ratio but are of various dimensions, together with measured values. A negative value for the capacitance C_{p1} can be interpreted as an inductive effect of the discontinuity. The effect of metallization thickness on the equivalent capacitance C_g of the discontinuity is plotted in Fig. 10. As shown in this Figure, the metallization thickness cannot be neglected in the cases of very narrow gaps.
C. Interdigitated Capacitors

If the finger-lengths are small, interdigitated capacitors in principle can be considered as gaps between two transmission lines. In this case, the pure capacitive pi-network model shown in Fig. 8c can be used to describe such a structure. In order to check the validity limits of this model, coplanar interdigitated capacitors of various finger numbers and different geometrical sizes on ceramic and gallium arsenide substrates have been fabricated. The capacitances of the equivalent network are computed, and the calculated scattering parameters, together with results measured using an HP8510B Network Analyser (0.045—26.5 GHz), are plotted in Fig. 11. Although a simplified circuit model is used, the agreement is very good up to 25 GHz. The small deviations of the reflection coefficient at the highest frequencies are mainly caused by measurement difficulties at these frequencies due to the calibration.

In Table 1, the calculated and experimental data of the capacitors are listed. The experimental values are obtained from measured scattering parameters using optimization routines for the network fitting. In contrast to the microstrip case, the parasitic capacitances C_{pl} and C_{p2} of coplanar interdigitated capacitors do not depend on the size and number of fingers. This is due to the fact that the location of the ground planes can be varied conveniently in order to minimize the parasitic capacitances. As a result, it is possible to have a large value of C_g without increased parasitic effects. This can be done by using an increased number of fingers and a large spacing between the conductor and the ground planes.

<table>
<thead>
<tr>
<th>μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9</td>
<td>4</td>
<td>17</td>
<td>3</td>
<td>3</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>12.9</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>12.9</td>
<td>4</td>
<td>17</td>
<td>3</td>
<td>3</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>9.8</td>
<td>5</td>
<td>36</td>
<td>25</td>
<td>5</td>
<td>655</td>
<td>200</td>
</tr>
<tr>
<td>9.8</td>
<td>7</td>
<td>38</td>
<td>25</td>
<td>5</td>
<td>655</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 1.

D. Airbridges

A special discontinuity which is of high interest in coplanar circuits is the airbridge. Airbridges are indispensable for the circuit design in coplanar waveguide technique because they have to ensure the biasing of active areas on the chip, and they must suppress multimode propagation along the RF signal paths. On the other hand they represent frequency dependent discontinuities causing losses and phase shifting.

Fig. 10. The effect of conductor metallization thickness on the equivalent circuit capacitance ($\varepsilon_r = 9.8, h = 635 \mu m, w_1/h = 0.2, \frac{d_1}{h} = 0.36, w_2/w_1 = 3$).

Fig. 11. The calculated (—) and measured (dots) scattering parameters of coplanar interdigital capacitors ($\varepsilon_r = 12.9, h = 400 \mu m, \ell f = 100 \mu m$).

Fig. 12. The different types of airbridges: a) the conventional airbridge, b) the underpass and c) their equivalent circuit.
There are at least two principle ways to build an airbridge in a MMIC fabrication process. Either the inner conductor remains a thin evaporated layer, and the strip, short circuiting the outer conductor of the CPW, is built by an electroplating process (type a, conventional airbridge, Fig. 12a.); or the inner conductor is galvanplastically built as a bridge across the deposited short circuiting strip in the ground metallization (type b, underpass, Fig. 12b.).

The elements of the equivalent circuit for describing the transmission properties of these airbridge constructions are calculated using the above described quasistatic finite difference technique. The distribution of the electrical field is calculated in the normal way and the capacitive elements of the equivalent circuit are derived from this electrical field distribution. The inductive elements of the circuit are also calculated using the finite difference technique, simulating the current distribution on the lines and near the discontinuity using the known charge distribution.

Fig. 13a and 13b show the calculated result for the capacitive and inductive elements of the equivalent circuit as a function of the airbridge width \(b \), with the width \(w_b \) of the inner conductor as a parameter. Big differences can be recognized in the dependences of the inductive elements on the airbridge width for the conventional airbridge (type a) and the underpass (type b). As a consequence, Fig. 13c shows the phase of the transmission coefficient \(S_{21} \) for the two airbridge constructions compared with a normal coplanar line of the same line width and spacing. As the Figure shows, above certain bridge widths, the underpass is electrically shorter than the undisturbed line. The conventional airbridge is always electrically longer than the undisturbed line.

This result is in a good agreement with the measurements as shown in Fig. 14. The change of the phase velocity in the airbridge region due to the additional capacitance is measured by means of slightly coupled CPW resonators. To gain significant frequency shifts, five to ten airbridges are involved in the corresponding line resonator. Additionally, each sample has a reference line in CPW technique without airbridges to normalize the network analyzer. The samples were tested using a microwave probe equipment.

There are two effects shifting the resonant frequency. On the one hand, the effective permittivity of the line may be reduced in the airbridge region. This effect gives a frequency shift to higher frequencies. On the other hand, there are additional capacitances to ground, loading the line resonator. This effect results in a frequency shift towards lower frequencies. Also the measurement results indicate that the capacitive load effect is prevailing for airbridges of type A. For type B airbridges, the effect due to the reduced effective permittivity is the dominant one.

Fig. 14. Resonant frequency shift due to the total length of each airbridge of 10 \(\mu \)m (dotted line) and 50 \(\mu \)m (solid line) compared to a reference CPW resonator without air bridges (dashed line)
Besides the capacitive effects, also the ohmic losses of the different airbridge type must be taken into consideration. Higher order modes on CPW are excited especially near asymmetrical discontinuities. A T-junction in CPW technique, for instance, demands several airbridges to suppress higher order modes and to connect the RF grounds. It is very easy to avoid the excitation of higher order modes by applying an airbridge junction as it is shown in Fig. 15. An equivalent circuit of this airbridge T-junction can easily be found by using the above described finite difference method to calculate the additional capacitances and inductances in the discontinuity area.

3. SPECTRAL DOMAIN ANALYSIS USING ROOF-TOP FUNCTION FOR CURRENT DESCRIPTION

a) The Theoretical Method

Spectral domain analysis techniques have been used intensively for the analysis of single and coupled microstrip lines since they were introduced for the first time by Mittra and Itoh [11]. Only very simple discontinuities (open ends, gaps, impedance steps) have been analyzed using this technique. The numerical expense of this technique is high, and phenomena like surface wave excitation and radiation from the discontinuities cannot be described using this method because a metallic shielding is always needed.

Therefore it is not astonishing that methods which originally have been used for planar antenna analysis were applied in the analysis of simple microstrip discontinuities. Jackson and Pozar [13] and Katehi and Alexopoulos [14] described a solution for the open microstrip end and for a microstrip gap using a source formulation and Green’s dyadic function in the spectral domain, thereby considering radiation and surface wave excitation at the discontinuities. They used halfperiod and piecewise sine-functions as expansion functions for the longitudinal currents, and the influence of the transversal currents was not considered.

All of the above techniques still have one essential disadvantage: for each microstrip discontinuity, a new field problem has to be solved. This can be overcome by using a treatment similar to Glisson [12] who, in a scattering problem, used simple current expansion functions which are defined piecewise over a rectangular surface which he called “roof-top-functions”. This method has been used by Bailey and Deschpande [16] and Mosig [17] for the analysis of resonant frequency and input impedance of rectangular microstrip resonators. Rautio [18] for the first time used these expansion functions for the analysis of a simple microstrip discontinuity (open end), and Wertgen and Jansen [19], [20] developed it to a flexible design tool. Several improvements have been presented in [23].

Two different approaches are possible for the series expansion of the surface current density:

a) As much information on the geometrical structure and from known solutions for similar structures as possible is put into the functions describing the surface current density. For example, twice differentiable functions which satisfy the boundary conditions may be used as expansion functions to improve the convergence rate of the numerical method.

b) Simple expansion functions are used which approximate the surface current density only in a small area (subdomain), and which, by functional dependence and domain of existence, are not bound to a special geometrical structure.

The first approach has been used e.g. in [15] to analyze simple planar discontinuities. Using the approach b), however, enables any arbitrarily formed planar structure to be analyzed. New problems can directly be solved numerically, but with a reduced numerical efficiency. This reduced efficiency, however, can be overcome by the improved capabilities of modern computer systems.

To apply approach b) to a planar circuit problem, the metallized area in the x-y-plane is divided into e.g. rectangular cells. Curved boundaries can be approximated with sufficient accuracy by choosing a small cell size. Several basic functions can be used: a) piecewise sinusoidal basis functions; b) Unilinear roof-top functions as basis functions; c) Bilinear roof-top functions as basis-functions.

b) Theoretical and Experimental Results

As has been mentioned above, the classical way to solve the resulting system of equations for the current density expansion coefficients is the application of the moment method which leads to requirements of large computer storage. These requirements can be reduced by using iterative methods like the conjugate gradient method [21], [22] for solving the large systems of equations. Further improvements of the state of the art, as they have been described in [23], can be found as follows: a problem which leads to large computation time is the integration of the dyadic Green’s function near the surface wave poles. New complex integration paths using linear curve sections can help reduce the computation time. Further improvements of the method with respect to computer time have been reached by separating an asymptotic part of the dyadic function which is characterized by a simple function and integrating it analytically. If losses of the material are additionally considered in the spectral domain calculation, the surface poles are shifted away from the real axis and the possibility exists to calculate the elements of the Z-matrix (which relates the electric field strength and the current density) with an efficient FFT-algorithm. The losses can be taken into account by considering the dielectric losses and the current losses in the ground plane metallization of the circuit (if it is available). The current losses of the metallic strip structure in the layered medium are incorporated into the boundary conditions. Surface waves and radiation losses can be accounted for by using a structure with an infinite shielding top plane or even an open space above the circuit.

One typical result from the spectral domain analysis using a roof-top function current density description is shown in Fig. 16. A radial stub with a closely coupled line and two closely coupled bend discontinuities has first been presented by Wertgen and Jansen [19], [20]. This structure has been produced and measured using the highly accurate measurement technique described in
and the measurement results are compared to the theoretical results of Wertgen and Jansen and to the theoretical results using the improved method briefly described above.

Fig. 16a shows the current distribution on the radial stub as calculated using the roof-top functions. Figs. 16b and 16c show the magnitude and phase of the reflection coefficient. The improvements of the technique can clearly be recognized: Package resonances which occur in the calculation of Wertgen and which cannot be found in the measurements are no longer seen in the numerical results. Furthermore, the magnitude of the scattering parameters is much better (especially at resonant frequencies) if surface waves and radiation losses are taken into account (e.g. at 13.5 GHz and at frequencies higher than 18 GHz) (Fig. 16.). The good agreement between the measured and the calculated phases is also noted.

A second example given in Fig. 17. shows the calculated and measured scattering parameters S_{ij} of a structure containing two coupled radial stubs which may be used to form a broadband de-block as is shown in the Figure. Agreement between theory and experiment is very good over a large frequency range for the magnitude and the phase.

4. THE FINITE DIFFERENCE TIME-DOMAIN APPROACH

a) The Theoretical Method

The Finite Difference-Time Domain method (FDTD-method) is a numerical technique for the analysis of electromagnetic field problems with a large numerical but low analytical expense. Despite the large numerical expense it is one of the most efficient techniques because basically it only stores the field distribution at one time in memory instead of working with a large system matrix relating several unknowns. The field solution for every time is determined by Maxwell's equations, and is calculated using a time-stepping procedure based on the finite difference method. The "leapfrog-algorithm" is used [24] which is determined by Maxwell's equations in four-dimensional finite difference form.

The electromagnetic field in the structure to be analyzed must be "excited", i.e. at the beginning of the calculation a certain field structure must be defined in the grid. Three possible methods will shortly be discussed:

a) At the time t_0 (starting time), the electromagnetic field is defined within the total space of the considered structure.

b) The second possibility is to define a harmonic field oscillation on a boundary of the structure.

c) The third form of excitation is to use an electromagnetic field pulse with a finite length in space and time. Using this kind of excitation, in principle arbitrary n-ports and their transmission properties can be analyzed if the incident, transmitted and reflected pulses can be separated. Because such a pulse contains a broad spectrum of frequencies, the transmission properties in a desired frequency range can be determined with only one analysis. The pulse length in time must be so short that the spectrum contains all the desired frequencies. The length in space must be so short that incident and reflected pulses can be exactly separated. On the other hand, the node distances of the grid which is used must be smaller than the space length of the pulse to guarantee an accurate calculation of the spatial field distribution.

Version c) of the discussed excitations is well suitable for the analysis of microstrip planar circuits. For the exciting pulse, a Gaussian pulse $f(t) = \exp \left\{ -(t - t_0)^2 / T \right\}$ may be used. The pulse width in time is determined by T. Because e.g. the microstrip line is dispersive, the pulse form is changed while propagating along the line. From the calculated electromagnetic field, time dependent voltages and currents can be calculated at the ports of the circuits. From the time dependent signals the equivalent values in the frequency domain can be determined using a Fourier-transformation, so that the scattering parameters at defined ports or reference planes can be calculated from these results.
b) Results and Discussion

An FDTD-program for analyzing planar microwave circuits of arbitrary metallization structure has been prepared in the author’s research group. The metallization structure can be defined using a graphical editor. Input and output ports of the structures are uniform microstrip lines (e.g. 50 \(\Omega \) lines for comparison with measurements). The structure is enclosed in a "shielding" of absorbing walls.

The total space is typically subdivided into 40 grid elements \(\Delta h \) parallel to the line length, 100 elements parallel to the width of the line and 20 elements perpendicular to the substrate material. The time length \(\Delta t \) typically is chosen so that the wave propagates along the grid length in five time steps. This time is calculated using a static approximation of the phase velocity. The spatial width of the exciting field pulse is about \(40 \Delta h \). From these data all other values are determined. If the pulse width is defined as the time or space where it has decreased to 0.05 of its maximum value, the maximum frequency which can be considered, using the mentioned pulse data, is about 50 GHz.

If \(\Delta t_s \) is chosen to be \(300 \Delta t \), the pulse is "switched on" at a moment when its value is still very small \((2 \cdot 10^{-12} \text{ of the maximum value}) \). The fields are evaluated at the absorbing boundaries for the electric fields and at \(0.5 \Delta h \) in front of the boundaries for the magnetic fields. About 1000 time steps are used for the analysis, and \(2^{13} \) time points are used for the Fourier transformation to get accurate results in the frequency domain. The values for time steps higher than 1000 are filled with zero.

The application of the method to only two different discontinuities shall now be discussed. More detailed information may be found in [25]. It will be shown that the finite difference time domain analysis technique can be used to analyze three dimensional structures. In a first example, a spiral inductor shown in Fig. 18 includes an airbridge above the surface of the substrate material. The structure is analyzed using the FDTD method. As the calculated and measured s-parameters of this complicated planar component show, the agreement between theory and measurement is excellent even for frequencies above the first resonant frequency for the inductor, for the magnitudes as well as for the phases.

Finally, a coplanar airbridge problem shall again be analyzed using this full-wave three-dimensional analysis technique. Fig. 19 shows a coplanar band reject filter with the dimensions given in (Fig. 19a). This filter has been analyzed once (Fig. 19b), and secondly without (Fig. 19c) the airbridges near the T-junction discontinuity shown in (Fig. 19a).

The filter has been designed for application in a frequency multiplier operating from 18 to 36 GHz. It therefore should have no transmission at 18 GHz and good transmission at 36 GHz. The stub length was selected to be 1.780 mm. As Fig. 19b shows, the analysis including the (three-dimensional) airbridge is in quite good agreement with the measurements. Fig. 19c shows how the filter transmission properties are changed if the airbridge is not taken into account.

From this application it follows that e.g. for the design of millimeter-wave coplanar circuits, a full-wave three-dimensional field simulation technique must be available to receive relevant results from the computer aided design methods.

Fig. 18. The spiral inductor and the calculated (—) and measured (-----) transmission coefficient of the spiral inductor. The dimensions of the inductor have been chosen to be very large so that resonance effects could be measured in the frequency range up to 30 GHz.

Fig. 19. A coplanar band reject/band pass filter for 18/26 GHz (a), calculated (—) and measured (-----) considering airbridges (b) and without airbridges (c).
5. FINAL DISCUSSION

For modern MMIC design, analysis programs which are able to analyze multilayer and three-dimensional structures must be available. For coplanar circuits which will be of high interest for the future, in many cases three-dimensional static analyses can be used with advantage. In the case of microstrip circuits, discontinuities in multilayered circuits, closely coupled discontinuities and arbitrary planar structures can be characterized using spectral domain techniques and roof-top description of the current density. In cases where real three dimensional full-wave analysis is needed, the finite-difference time domain technique is a very flexible tool.

All mentioned techniques are able to consider conduction losses. The spectral domain analysis and the finite difference time domain technique additionally consider radiation losses and excited surface waves. If a closed package is considered, the spectral domain techniques can be used to analyze possible package resonances and coupling phenomena excited by these package resonances.

REFERENCES

In this paper a procedure is described allowing to predict the operating frequency, the power of the harmonics and the noise behaviour for integrated microwave oscillators. In addition, study results are presented showing the performance capability of this CAD-tool for the design of such oscillators. The approach uses methods of field theory as well as linear and non-linear network analysis, technological aspects also being taken into account. Interrelations between these areas are shown and discussed by means of numerical and experimental results.

1. INTRODUCTION

The design of oscillators requires a profound knowledge in several quite different areas of electrical engineering, this being especially true for microwave and millimeterwave oscillators.

Oscillators of high quality will be mainly designed by means of a large-signal analysis. Additionally, a small-signal and quasi-large-signal analysis is necessary because this yields the starting values for a large-signal analysis [6], [8], [10], [17], [20], [24].

The design of the oscillator itself as well as the optimization of the various components requires the simulation and the modeling of semiconductor elements such as FETs, GUNN elements and varactor diodes. Various kinds of simulators correspond to the specific requirements. On the one hand it may be useful to obtain minimum calculating times and thus fast circuit simulations, on the other hand it can be necessary to include many different physical effects to optimize the technology of the components [4], [9], [28], [32], [46], [48], [51], [57], [58]. Advances regarding the integration of microwave and millimeter wave components demand an extension of two-dimensional simulations and the development of truly three-dimensional simulations.

The numerical calculation of electromagnetic fields represents a very important basis for the computer aided design (CAD) of integrated micro- and millimeter wave circuits, since such methods can give exact informations about the transmission properties of complex components. Of special interest for the design of oscillators is the numerical analysis of resonator structures to obtain useful equivalent circuits [1], [2], [42], these circuits preferably being described by analytic expressions to guarantee fast models suitable for CAD applications [15], [16], [39], [40], [45], [49].

Furthermore, the simulation of oscillator noise behaviour is of great importance. An efficient noise model describes the influence of several different physical parameters on the performance of the component provided. The program is able to reproduce the exact geometrical structure of the single component in the simulation [19], [21], [25], [30], [33], [35], [38].

Other aspects are the optimizations regarding optimum yield and fabrication tolerances [3], [47]. Furthermore, problems of tuning, stability and measurement technique have to be considered during the design phases [22], [36], [43], [50], [52], [54], [56].

In the following some of the topics mentioned above are discussed.

2. DESCRIPTION OF ACTIVE ELEMENTS

2.1. Theoretical Background

Several different procedures for the modeling of microwave transistors have already been published [3], [9], [16], [17], [28], [32], [48], [49], [57]. In many cases, the models are matched to measured scattering parameters, and mostly numerical optimization procedures are employed for the calculation of the model parameters. This is problematic as ambiguous solutions can be found if a network containing more than sixteen elements is analyzed. Furthermore, optimizers are time-consuming, especially for the evaluation of the FET-model for a wide range of bias conditions.

The model chosen uses the well-known equivalent circuit diagram shown in Fig. 1. Because of the detailed description of the procedure in [46], only a short outline of the method is given here. Results of oscillator designs based on this method were published in [43], [44].

At the beginning, the transistor is subdivided into one inner part and one outer part, the inner part comprising the nonlinear characteristics. The calculation of the equivalent circuit components is carried out exclusively by means of measured scattering parameters and avoids any time-consuming optimization algorithms. By subdividing the equivalent circuit, the measurements at different bias conditions render possible a unique analytical calculation.
The components C_{gs}, C_{gd}, and C_{ds} describing the influence of the connection metallization are measured directly by means of an undoped transistor structure. It is worth to mention, however, that this method can also be used for transistors with packaging, where a "passive housing" has to be measured at first.

At the "pinch-off" bias ($V_{GS} = U_p$, $V_{DS} = 0V$) at which the equivalent circuit of the inner transistor is reduced to the components C_{gs}, C_{gd}, and C_{ds}, the determination of the remaining parasitic components of the transistor can be treated as the measurement of passive components. For all frequencies, this capacitive H structure can be converted into an equivalent T-structure. The parasitical resistors and the inductance can be added to the particular branches of the T-structure. With regard to the parasitic capacitances C_{gs}, C_{gd}, and C_{ds}, the measured scattering parameters can be converted into impedance parameters. By a comparison of the calculated and measured impedance parameters, the wanted outer components can be determined.

Taking into account these outer network components, the measured scattering parameters yield the inner admittances. Because of the subdivision, it is possible to calculate the network components of the inner transistor for arbitrary bias points analytically without approximations. For lower frequencies the transconductance (g_m) and the output admittance (Y_{ou}) can be determined directly from the scattering parameters. It was shown in [46] that the resulting values for g_m and Y_{ou} are at least valid up to a frequency of 26.5 GHz, the calculation being possible for arbitrary bias points even outside saturation. The remaining inner network can be described by average values in the frequency range between 3 GHz and 10 GHz. This method describes the small-signal equivalent circuit diagram of the transistor (Fig. 1.) depending on the respective bias. With regard to an evaluation of the nonlinear relations in a large-signal model, the network components are described as functions of the inner voltages (u_1, u_2). For the static case, simple mesh equations can be found for the measurable outer voltages (U_{CG}, U_{DS}), the gate current I_G as well as the drain current I_D being functions of the bias point. If the nonlinear network components are characterized by outer voltages, the outer voltages can be replaced by the inner voltages. The scattering parameters and the DC-characteristics can be directly determined with a measurement program.

With a suitable computing program, the modeling can be carried out efficiently for a great number of bias points. The results for the network components show a relatively smooth characteristic over the range of bias points, allowing an interpolation of the intermediate values. For this reason further optimization is no longer necessary. The interpolation is based on bi-cubic spline functions.

In the next step the relations between the small-signal and the large-signal values are considered. In the equivalent circuit diagram of the inner transistor, the capacitances are now assumed to be voltage-controlled, while the remaining components are voltage-controlled current sources. The time-dependence of the voltages and currents can be described as the superposition of a static part and an AC-term. It can be demonstrated that the small-signal and the large-signal capacitances are identical, while the static voltages can only be replaced by the DC-characteristics up to approximately 100 kHz, because of the time delay resulting from the electron transit time. For the small-signal operation above 100 kHz, the small-signal values calculated from the DC-output characteristics are only approximately valid and have to be modified by correction terms being slightly nonlinear regarding the bias point. Experimental results show that the slightly non-linear equivalent components R_{gs}, C_{gs}, and r_0 can be replaced by their corresponding small-signal values as a first approximation in the dynamic analysis. Furthermore, for positive gate-source voltages, the current of the sheet-diodes has to be added to the gate current.

The nonlinear analysis of the transistor is implemented employing the "Harmonic Balance" procedure explained further below. The solution of the network problem yields the inner voltages u_1 and u_2, respectively their complex phasors. Experimental investigations demonstrate that the problem is sufficiently described by a certain number of complex phasors, this number depending on the degree of the nonlinearity and the magnitude of the signal voltages.

2.2. Numerical and Experimental Results of FET-Modeling

The transistors modeled will be measured by means of a commercial on-wafer measurement set-up. A special DC source, allowing an automatic DC- and AC- parameter measurement, makes possible a variation of the bias point; the measurement data can be obtained as a function of both the outer and the inner operating voltages. In Fig. 2., some results, extracted from the procedure explained above, are plotted.

3. A SHORT DESCRIPTION OF THE HARMONIC BALANCE METHOD

3.1. The Harmonic Balance Method for Oscillator Development

This part describes the application of a nonlinear device modeling to the design of microwave and millimeter-wave oscillators. Transient processes are not considered since only the harmonic steady state is of interest. Under such conditions a very powerful method, namely the Harmonic Balance approach, is used which is based on some modifications in comparison with the classical approach [28]. In order to reduce CPU-time, some justified restrictions are introduced:

- In microwave networks inductances are mostly given by structures of metallization which are always linear; the network does not include any nonlinear inductance.
- It is assumed that voltage-controlled sources are included in equivalent circuits of transistors.
- Furthermore, state variables will be defined as voltages at the ports between the linear and the nonlinear sub-network.

If autonomous networks should be calculated, it must be taken into account that the frequency is determined by the system itself and may change during the calculation process. Thus, the frequency is an additional state variable. It can be computed by the use of the rule that in an autonomous system, the phase of one harmonic of one state voltage can be fixed arbitrarily, for example set to zero.

Considering all these assumptions, the well known subdivision of the network in a nonlinear part to be calculated in time domain and a linear part to be calculated in frequency domain can be carried out as shown in Fig. 3.

The scheme of calculation is organized in four steps.
first, the condition of oscillation is checked and if the circuit oscillates at all, the frequency of fundamental oscillation is computed by linear calculations. Next, a vector of state variables consisting of the port voltages is defined:

$$U = [U_1, U_2, \ldots, U_N]^T$$

$$U_k = [U_{k0}, U_{k1}, \ldots, U_{kM}], \quad k = 1, 2, \ldots, N$$

(1)

The first index marks the number of intrinsic (or state) voltages, the second the harmonics, zero means DC. In the third step, this vector is transformed into the time domain. The resulting time-vector leads to the currents at the ports applying the elements of nonlinear network ($f_i(u)$).

$$U + u_i = f_i(u)$$

(2)

If the currents are transformed back into the frequency domain, it is possible to determine a new vector of state voltages by use of the linear network. Herein complex AC-analysis is applied.

Equation (2) closes the loop and yields a fixpoint problem depending on the vector of state voltages U:

$$U = f(U)$$

(3)

with:

$$f(U) = [f_1(U), f_2(U), \ldots, f_N(U)]^T$$

$$f_k(U) = [f_{k0}(U), f_{k1}(U), \ldots, f_{kM}(U)]$$

(4)

Expression (5) defines a system of nonlinear equations allowing to determine the complex amplitudes of the state voltages. For the frequency of fundamental oscillation ω_0, an additional equation is needed:

$$\text{Im}(U_{11}) = 0$$

(5)

There are several ways to solve such a problem. The simplest one is the usage of regula falsi method, proposed by Camacho-Penalosa for mixer and upconverter applications [7]. This method has been successfully transferred to oscillator calculations. Its main advantage is the very easy numerical handling of the correction term K:

$$U^{[n+1]} = f(U^{[n]}) + K(U^{[n]})$$

with:

$$K(U^{[n]}, U^{[n-1]}) = \frac{[f(U^{[n]}) - f(U^{[n-1],[n]})][U^{[n]} - f(U^{[n]})]}{[f(U^{[n]}) - f(U^{[n-1]})][U^{[n]} - f(U^{[n-1]})]}$$

(6)

The multiplications and divisions in equation (8) have to be carried out element by element. The term K can be derived from the Jacobian of Newton's method if only the main diagonal of this matrix is taken into account [28]. Next, the derivatives are replaced by the difference quotients between the $(n-1)$-th and the n-th step of iteration. This guarantees short CPU-times for a large class of microwave oscillators.

Figure 4. shows an overview of the complete computation process for the oscillator simulation. In that process, the computation of the complex amplitudes and the frequency of fundamental oscillation are located in separate loops. Similar approaches are shown in [48].

As mentioned, the computation starts with a linear analysis, which evaluates the frequency of fundamental oscillation. Furthermore, the intrinsic voltage U_{11} is set to U_0 for example 300 mV without an imaginary part, because there the phase of U_{11} is set to zero.

The network function includes the description of the linear and nonlinear network as explained before. Then, the convergence of the resulting fix-point problem will be
During this correction, the real part of U_{J} is set first to U_{S} to prevent numerical instability. After this correction is completed, the program changes to the frequency-correcting cycle. Here the frequency of oscillation is calculated by a one dimensional regula-falsi iteration under the assumption that the imaginary part of f_{n}, respectively U_{l}, is set to zero in this autonomous system.

The program iterates between the two loops and if convergence can be obtained in both cases, the up to now fixed voltage U_{S} is corrected in the outermost loop by a further one dimensional regula-falsi iteration as mentioned for the frequency correction. The result of all these iterations is the determination of the vector of state voltages U. By the knowledge of this, it is possible to calculate each voltage and each current inside the linear subnetwork and thus the output power of the oscillator can be expressed by elementary network analysis.

Furthermore, the time dependencies of the nonlinear elements are known. This allows to calculate the conversion matrices which are necessary to establish a large-signal — small-signal noise analysis.

3.2. Numerical Results

Figure 5. shows the layout of an oscillator in coplanar line technique, while in Figure 6. its corresponding equivalent circuit is shown. It should be mentioned, however, that the field theory applied as well as the operating principles of this oscillator will be explained later on.

The source of the FET is connected to the ground via capacitors or varactors which serve as a serial feedback. The FET, the varactor and the output load present at the reference plane $P-P$ a reflection coefficient r greater than unity. This oscillator is simulated by means of the harmonic balance method described above.

In Figure 7. a diagram of the simulated power of a one-varactor tunable oscillator with a 0.3 μm gate FET is depicted. The fundamental oscillation as well as the second and third harmonics are calculated. It can be recognized that this oscillator delivers an output power of about 5 dBm at the operating frequency of 17 GHz. In this case the powers of the second and the third harmonics are -16 dBm and -10 dBm, respectively.

4. FIELD THEORY FOR THE DESCRIPTION OF OSCILLATOR CIRCUITS

4.1. A Generalized Method for the Calculation of Rectangular Subsectional Microwave and Millimeter-wave Structures

The design of oscillators in the microwave or millimeterwave range requires the rigorous theoretical field description of the passive part of such circuits [1], [2]
This allows an efficient CAD procedure to be used for oscillator design. In the following, a generalized method, based on the mode-matching technique, will be presented.

An assumption to treat generalized uniform transmission lines (see Fig. 1) with a computer is useful. It is supposed, however, that only those arrangements should be investigated which can be subdivided into homogeneous rectangular subregions. The procedure will be explained for the transverse structure plotted in Fig. 8.

Let N be the number of these rectangular subregions. The description of the whole waveguide according to Fig. 8, is given by

$$P_0 = \left| P_{0i} \right|, \quad i = 1 \ldots N$$

with:

$$P_{0i} = [G_i, M_i]$$

In this formulation G_i means the geometrical and M_i the material property for the respective subregion i. Analyzing P_0 with a computer automatically leads to a more detailed description for P and A with:

$$P = [P_{0i}, S_i], \quad i = 1 \ldots N$$

and

$$A = [A_m], \quad m = 1 \ldots M$$

with:

$$A_m = [\tilde{i}_m, \tilde{s}_m, k_m]$$

and

$$k_m = \left| k_i \right|, \quad l = 1 \ldots L_m$$

S_i, describes the boundary at the rectangular subregion i and A contains the continuity conditions of the tangential field components at the surfaces between the subregion \tilde{i}_m and the subregions $k_i(l=1(1)L_m)$. The eigenfunctions which develop the tangential electric field components are those from the subregion \tilde{i}_m. The boundary description S_i of the subregion i in this formulation is too complicated to be analysed because it contains one, two, three, or four boundary numbers (see Fig. 9). It is advantageous to use the well-known superposition principle which leads to elementary subregions shown in Fig. 10.

For these subregions one can use field solutions like TE_0 waves and TM_0 waves for isotropic material properties and modified field solutions for anisotropic media, with diagonal permeability and permitivity tensors.

The continuity condition of the tangential electric and magnetic field components at a surface between two or more subregions can be satisfied by applying mode matching techniques for one of the descriptions A_m, of the form:

$$D_{k_i} = \sum_{l=1}^{L_m} D_{k_i}^{lB_{k_i}} C_{k_i}^l$$

with:

$$D_{k_i}^{lB_{k_i}} C_{k_i}^l$$

for the propagation constant k_s is obtained. Solving this equation leads to the propagation modes k and the electromagnetic fields (with its amplitudes C) of the waveguide.

Let N_m be the truncation index of the smallest B_{k_i} for all subregions in the transverse structure. The truncation index of an elementary subregion i with boundary s_i is given by the ratio $B_{k_i}^{\text{res.}} / B_{k_i}^{\text{res.}}$. This formulation for the truncation index N_s the system matrix size N becomes

$$N_s = N_0 - \sum_{i=1}^{N} \sum_{s \in S_i} (2 N_i^s - 1)$$

By inserting the equations for the electric field adaption (see Eq. (15)) the rank of the system matrix can be reduced to

$$N_s = N_0 - \sum_{m=1}^{M} (2 N_i^m - 1)$$

For the calculation of three-dimensional structures it is also possible to extend this method like mentioned at the beginning of this part. From practical points of view it should be noted, however, that only a few of such structures were implemented. All these arrangements can be used for oscillator developments in which the transmission properties of these structures will be determined or field distributions have to be calculated.
4.2. Experimental and Numerical Results of Investigations on a Resonator in Coplanar Technique

The applicability of the method described above is shown for the example of a planar millimeterwave resonator (see Fig. 11.) which is used for the oscillator structure shown in Fig. 5.

The resonator shown in Figure 11. consists of two resonator slots, a coplanar feeding line and a coupling area between coplanar and slot line. On both sides of the plane is air, the resonator substrate has no backside metallization. Good Q-factors can be expected because there is only low field concentration inside the lossy dielectric substrate of slot lines and coplanar lines.

a) At first, the electromagnetic behaviour of the slot resonators and the coplanar line is calculated with the help of the generalized method discussed above.

b) In the second step, the coupling area has been considered as an inner discontinuity. The boundary conditions inside this inner discontinuity are to satisfy a two-dimensional orthogonal expansion.

c) The third step leads to the scattering parameters of the coupling area and thus to the reflection coefficient r of the complete circuit. In order to obtain it, the boundary condition in the matching planes between the inner discontinuity and the connected lines must be satisfied.

From the reflection coefficient r calculated above, it is possible to derive the frequencies of resonance, Q-factors and equivalent circuits of each resonance-mode within the considered frequency range.

It is often advantageous to introduce an equivalent circuit showing the transmission behaviour of the resonator in the operating frequency range (see Fig. 12.). Furthermore, the results of this description can be easily included in the oscillator development procedure. The equivalent circuit given by Fig. 12. is based on a modified theory of homogeneous lines. This means that the discontinuities and end-effects are described by inductances. By using the scattering parameters, the input impedance of the resonator can also be determined. As a comparison of calculated and measured results, magnitude and phase of the input impedance of one resonator as a function of the frequency are depicted in Fig. 13.

5. OSCILLATOR DESIGN

5.1. Oscillator Structures

Some examples of oscillators which have been designed by the modelling and the simulation techniques and the field theory explained in the foregoing Chapters are discussed in the following.

5.1.1. Oscillators in Coplanar Line Technique

Figure 5. shows a view on the first structure, while in Figure 6. the corresponding equivalent circuit is depicted. The construction of the oscillator is based on the coplanar line technique. The passive structure is etched on an alumina substrate with no backside metallization. As mentioned already, the source of the FET is connected to the ground by means of capacitors or varactors. This serial feedback renders possible — along with the output load at the drain — to obtain a reflection coefficient r at the gate greater than unity. By connecting a resonator structure to the gate, the circuit becomes an oscillator. In this example, a slot line resonator with coplanar coupling is used, as discussed above. The very narrow DC-insulation slot is necessary for the gate biasing of the FET, bridged by capacitors. The semiconductor elements are sticked on the structure and connected by bondwires.

Another similar oscillator structure is shown in Figure 14.; its equivalent circuit is given by Figure 15. The resonant circuit at the gate comprises a capacitor and a bondwire as inductance. The capacitive serial feedback in this case is represented by a fixed capacitor. The drain is connected directly to the output line.
Using this oscillator with fixed capacitors only, the tuning range is very small due to the shift of the bias voltages. If a tunable oscillator is required, the mentioned principle can be enhanced by replacing the capacitors by varactors. The Figure 16. shows the structure of the tunable oscillator, and the corresponding equivalent circuit is plotted in Figure 17. It can be recognized that this oscillator is only little more complicated than the previous one.

A varactor tuned oscillator with two varactors can be built up as shown in Figure 16. By means of this network, a tuning bandwidth somewhat more than one octave can be obtained. The other way is to use only one varactor in the resonant circuit at the gate of the FET, and to implement the capacitive serial feedback by a fixed capacitor. Such a circuit is easier to produce but it shows a tuning range smaller than one octave.

The first version of the oscillator described above has been built up on RT/Duroid 5880-substrate as a hybrid integrated chip. The attachment of the transistor has been stucked on a galvanical gilded slot line structure by a low-loss adhesive. The electrical contacts were made by bond-wires.
5.2. Numerical and Experimental Results in Oscillator Design

Next, a calculation example of an oscillator with device parameters of the passive environment as shown in Fig. 5 will be presented. Actually, a part of these investigations was already presented in Chapter 3.2 in which the simulated power of such an oscillator is discussed. The CPU-time for the calculations of frequency and power of eight harmonics was 38 seconds on a 25 MHz-PC. The fundamental oscillation delivers about 5 dBm power at a frequency of 17 GHz, while at 19 GHz a power of about 7.3 dBm is available. In this context, the time dependence of the equivalent circuit nonlinear elements is of interest. The first example C_{gs} is given by Figure 20.

In both cases (Figures 20 and 21) it can be recognized that an extremely nonlinear range is covered.

Figs. 22 and 23 show the drain capacitance C_{ds} and the time constant τ dependence. For these elements, the strong nonlinear region will not be reached. This confirms that they can be handled as quasi linear.

Finally, the measured spectrum of an investigated fixed frequency oscillator (see Fig. 5) with a 1.3 µm gate FET is shown in Figure 24. The difference between simulation and measurement was within 5% in frequency and 10—15% in power, if the modelling of active and passive devices are carried out carefully. The spectrum of fundamental and second harmonic oscillation is depicted.

6. SOME ASPECTS ON NOISE SIMULATION

6.1. Theoretical Considerations

As well known, the spectrum of a real oscillator is not a pure delta function, because of the presence of noise. Especially the near carrier noise is an important technical
parameter of an oscillator. Figure 25. shows the schematic spectrum of such a circuit, consisting of a carrier and two noise sidebands.

In order to get an insight into the effects which introduce the spectrum spread in the vicinity of a carrier, let us consider the output signal $x(t)$ of an oscillator as an infinite sum of cosine functions perturbed by phase and amplitude modulation:

$$x(t) = \sum_{n=-\infty}^{\infty} x_{o}^{(n)} \left(1 + \frac{\Delta \phi^{(n)}(t)}{|x_{0}^{(n)}|}\right) \cos{n\Omega_{0}t + \phi_{0}^{(n)} + \Delta \varphi^{(n)}(t)}$$

(20)

Using the initial assumption that the modulation index is small:

$$\frac{\Delta \phi^{(n)}(t)}{|x_{0}^{(n)}|} \ll 1$$

(21)

and

$$\Delta \varphi^{(n)}(t) \ll 1 \text{ rad}$$

(22)

only one upper sideband (USB) and one lower sideband (LSB) appears. Hence,

$$x(t) = R_m \left[\sum_{n=-\infty}^{\infty} x_{o}^{(n)} e^{j n\Omega_{0}t} + x_{USB}^{(n)} e^{j (n-1)\Omega_{0}t} + x_{LSB}^{(n)} e^{j (n-\Omega_{0})t} \right]$$

(23)

In case of phase modulation (PM),

$$X_{USB}^{(n)} = j \frac{|X_{o}^{(n)}|\Delta \Phi^{(n)}}{2} e^{j \phi_{o}^{(n)}}$$

(24)

$$X_{LSB}^{(n)} = j \frac{|X_{o}^{(n)}|\Delta \Phi^{(n)}}{2} e^{j \phi_{o}^{(n)}}$$

(25)

In case amplitude modulation (AM),

$$X_{USB}^{(n)} = \frac{\Delta X^{(n)}}{2} e^{j \phi_{o}^{(n)}}$$

(26)

$$X_{LSB}^{(n)} = \frac{\Delta X^{(n)}}{2} e^{j \phi_{o}^{(n)}}$$

(27)

Under the mentioned assumption of small modulation, the sidebands of PM and AM can be superpositioned on the complete sideband phasors depending on the phasors of the PM ($\Delta \Phi$) and AM-process ($\Delta X^{(n)} / |X_{o}^{(n)}|$):

$$X^{(n)} = X_{PM}^{(n)} + X_{AM}^{(n)}$$

(28)

If more harmonics must be taken into account, a vector of sidebands should be introduced.

$$X_{SSB} = \begin{bmatrix} X_{USB}^{(1)} \\ X_{USB}^{(2)} \\ \vdots \\ X_{USB}^{(N)} \\ X_{LSB}^{(1)} \\ X_{LSB}^{(2)} \\ \vdots \\ X_{LSB}^{(N)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ X_{0} \\ X_{1} \end{bmatrix}$$

(29)

Furthermore, a modulation phasor is defined by equation (30) which contains the AM components above and the PM components below.

$$X_{MOD} = \begin{bmatrix} \Delta X^{(N)} / |X_{0}^{(N)}| \\ \Delta X^{(1)} / |X_{0}^{(1)}| \\ X_{0} \\ \Delta \Phi^{(1)} \end{bmatrix}$$

(30)

Applying the modulation theory of equations (20) to (29) to these vectors, a matrix describing the relation between X_{MOD} and X_{SSB} can be derived. Inverting this matrix delivers another one which is useful to calculate the modulation vector if the sideband vector is available as shown in expressions (31) and (32).

$$X_{MOD} = M_{PMAM} \cdot X_{SSB}$$

(31)

$$M_{PMAM} = \begin{bmatrix} e^{j \phi_{o}^{(N)}} / |X_{0}^{(N)}| & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & e^{j \phi_{o}^{(1)}} / |X_{0}^{(1)}| & 0 \\ 0 & \cdots & 0 & 1 \\ 0 & \cdots & e^{j \phi_{o}^{(1)}} / |X_{0}^{(1)}| & 0 \\ \vdots & \ddots & \ddots & \vdots \\ j e^{j \phi_{o}^{(N)}} / |X_{0}^{(N)}| & \cdots & 0 & 0 \\ 0 & 0 & \cdots & -j e^{j \phi_{o}^{(N)}} / |X_{0}^{(N)}| \end{bmatrix}$$

(32)
In case of noise, the complex phasors are not directly available as numerical values. Therefore, spectral densities $S_{PM}(\omega)$, $S_{AM}(\omega)$ must be used. What the engineer is mostly interested in is the value of the sideband power P_{SSB} divided by the power of the carrier P_0. For the PM-process, we have

$$\frac{X_{USB}}{X_0} = \frac{1}{4}\sqrt{2\Delta \Phi_{rms}} = \frac{S_{PM}(f)}{2}$$

$$P_{SSB} = 10 \log \frac{S_{PM}(f)}{2}$$

The calculations on the AM-sidebands can be carried out in a similar way:

$$\frac{X_{usb}}{X_0} = \frac{1}{4} \Delta X = \frac{S_{AM}(f)}{2}$$

$$P_{SSB} = 10 \log \frac{S_{AM}(f)}{2}$$

Equations (33) to (36) describe the dependence of the noise sidebands on the spectral densities of the noise process. The question is then, how to determine the spectral densities of the complete noise process and how to apply equation (31) to separate PM and AM components.

In order to answer this question, one has to analyze the reasons why near carrier noise appears in the spectrum of an oscillator. In the channel of a MESFET, statistical changes of the number and mobility of the charge carriers takes place at low frequencies. These changes in channel conductivity can be interpreted as an additional noise current between drain and source of the FET, which has a spectral density proportional to the reciprocal of frequency. The constant K_N is a function of both state variables u_1 and u_2.

6.2. Discussion of Some Results

The physically correct location of the noise source in the equivalent circuit of the FET is very important because the nonlinear conversion of the noise to the output terminals of the active device can only be taken into account if nonlinear behaviour (steady-state) of the transistor is known. Thus one has no chance to calculate equivalent external noise sources, before nonlinear analysis of the circuit has been carried out. This means that the noise source must be located at a position in the equivalent circuit of the FET which is equivalent to the locus of physical origin of this noise, namely the channel of the FET (see Fig. 26.).

$$S_{LFN} = \frac{K_N}{f}$$

$$K_N(t) = f(u_1(t), u_2(t))$$

The constant K_N can be determined by connecting a voltage source to the gate, a current source to the drain of the FET and measuring the RMS value of the drain source voltage. The diagram in Fig. 27. shows an example of the measured so called 1/f-noise of a 1.3 μm gate FET.

![Fig. 27. Example of the measured output-noise of a 1.3 μm gate-length FET, $U_{GODC} = 0$ V, $U_{GODC} = 2$ V](image)

It is seen that the 1/f dependence is not exactly valid but it is a good approximation. From the measured values, the spectral density of the noise source as well as $K_N(u_1, u_2)$ can be calculated.

6.3. The Method of the Conversion Matrix

In practically used oscillators, the noise is much below signal level, so one can use large signal—small signal analysis to determine how low-frequency noise is converted to the particular carrier. In [19] the method of nodal noise analysis is described, which is very useful and easily applicable to this particular oscillator-noise problem.

In case of deterministic signals as shown in [28], it is possible to define complex vectors for the small signal sidebands and a conversion matrix including the Fourier coefficients of the large signal time dependence of a nonlinear device. An example of the conversion via a nonlinear conductance is shown by equations (39) and (40):

$$M_G : m_{Gij} = G_{ij-1}$$

$$I = M_G U$$

The matrix M_G describes the conversion from one sideband vector to the other. The vectors and matrices of a linear element include values different from zero only in the main diagonal. If the computation of the conversion through a two-port should be carried out, the elements e.g. of the admittance matrix are conversion matrices themselves and those of the vectors vectors themselves.

It is well known that for analyzing the conversion of a small signal noise via a deterministic large signal pumped network, a correlation matrix can be defined (see e.g. [19] which includes the spectral densities of the noise sidebands in the main diagonal, and their correlation spectra in the other elements:

$$C^* = \begin{bmatrix}
S_{-N,-N} & S_{-1,-1} & S_{-1,0} & S_{-1,1} \\
S_{-N,-1} & S_{-N,0} & S_{-N,1} & \\
S_{-1,-N} & S_{-1,0} & S_{-1,1} & \\
S_{N,-N} & S_{N,-1} & S_{N,0} & S_{N,1}
\end{bmatrix}$$
For the conversion this yields:

\[C' = YC^nY^T \]

(42)

This latter equation can be handled relatively easy.

In application of the explained principles, the first step in the noise calculation is the computation of the correlation matrix of the pumped noise source with the help of a basic 1/f-noise matrix.

\[C^{NF}(f) = \begin{bmatrix} 0 & 0 & 0 & 1/f & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

(43)

Next, a conversion matrix \(M_K \) is derived from the time dependence of the noise factor \(K_N \). This dependence is known after nonlinear analysis is carried out and \(u_1 \) and \(u_2 \) are calculated.

\[K_N(t) = \sum_{i=1}^{\infty} K_{N_i} M_K : m_{ki} = K_N(t-i) \]

(44)

The correlation matrix of the pumped noise source can be determined with the help of equation (5.23).

\[C^{U_{i2}} = M_K C^{NF} M_k^T \]

(45)

The following step is the conversion due to the nonlinearities of the oscillator network. Therefore, the oscillator-noise model shown in Figure 28 is used. For near carrier noise only, the source \(I_{q2} \) is taken into account.

Next, a conversion matrix \(M_L \) is derived from the time dependence of the noise factor \(K_N \). This dependence is known after nonlinear analysis is carried out and \(u_1 \) and \(u_2 \) are calculated.

\[K_N(t) = \sum_{i=1}^{\infty} K_{N_i} M_L : m_{ki} = K_N(t-i) \]

(44)

The correlation matrix of the pumped noise source can be determined with the help of equation (5.23).

\[C^{U_{i2}} = M_K C^{NF} M_k^T \]

(45)

The following step is the conversion due to the nonlinearities of the oscillator network. Therefore, the oscillator-noise model shown in Figure 28 is used. For near carrier noise only, the source \(I_{q2} \) is taken into account.

Fig. 28. Oscillator noise model

By the knowledge of the linear and nonlinear network, two matrices can be defined which describe the conversion from the noise sources to the voltages at the ports of the linear network.

\[M_1 = [E + Z_i Z_{ni}^{-1}(E - M_{LT} Z_i)]^{-1} Z_i \]

(46)

\[M_2 = M_1 Z_{ni}^{-1} \]

(47)

with

\[M_{LT} = \begin{bmatrix} Z_i & Z_F \\ Z_F & Z_t \end{bmatrix} \]

(48)

In case of deterministic signals, the conversion could be described as follows:

\[U = M_1 \cdot I_q + M_2 U_g \]

(49)

This leads to the corresponding equation for noise conversion:

\[C^n = [M_1, M_2] \cdot \begin{bmatrix} C^{I_q} & C^{I_q} U_g & C^{I_q} U_g \\ C^{I_q} U_g & C^{U_g} & C^{U_g} \\ C^{I_q} U_g & C^{U_g} & C^{U_g} \end{bmatrix} \cdot [M_1, M_2]^T \]

(50)

Using the transfer functions \(H_1 \) and \(H_2 \) which describe the signal transfer from the harmonic balance ports of the linear network to the output of the circuit, the conversion via the linear network to the output can be calculated.

\[C^{U_{i2}} = [H_1, H_2] \cdot C^n \cdot [H_1, H_2]^T \]

(51)

Finally the spectral densities must be separated into PM- and AM noise components. For deterministic signals, this is expressed by equations (31) and (32), but equation (42) can also be applied.

7. CONCLUSION

A generalized oscillator CAD procedure has been presented for the simulation by harmonic balance. Based on the results of nonlinear calculation, a large—small signal analysis has been established in order to calculate the noise behaviour of the circuit. Some examples of realized oscillators have been investigated. In future a systematical CAD-optimizer for microwave oscillators has to be applied. Furthermore, the improvement of technological parameters in hybrid and monolithical integration is an important task.

8. ACKNOWLEDGEMENTS

The authors would like to thank Dipl.-Ing. Johannes Borkes, Dipl.-Ing. Axel Heitbrink, Dipl.-Ing. Stefan Heinen and Dipl.-Ing. Jürgen Kunisch for many interesting and helpful discussions.
REFERENCES

Adalbert Beyer received the diploma in 1964 and the Dr.-Ing. (Ph.D) degree in 1969, both in electrical engineering. 1976 he joined the Duisburg University, where he is currently a Professor of electrical engineering and field theory and Foundation Member of the "Sonderforschungsbereich 254". His areas of research interest are in the field theory, microwave- and millimeter wave techniques, in the CAD- and FET-applications, and especially in the theory and in the measurement of integrated circuits and in remote sensing. In 1987 he was a Visiting Professor at The University of Ottawa/Canada. Also in 1990 he spent a period as a Visiting Professor at The University of Texas at Austin/TX/ USA. He is author and coauthor of several books, patents and more than 100 technical papers. Professor Beyer is Member of VDE/ITG, Senior Member of IEEE and Member of the MTT-13, The Committee on Microwave Ferrites.
GaAs PRODUCTS FROM HUNGARY

INTRODUCTION

From the beginning of its foundation in 1958, the Research Institute for Technical Physics of the Hungarian Academy of Sciences has been considering that one of its most important task was the study of semiconductor materials and devices. Based on the results in the technology of GaAs epitaxy, in 1972 it started to develop microwave active devices. The first one was the Gunn diode, it was followed by the low-noise GaAs Schottky diode and later the family of Schottky tuning varactors were developed, utilising the further progress reached in the technology of the epitaxy. The pilot line production of the developed diodes was solved also in the Institute, in this manner it is the supplier of the professional telecommunication factories for more than ten years.

Due to their advantageous propagation properties the microwaves can be used not only in dedicated telecommunication and radar systems, but in many other fields, e.g. space guarding, vehicle identification, distance-, moisture- and temperature measurement, heat treatment in the industry and in the medicine, etc. Faithfully to the traditions of the Institute the applications of the devices were also investigated in these areas. At first general purpose waveguide transmitter and receiver modules were developed for the X band. Further on they were furnished with coding circuits for vehicle identification purposes. A dedicated VCO and a front end were also developed for a microwave distance measuring apparatus, but they can be applied also for other tasks. All of these modular products are based on own GaAs active devices; they are produced and supplied in cooperation with different industrial firms. The simultaneous development of the active devices and modules resulted in mutual benefits in both branch of activities.

In the followings the products are reviewed and finally the present development work is outlined.

GaAs ACTIVE DEVICES

Gunn-diodes

The different types of these GaAs bulk effect devices can be used in fixed frequency and electrically or mechanically tuned oscillators typical in the X band, some special types are applicable for lower (7 GHz), or higher (up to 18 GHz) frequencies. The output power of the different types varies between 5...200 mW in continuous regime, or up to 300 mW under pulsed conditions. The minimum efficiency is 1% of the low power diodes and about 3% of the high power devices. The optimum bias varies between 5...15 V for the different types used in continuous regime. In the case of pulsed operation the best performance can be reached by using about 1.6 times higher biasing pulses than the optimum value of the DC bias of the same diode. The pulse widths can be decreased down to several microseconds. The operating temperature range extends from −40 C to +70 C.

The diodes are encapsulated into metal-ceramic cases of hermetic coaxial metal-ceramic parkages. Vactor chips (gamma is higher, it is called hyperabrupt. If gamma is lower than 0.5, the varactor is called abrupt.)

Expression (1) may be rewritten in a form more convenient for application:

\[C = C_0 \left(1 + \frac{V}{\theta} \right)^{-\gamma} \]

where \(C_0 \) is the capacitance at zero bias \(\theta \) is a coefficient and \(\gamma \) (gamma) is the power of the exponent.

Here \(V_{max} \) is the maximum control voltage and \(C_{min} \) is the corresponding minimum capacitance. Over \(V_{max} \) the capacitance either does not change any more or does not satisfy Expression (2) with the given gamma value. If the value of gamma is about 0.5, the varactor is called abrupt, if gamma is higher, it is called hyperabrupt.

Three subfamilies — an abrupt, a hyperabrupt with constant gamma of 1.0—1.2 and a hyperabrupt with variable gamma — are offered.

GaAs Schottky Tuning Varactors

These types of varactors are used in general for voltage controlled tuning of oscillators, amplifiers, filters and phase-shifters and for modulation purposes. The capacitance-voltage (C—V) characteristics of varactors may be given as

\[C = C_0 \left(1 + \frac{V}{\theta} \right)^{-\gamma} \]

where \(C_0 \) is the capacitance at zero bias \(\theta \) is a coefficient and \(\gamma \) (gamma) is the power of the exponent.

Expression (1) may be rewritten in a form more convenient for application:

\[C = C_0 \left[1 + \frac{V}{V_{max}} \left(\frac{C_{0}}{C_{min}} \right)^{\gamma} \right] ^{-\gamma} \]

These small area Schottky diodes are fabricated on thin (< 1 μm) n-type GaAs epitaxial layers, grown onto high conductivity n"—GaAs substrate. The epitaxial layer is covered by CVD SiO2 film in which windows are opened by photolithography for the active junction areas. Each diode chip contains 9 different windows with diameters ranging from 5 μm to 25 μm. For applications at different frequencies different diode areas and layer doping is proposed [1]. The typical parameters of the standard catalogue types are: breakdown voltage measured at 100 mA reverse current: minimum 3 V (typical 20 V); series resistance: 5 Ohms; junction capacitance 0.08 pF; total (encapsulated) capacitance 0.25 pF. The maximum value of forward current is 5 mA DC, or 60 mA pulse (pulse length max. 1 ms.). The mixer diodes are categorized by their noise figures measured in a mixer unit. (RF: 7500 MHz, IF: 70 MHz, IF amplifier noise figure: 1.5 dB.) The maximum noise figure values of the standard types are: 5 dB, 5.5 dB and 6.5 dB. Similarly the detector diode types are selected according the tangential sensitivity [1], the limiting values of the different types are: 60 dBm, 55 dBm and 50 dBm. (The values are measured in a tuned cavity at 10 GHz by a video amplifier having the 3 dB suppression at 20 Hz and 20 kHz.)

Two kinds of encapsulation are available, the S-4 type metal-ceramic housing and the LID ceramic package. The first one is applicable in coaxial and waveguide circuits, it allows an operating temperature range between −55...+70 C. The LID package is ideal for microstrip and stripline circuits, in this case the operating temperatures range from −40 C to +70 C.
MODULAR PRODUCTS

Transmitter and Receiver Modules

The general purpose microwave transmitter and receiver modules are half wavelength waveguide cavities containing a Gunn, or a Schottky diode. The mechanical dimensions are shown in Fig. 1.

Fig. 1. The outlines of the transmitter and receiver modules

The body is made of Al based light metal alloy by casting. The flange is the standard R-100, its connecting surface is achieved by milling, the notch for the O-ring (watertight option) is turned. Holes and threaded for the diode mount and for the single tuning screw are drilled into positions depending on the operating frequency specified. The outer conductors of the diode mounts are made of nickel silver by turnery. The inner conductor in the coaxial diode mount acts as a first order low pass filter with cut-off frequency of 1 GHz. The top of the inner conductor at the diode is the impedance transformer to match the diode to the waveguide. As the impedances of the Gunn and Schottky diodes are different and depend on the frequency and the power specified, the shapes of these tops are different, while the remaining parts of the mount are uniform. The insulators in the diode mounts are made of plastics. The inner conductors are pressed to the diodes by springs with stainless steel plates for improving the resistance against mechanical shocks and vibration.

The typical characteristics of the AM-2 transmitter and VM-2 receiver modules are:

<table>
<thead>
<tr>
<th>AM-2 Typical characteristics (25 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency 1% min</td>
</tr>
<tr>
<td>Operating Temperature −40...+70 °C</td>
</tr>
<tr>
<td>Storage Temperature −40...+70 °C</td>
</tr>
<tr>
<td>Operating Mode CW or pulse</td>
</tr>
<tr>
<td>Operating Voltage 6...12 V DC</td>
</tr>
<tr>
<td>Output Power min. 10 mW, max. 40 mW</td>
</tr>
<tr>
<td>Operating Frequency 8.2...12.4 GHz</td>
</tr>
</tbody>
</table>

Maximum ratings

| Operating Voltage max. 12 V DC, max. 24 V pulse |
| Current max. 250 mA |
| Pulse Length min. 5 μs |

VM-2 Typical characteristics (25 °C)

| Centre frequency 8.2...12.4 GHz |
| Bandwidth (3 dB7) 100...300 MHz |
| (200...500 MHz at higher bias) |
| Bias 20...100 μA |
| Sensitivity 1...5 mV/μW |
| (0.5...3 mV/μW at higher bias) |
| (with microwave power less than 1 μW) |
| Minimal signal detected 1...10 pW |
| (−60...−50 dBm) |
| Maximal frequency at the output 20...200 MHz |
| (increasing with bias) |

Maximum ratings

| Temperature −50...+70 °C |
| Incident microwave power max. 100 mW |
| Bias current max. 10 mA |
| (1 s pulse) |
| max. 1 mA |
| (continuous) |
| Reverse voltage max. 5 V |

A twin version of the modules exist also for Doppler-reflexion intruder alarms. Fig. 2. shows the outline of it. The other mechanical and electrical parameters are equivalent with the parameters of the single modules.

Fig. 2. The outline of the DP-2 module containing the transmitter and receiver parts in combined mount

For applications in microwave vehicle identification and control systems [2] hybrid IC’s were developed for pulse coding and decoding of the transmitted and received signals. These circuits have the standard RS-232 interface. The coding means a full on/off modulation of the microwave signal due to the pulse modulation of the supply voltage. The data speed is 60 kbit/s. The total system has a modular construction allowing the possibility of building configurations with different complexity.
Microwave Front End

The type MK-2 microwave front end was developed for microwave distance measurement purposes. Because of its large bandwidth and high output power it can also be applied for data transmission.

The X-band microwave front end contains a varactor tuned Gunn oscillator mounted on the rear side of a parabolic dish producing a beam angle of max 6°. The receiver and the single ended mixer are placed in the focus of the dish. The intermediate frequency signal is amplified by a hybrid preamplifier. The oscillator and the mixer is controlled by a monitor. All microwave active semiconductor devices are in-house made GaAs ones. The complete front end is a factory repairable sub-assembly.

RESEARCH AND DEVELOPMENT

The present R & D activities in the Microwave Department of the Institute are focused on new GaAs active devices. Considering the demands of the high-speed sampling circuits the development of monolithic Schottky diode Quad circuit is in progress. In this case the diodes have a planar construction, they are fabricated on the top of the n-type GaAs epitaxy grown onto semi-insulating substrate. Both the Schottky and ohmic metallization takes place on the top of the wafer. The monolithic construction gives hope of the considerably uniformity of the diodes, which is necessary in the Quad bridge.

The other essential circuit used in the sampling circuits is the high speed switching pulse generator. For these purposes the GaAs optical switches were studied. An apparatus for laboratory investigations was constructed [3] and a new, simple device principle was proposed [4]. The technology of the proposed device is compatible with the technology of MESFET’s and therefore further integration will be possible.

The detailed study of the relation between the microwave parameters and the inner structure of diodes is a permanent problem in this laboratory. The improvement of the accuracies of microwave measurements and evaluations make possible the calculations of the true doping densities and mobilities in varactor diodes from the measured S parameters [5].

Bearing the detectors the properties on planar doped barrier diodes (PDBD’s) are examined [6], [7], [8]. The investigated devices have a n—n—p++—n—n+ layer structure, where the p++ layer is thinner than the Debye length. The structure is similar to two p—n junctions in back-to-back configuration, but the total amount of the acceptors built into the p++ layer are small for forming the p—n barriers having a height about Eg, the formed barrier height can be influenced by the total amount of dopants in the p++ layer and by the thicknesses of the n layers. The most attractive feature of these devices is the technologically controllable barrier height. Therefore the limitations associated with the fixed surface barrier in GaAs Schottky diodes can be overcome. The multilayer semiconductor structures can be built only by the up-to-date epitaxial technologies as MBE or equivalent. The work is going on in cooperation with the Technical University of Tampere (Finland), where the GaAs MBE layer structures are grown. Utilizing the low barrier of the PDBD’s a simple zero bias detector was constructed for the 2.45 GHz frequency. The radiation detector works without battery, the minimum detectable intensity is 10 μW/cm² fulfilling the requirements of the rigorous Hungarian health protection standard.

REFERENCES

B. SZENTPÁLI
US SEMINAR ON TELECOMMUNICATIONS

A seminar concerning policy and regulatory frameworks that enhance the development of telecommunications has taken place on July 22nd and 23rd in Budapest. This seminar was a part of the Eastern European Telecommunication Development Support Seminar series, sponsored by the US Department of States Bureau of Communications and Information Policy and the U.S. Embassies in the countries in question. The seminar presented in Hungary comprised three modules as detailed in the following.

MODULE I — ELEMENTS OF A MODERN TELECOMMUNICATIONS INFRASTRUCTURE

OUTLINE: A) Elements of Telecommunications Facilities
 B) Elements of Telecommunications Services
 C) Enhanced Services
 D) Interfaces between Network Elements
 E) Technology Choices
 F) Implications for the Regulatory Framework and Rules

The purpose of this module was to provide the technological foundations of the course. The four fundamental parts of a telecommunication network (long distance network, local network, inside wiring, and customer premises equipment) were briefly discussed, and the basic and enhanced services offered on the public network were reviewed. Finally, the technological choices available for the various network elements were discussed.

MODULE II — ECONOMIC POLICY AND REGULATORY FRAMEWORK

OUTLINE: A) Basic Economic and Policy Principles
 1. Competitive Markets
 2. Special Cases Involving Legal and Natural Monopolies
 Providing Essential Services
 3. Prospects for Competition in Terms of Facility and Service Elements

OUTLINE: B) Regulatory Framework
 1. Goals of Economic Regulation in a Market Oriented Economy
 2. Traditional Regulation of Public Utilities
 3. Special Issues Surrounding Mixed Monopoly/Competition
 4. Alternatives to Traditional Regulation
 5. Review of U.S. Experience with Alternative Forms of Regulation and the Evolution Toward a Competitive Telecommunications Marketplace

The purpose of this module was to provide the basic economic rationale for regulation as it has evolved in the U.S., and to present a framework for the regulation in an environment where there is a mixture of monopoly and competitive elements. The first part of the module dealt with a brief review of market oriented economic theory and the advantages of private enterprise and competitive markets. The special problems associated with firms with monopoly power over essential services as a result of natural monopoly or franchised monopoly conditions were reviewed, together with economic rationale for regulation under these conditions. Major categories of networks and services described in Module I were examined in terms of whether they exhibit strong natural monopoly characteristics that would warrant economic regulation.

In the second part of this module, the goals of economic regulation in a market oriented economy were outlined, with a discussion of the economic rationale for traditional public utility regulation and alternative forms of regulation. Traditional forms of rate-of-return regulation utilizing a government regulatory body (a commission) were also described, and the advantages/disadvantages reviewed.

Next, the special issues of cross-subsidization and discrimination that arise when a firm with monopoly power also participates in adjacent competitive markets were treated. Finally the recent U.S. experience with these alternative forms of regulation and the use of competition to spur innovation and reduce costs were assessed and discussed.

MODULE III — LEGAL FRAMEWORK AND RULES

OUTLINE: A) Distribution of Functions
 — Government, Providers, End Users
 B) Franchising/Entry, Expansion, Exit Approval
 C) Pricing/Tariffing
 D) Policing Discrimination/Anticompetitive Activities
 E) Making the Transition from Monopoly Competition/Deregulation
 F) Spectrum Management/Radio Licensing
 G) General Administrative Process

In this module, a possible legal framework for creating a market oriented telecommunications industry in the Host Country has been presented. Main topics included a basic legal structure looking toward the separation of the provision of telecommunications services from governmental policy and regulatory functions, and relying upon competition rather than regulation to the maximum extent possible. The roles to be played by the three sets of stakeholders, the government, the service providers and the end users have been discussed, together with laws/rules dealing with the awarding of franchises and the issuance of permits or other authority for the construction, expansion of withdrawal of telecommunications facilities/services. Another topic covered the laws/rules dealing with carrier pricing and tariffing.

Following the treatment of discrimination and other forms of anticompetitive behaviour, laws/rules dealing with the transition from monopoly provision of services to a more competitive environment have been treated. For example, as certain portions of the market become more competitive (and eventually fully competitive), regulatory burdens should be lightened and, when appropriate, lifted altogether. The laws/rules necessary to assure appropriate deregulation during the transition from a mon-
opoly to a competitive environment have also been reviewed.

In the next portion of the module, laws/rules governing the allocation and assignment of the radio spectrum have been presented. The focus in this module was on the relationship of spectrum allocation policies to telecommunications policy, and laws/rules for actually implementing spectrum management as a governmental function. As the final topic, laws/rules dealing with administrative procedures to be used in the regulation of telecommunications have been described.

All modules were presented by highly experienced experts. Dale N. Hatfield, formerly holding high level government positions concerning telecommunications policy, is presently involved in directing telecommunications programs at various universities. Robert R. Bruce, a partner in a major law firm in Washington, D.C., focused on telecommunications policy and regulations, further on international trading problems of telecommunication services. Dr. James H. Alleman, formerly with GTE and ITU, is presently working at the University of Nebraska.

Information from the US Embassy

■ BOOK REVIEWS

MICROWAVE INTEGRATED CIRCUITS by I. Kása

The book presents fundamental and up-to-date information on hybrid microwave integrated circuits (MICs) and beyond the description and analysis, it provides basic design methods for specific problems. The book is written primarily for electronic engineers, interested in the field of MIC design or application. By giving an overview of the possibilities and limitations of the MIC applications, it is intended also for engineers active in equipment and system design. The book may be used advantageously by university and college students striving for a deeper understanding of this important topic.

The book starts with a brief introduction to the technological aspects, then a survey of the applied transmission line types is given. This is followed by chapters giving a detailed discussion of passive linear integrated circuit elements such as integrated directional couplers, hybrids, filters and some types of nonreciprocal circuits, YIG and ferrite devices. As the advantages and benefits of the microwave integrated circuits can be fully exploited only by the extensive use of semiconductor devices, several chapters are devoted to active and nonlinear solid state circuits, including fundamental types of integrated oscillators, amplifiers and mixers.

Each chapter is completed with an extensive bibliography including references to basic results as well as recent significant papers, so these can give directions in further study and research.

The main value of the book is the profound and consistent discussion which helps the reader gain a comprehensive and balanced view on hybrid microwave integrated circuits.

The book is written primarily for electronic engineers, interested in the field of MIC design or application. By giving an overview of the possibilities and limitations of the MIC applications, it is intended also for engineers active in equipment and system design. The book may be used advantageously by university and college students striving for a deeper understanding of this important topic.

The book starts with a brief introduction to the technological aspects, then a survey of the applied transmission line types is given. This is followed by chapters giving a detailed discussion of passive linear integrated circuit elements such as integrated directional couplers, hybrids, filters and some types of nonreciprocal circuits, YIG and ferrite devices. As the advantages and benefits of the microwave integrated circuits can be fully exploited only by the extensive use of semiconductor devices, several chapters are devoted to active and nonlinear solid state circuits, including fundamental types of integrated oscillators, amplifiers and mixers.

Each chapter is completed with an extensive bibliography including references to basic results as well as recent significant papers, so these can give directions in further study and research.

The main value of the book is the profound and consistent discussion which helps the reader gain a comprehensive and balanced view on hybrid microwave integrated circuits.

GaAs MONOLITHIC INTEGRATED CIRCUITS by I. Mojzes

This book is one of the first attempts to treat the vast and extremely complex field of compound semiconductor integrated circuits construction and technology as deeply as possible, while at the same time treating the many practical aspects of this subject.

The treatment of the material presented is essentially self-contained. Starting at a basic level, the author leads the reader gradually to the more advanced and complicated topics. In the first chapter, a history of semiconductor devices is presented. Based on the short summary of the physical properties of GaAs the main steps of the compound semiconductor device technology is described. Specific methods such as lift-off are analysed in detail.

Using fundamentals the active devices used in monolithic microwave integrated circuits (MMIC) are described. Passive components are very important constituent parts of these devices. The construction and technological realisation of specific parts of these circuits such as interconnection and air-bridges are presented in detail. For realization of MMIC's specific circuits are required having low losses and high speed. In chapter 6 these realizations are summarized and compared. The description of the application of these devices is started with application specific GaAs integrated circuits: memories, frequency dividers, amplifiers, mixers, delay line oscillators are the most important fields of application of MMICs. Measuring methods, reliability aspects, radiation hardness are also treated in the present book.

It is a useful reference for student and researchers as well as for users of the field. A glossary of the most important terms used in MMIC's is presented in English, German, Russian and Hungarian.

In conclusion, it can be said that this book gives an excellent review of the state-of-the-art in this field.

(Általános Tudományos Kiadó, Budapest 1988. in Hungarian p. 235., with 178 Figures.)
CENTENNIAL SCIENTIFIC DAYS OF PKI
20—22 November, 1991 — Budapest, Hungary

Organized by PKI Telecommunication Institute

in association with the Hungarian Telecommunications Company and the Scientific Society for Telecommunications

Under the auspices of the International Telecommunication Union and the Universal Postal Union

Venue: Hotel Agro, Budapest XII., Normafa út 42.

Programme

Wednesday, 20 November
• Opening session
• International relations
• Switching
• Telecommunications regulations

Thursday, 21 November
• Postal services
• Telephony
• Optical communications
• Advanced telecom services

Friday, 22 November
• Networking
• Radiocommunications
• Telecommunications economy
• closing session

Information for authors

JOURNAL ON COMMUNICATIONS is published monthly, alternately in English and Hungarian. In each issue a significant topic is covered by selected comprehensive papers. Other contributions may be included in the following sections:

• INDIVIDUAL PAPERS for contributions outside the focus of the issue,
• PRODUCTS-SERVICES for papers on manufactured devices, equipments and software products,
• BUSINESS-RESEARCH-EDUCATION for contributions dealing with economic relations, research and development trends and engineering education,
• NEWS-EVENTS for reports on events related to electronics and communications,
• VIEWS-OPINIONS for comments expressed by readers of the journal.

Manuscripts should be submitted in two copies to the Editor (see inside front cover). Papers should have a length of up to 30 double-spaced typewritten pages (counting each figure as one page). Each paper must include a 100—200 word abstract at the head of the manuscript. Papers should be accompanied by brief biographies and clear, glossy photographs of the authors.

Contributions for the PRODUCTS-SERVICES and BUSINESS-RESEARCH-EDUCATION sections should be limited to 16 doublespaced typewritten pages.

Original illustrations should be submitted along the manuscript. All line drawings should be prepared on a white background in black ink. Lettering on drawings should be large enough to be readily legible when the drawing is reduced to one- or two-column width. On figures capital lettering should be used. Photographs should be used sparingly. All photographs must be glossy prints. Figure captions should be typed on a separate sheet.

For contributions in the PRODUCTS-SERVICES section, a USD 110 page charge will be requested from the author's company or institution.
This comprehensive software package allows the user to sketch analog circuit diagrams of arbitrary complexity and simulate their operations on IBM PC XT/AT/PS2 or compatibles. Formation and testing of either linear or non-linear circuits may be accomplished in a matter of minutes with the effective CAE tools provided. TINA’s “electronic breadboard” cuts design cost and reduces the number of necessary experiments. The unique features of TINA are the optimization and the measurement interface. Electronic circuits can be designed, analysed, troubleshooted and tuned in the same integrated environment. Both TINA’s own measurement add-ons and a wide range of IEEE bus controlled instruments are supported.

Circuit diagrams are designed in an easy-to-handle schematic editor. Element symbols chosen from a component catalog are positioned by the cursor keys or a mouse. Tolerances can be assigned to the circuit elements, Monte-Carlo and worst-case analysis are available to statistically test circuit performance. An extensive semiconductor catalog is provided which allows the user to select the required semiconductor components from a user-extendable library. Standard file formats and export transactions allow access to well known other packages like PSpice, WordPerfect, AutoCAD, and Ventura.

AC analysis can handle linear resistive and dynamic elements, and is also capable of displaying the Bode diagram.

TINA allows stepping of component values, of model parameters, and of temperatures. The results may be plotted as a family of curves. In addition, during the DC analysis, component values and model parameters can be swept (i.e. altered continuously) thus displaying the response.

A special feature of TINA is the optimization. Specifying a desired quantity (voltage, current, frequency, etc.) in the circuit, prompts the program to find the value of a selected component (if it exists) that meets this specification.

The TINA-LAB measurement card turns your PC into a powerful engineering workstation. The built in function generator provides input for the analyzed circuit, while the output signals can be measured in multimeter or oscilloscope mode. Frequency response (Bode diagram) can also be measured by combining a wobulated sinusoidal test signal with peak detection. High frequency measurements can be carried out by using the IEEE 488 interface.

Educational applications are facilitated through voltage, ampere and power meters, complete demo facilities and a built-in word processor.

Professional version for designers, special NOVELL network version for schools, student version for home usage are available.

Developed by: RAIR Computer Ltd.

H-1145, Budapest Gyarmat u. 45/c
Tel.: (361) 1699-915, (361) 2524-390
Fax: (361) 2524-506
HELLO...
SIEMENS SPEAKING...
HERE WE ARE...